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Abstract

We have developed Postnikov sections for Brown–Grossman homotopy groups and for S
homotopy groups in the category of exterior spaces, which is an extension of the proper ca
The homotopy fibre of a fibration in the factorization associated with Brown–Grossman gro
an Eilenberg–Mac Lane exterior space for this type of groups and it has two non-trivial conse
Steenrod homotopy groups. For a space which is first countable at infinity, one of these gr
given by the inverse limit of the homotopy groups of the neighbourhoods at infinity, the other
is isomorphic to the first derived of the inverse limit of this system of groups. In the factoriz
associated with Steenrod groups the homotopy fibre is an Eilenberg–Mac Lane exterior sp
this type of groups and it has two non-trivial consecutive Brown–Grossman homotopy group
also obtain a mix factorization containing both kinds of previous factorizations and having hom
fibres which are Eilenberg–Mac Lane exterior spaces for both kinds of groups.

Given a compact metric space embedded in the Hilbert cube, its open neighbourhoods pro
Hilbert cube the structure of an exterior space and the homotopy fibres of the factorizations
are Eilenberg–Mac Lane exterior spaces with respect to inward (or approaching) Quigley gro
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0. Introduction

One of the aims of the Algebraic Topology is the study of the spaces and their clas
tion. The usual tools of Algebraic Topology have permitted to obtain many classifica
and to analyse some properties. However, there are families of spaces with specia
larities that require an adaptation of the standard techniques.

In this paper, we have adapted the standard technique of Postnikov factorizations
study of non compact spaces and using techniques of shape theory we also have
tions to the study of compact metric spaces. For a non compact space it is advis
consider as neighbourhoods at infinity the complements of closed-compact subse
proper category arises when we consider spaces and maps which are continuous at
In order to have a category with limits and colimits it is interesting to extend the pr
category to obtain a complete and cocomplete category. The category of exterior
satisfies these properties, contains the proper category and has limits and colimi
study of non compact spaces and more generally exterior spaces has interesting
tions, for example, Siebenmann [19] or Brown–Tucker [2] used proper invariants o
compact spaces to obtain some properties and classifications of open manifolds.
also find applications in the study of compact-metric spaces. Each compact-metric
has an associated fundamental Leftschetz complex, which is a non compact CW-co
In this way, the proper invariants of non compact CW-complexes became invaria
metric-compact spaces.

To develop the Algebraic Topology at infinity it is useful to consider some analo
of the standard Hurewicz homotopy groups. If instead ofn-spheres we use sequences
n-spheres converging to infinity, then we obtain the Brown–Grossman proper hom
groups, see [1,10]. On the other hand, if we move ann-sphere continuously towards infin
ity, we get infinity semitubes which represent elements of the Steenrod homotopy g
see [5] and [4]. For the category of exterior spaces we also have the analogues of t
vious groups, see [7] and [8].

Using colimits, we obtain Postnikov sections in the category of exterior spaces f
Brown–Grossman exterior homotopy groups. This gives rise to a tower of sections

· · · → X
[n+1]
B → X

[n]
B → ·· · → X

[0]
B

for groups of Brown–Grossman type, and for the class of cce exterior spaces gi
the beginning of Section 4, using towers of spaces and telescopic constructions we
another tower

· · · → X
[n+1]
S → X

[n]
S → ·· · → X

[0]
S

for groups of Steenrod type.
For the same class of cce exterior spaces we are able to construct a mix factoriza

· · · → X
[n]
S → X

[n]
B → X

[n−1]
S → ·· · → X

[1]
B → X

[0]
S → X

[0]
B

that contains the two previous towers.
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An analysis of the homotopy ray fibres of the morphisms of these factorizations pro
the following interesting properties.

(i) The homotopy ray fibre ofX[n+1]
B → X

[n]
B is an Eilenberg–Mac Lane exterior spa

KB(πB
n+1(X),n + 1) for the exterior homotopy groups of Brown–Grossman ty

However, this fibre can have two non trivial consecutive Steenrod groups, one o
groups is given by the inverse limit of the(n + 1)th homotopy groups of the neigh
bourhoods at infinity and the other is given by the first derived of the inverse lim
this system of groups.

(ii) The homotopy ray fibre ofX[n+1]
S → X

[n]
S is an Eilenberg–Mac Lane exterior spa

KS(πS
n+1(X),n+1) for the exterior homotopy groups of Steenrod type. This fibre

have two non trivial consecutive Brown–Grossman groups, which we have des
using analogues of the functorP∞ introduced by Brown [1].

(iii) The homotopy ray fibres of morphisms of the mix factorization are Eilenberg–
Lane exterior spaces for both kinds of groups. We also give a description of
groups using analogues of theP∞ functor, the inverse limit functor and its first d
rived functor.

1. Preliminaries

Let X andY be topological spaces. A continuous mapf :X → Y is said to be proper i
for every closed compact subsetK of Y , f −1(K) is a compact subset ofX. The category o
spaces and proper maps will be denoted byP. This category and the corresponding pro
homotopy category are very useful for the study of non compact spaces. Neverthele
category does not have enough limits and colimits and then we can not develop th
homotopy constructions like loops, homotopy limits and colimits, et cetera.

In [7] there is a solution for this problem introducing the notion of exterior space.
category of exterior spaces and exterior maps,E, is complete and cocomplete and conta
P as a full subcategory. Furthermore,E has a closed simplicial model category structur
the sense of Quillen [18]; hence, it establishes a good framework for the study of p
homotopy theory.

We begin by recalling the notion of exterior space. Roughly speaking, an exterior
is a topological spaceX with a neighbourhood system at infinity.

Definition 1.1. An exterior space (or exterior topological space)(X, ε ⊂ τ) consists of a
topological space(X, τ) together with a non empty collectionε of open subsets satisfyin

(E1) If E1,E2 ∈ ε thenE1 ∩ E2 ∈ ε;
(E2) If E ∈ ε, U ∈ τ andE ⊂ U , thenU ∈ ε.

An openE which is inε is said to be an exterior-open subset or for shorting an e-
subset. The family of e-open subsetsε is called the externology of the exterior space. A m
f : (X, ε ⊂ τ) → (X′, ε′ ⊂ τ ′) is said to be exterior if it is continuous andf −1(E) ∈ ε, for
all E ∈ ε′.
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Given an space(X, τ), we can always consider the trivial exterior space takingε = {X}
and the total exterior space if one takesε = τ . In this paper, an important role will be playe
by the familyεX

cc of the complements of closed-compact subsets of a topological spaX,
that will be called the cocompact externology. We denote byN andR+ the exterior space
of non negative integers and non negative real numbers having the usual topology a
cocompact externology.

Notice that ifE denotes the category of exterior spaces and exterior maps, then w
the following full embeddinge : P ↪→ E: It carries an spaceX to the exterior spaceXe

which is provided with the topology ofX andεX
cc. A proper mapf :X → Y is carried to

the exterior mapfe :Xe → Ye given byfe = f .

Remark 1.2. Notice the following two differences between an externology and a topo
cal filter: (i) the empty set is never a member of a topological filter, however it is a me
of the total externology, (ii) all members of an externology are open sets and this pr
need not be satisfied by a topological filter.

Definition 1.3. Let (X, ε ⊂ τ) be an exterior space. An exterior neighbourhood base
(X, ε ⊂ τ) is a collection of subsets ofX, β, satisfying that for every e-open subsetE there
existsB ∈ β such thatB ⊂ E and for everyB ′ ∈ β there exists an e-open subsetE′ such
thatE′ ⊂ B ′.

If an exterior spaceX has a countable exterior neighbourhood baseβ = {Xn}∞n=0 then
we say thatX is first countable at infinity.

Observe that for these exterior spaces we can suppose without loosing generalit

X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · · .
Notice that the trivial and total exterior spaces and everyσ -compact space provide

with εX
cc are first countable at infinity.

Definition 1.4. Let X be an exterior space,Y a topological space. Consider onX × Y the
product topology and the distinguished open subsetsE of X × Y such that for eachy ∈ Y

there existsUy ∈ τY , y ∈ Uy andEy ∈ εX such thatEy × Uy ⊂ E. This exterior space wil
be denoted byX ×̄ Y .

This construction gives a functorE × Top → E, whereTop denotes the category o
topological spaces. WhenY is a compact space thenE is an e-open subset if and only
it is an open subset and there existsG ∈ εX such thatG × Y ⊂ E. Furthermore, ifY is a
compact space andεX = εX

cc thenεX×̄Y = εX×Y
cc .

Let EN be the category of exterior spaces underN, where an object is given by a
exterior mapρ :N → X, denoted by(X,ρ), and the morphisms are given by commutat
triangles inE

N

ρX ρY

X
f

Y
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denoted byf : (X,ρX) → (Y,ρY ).

Definition 1.5. Let f , g be in HomEN((X,ρX), (Y,ρY )), then we sayf is e-homotopic
to g relative toN, written f 	e g, if there is an exterior mapF :X ×̄ I → Y such that
F(x,0) = f (x), F(x,1) = g(x) andF(ρX(k), t) = ρY (k), for all x ∈ X, k ∈ N andt ∈ I .
The mapF is called an exterior homotopy relative toN from f to g and we sometime
write F :f 	e g. The set of exterior homotopy classes relative toN will be denoted by
[(X,ρX), (Y,ρY )]N.

In [7], it is proved that[(N ×̄ Sq, idN ×̄ ∗), (X,ρX)]N has the structure of a group f
q � 1, which is abelian forq � 2; if q = 0 we get a pointed set.

Definition 1.6. Let (X,ρ) be an object ofEN. Forq � 0, theqth exterior homotopy grou
functor of(X,ρ) is given byπB

q (X,ρ) = [(N ×̄ Sq, idN ×̄ ∗), (X,ρ)]N. It is also said tha
πB

q (X,ρ) is theqth Brown–Grossman exterior homotopy group of(X,ρ). As in standard
homotopy, for a given exterior pair(X,A) and a base sequence of the formσ :N → A, we
also have the relative Brown–Grossman exterior homotopy groupsπB

q (X,A,ρ).

In an analogous way, one can consider the categoryER+ of exterior spaces unde
R+. In this case, the set of exterior homotopy classes relative toR+ will be denoted by
[(X,σX), (Y,σY )]R+ . Similarly, see [8], forq � 1 [(R+ ×̄ Sq, idR+ ×̄∗), (X,σX)]R+ ad-
mits the structure of a group, which is abelian ifq � 2; and forq = 0 a pointed set is
obtained.

Definition 1.7. Let (X,σ ) be an object ofER+ . For everyq � 0, theqth cylindric homo-
topy group functor of(X,σ ) is given by

πS
q (X,σ ) = [

(R+ ×̄ Sq, idR+ ×̄∗), (X,σ )
]R+ .

It is also said thatπS
q (X,σ ) is theqth Steenrod exterior homotopy group of(X,σ ). As

above we also have the corresponding relative groupsπS
q (X,A,σ ) for σ :R+ → A.

In [7] the following classes of maps were considered.

Definition 1.8. Let f :X → Y be an exterior map.

(i) f is a weak exterior equivalence, called in this paper a weakB-equivalence, in eithe
of the following cases:
(a) if HomE(N,X) = ∅ then HomE(N, Y ) = ∅,
(b) if HomE(N,X) �= ∅ thenπB

q (f ) :πB
q (X,ρ) → πB

q (Y,fρ) is an isomorphism fo
all ρ ∈ HomE(N,X), q � 0.

Sometimes, we short the fact that a map satisfies either (a) or (b) by writing
πB

q (f ) :πB
q (X) → πB

q (Y ) is an isomorphism. We are thinking thatπB
q (X) is the fam-

ily of πB
q (X,ρ) for all ρ ∈ HomE(N,X).
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(ii) f is an exterior fibration, orB-fibration, if it has the RLP with respect to∂0 :N ×̄Dq →
N ×̄ (Dq × I ) for all q � 0, where∂0(n, x) = (n, x,0).
A map which is both aB-fibration and a weakB-equivalence is said to be a trivi
B-fibration.

(iii) f is an exterior cofibration, orB-cofibration, if it has the LLP with respect to an
trivial B-fibration.
A map which is both aB-cofibration and a weakB-equivalence is said to be a trivi
B-cofibration.

We can develop homotopy theory for the category of exterior spaces using the foll
result given in [7].

Theorem 1.9. The category of exterior spaces,E, together with the classes ofB-fibrations,
B-cofibrations and weakB-equivalences has a closed simplicial model category struc

We denote byHo(E) the category obtained fromE by inverting the weakB-equiv-
alences. If a exterior space satisfies that HomE(N,X) ∼= ∅, then we have that∅ → X is a
weakB-equivalence, in this case it is said thatX is trivial in Ho(E).

On the other hand, in [8], it is showed thatE has a closed simplicial model catego
structure with the following classes of maps.

Definition 1.10. Let f :X → Y be an exterior map.

(i) f is a weak cylindric equivalence, called in this paper a weakS-equivalence, in eithe
of the following cases:
(a) if HomE(R+,X) = ∅ then HomE(R+, y) = ∅,
(b) if HomE(R+,X) �= ∅ then πS

q (f ) :πS
q (X,σ ) → πS

q (Y,f σ) is an isomorphism
for all σ ∈ HomE(R+,X), q � 0.

As in the case of Brown–Grossman groups, we short these conditions by writin
πS

q (f ) :πS
q (X) → πS

q (Y ) is an isomorphism.
(ii) f is a cylindric fibration, orS-fibration, if it has the RLP with respect to

∂0 :RR ×̄Dq → R+ ×̄ (Dq × I ) for all q � 0,

where∂0(r, x) = (r, x,0).
A map which is both anS-fibration and a weakS-equivalence is said to be a trivi
S-fibration.

(iii) f is a cylindric cofibration, orS-cofibration, if it has the LLP with respect to an
trivial S-fibration.
A map which is both anS-cofibration and a weakS-equivalence is said to be a trivi
S-cofibration.

We summarize in the following result, see [8], the existence of this “cylindric structu
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Theorem 1.11. The categoryE of exterior spaces together with the classes ofS-cofi-
brations,S-fibrations and weakS-equivalences has a closed simplicial model categ
structure.

For an exterior base rayσ :R+ → X denote byσ |N = σ in, where in :N → R+ is the
inclusion map. Suppose that we have an exterior mapf :X → Y and take inE the pullback

F

u

v
X

f

R+ f σ
Y

then, the exterior spaceF is said to be the ray fibre off with respect to the exterio
base rayf σ . Notice thatF is an exterior space over and underR+ and the pair of map
idR+ :R+ → R+ and σ :R+ → X induce the base rayτ = (idR+ , σ ) :R+ → F . As in
standard homotopy, we also have long exact sequences associated to aB-fibration. We
refer the reader to [13] for a proof of the two following results.

Theorem 1.12. Letf :X → Y be an exterior map and letσ :R+ → X be an exterior base
ray, then

(i) if f is aB-fibration, thenf is aS-fibration,
(ii) if f is aB-fibration with ray fibreF , then the following sequences are exact

· · · → πB
q+1(Y,f σ |N) → πB

q (F, τ |N) → πB
q (X,σ |N) → πB

q (Y,f σ |N)

→ ·· · → πS
q+1(Y,f σ) → πS

q (F, τ) → πS
q (X,σ ) → πS

q (Y,f σ) → ·· ·
where the base sequences and rays are determined byσ .

The Brown–Grossman exterior homotopy groups and the Steenrod exterior hom
groups are related by a long exact sequence that is a version for exterior spaces of th
sequence given by Quigley [17] in shape theory or by Porter [14] in proper hom
theory.

Theorem 1.13. Let X be an exterior space and letσ :R+ → X be an exterior base ray
then there is an exact sequence

· · · → πB
q+1(Y,σ |N) → πS

q (X,σ ) → πB
q (X,σ |N) → πB

q (X,σ |N)

→ ·· · → πB
1 (X,σ |N) → πS

0 (X,σ ) → πB
0 (X,σ |N) → πB

0 (X,σ |N).

Moreover, this exact sequence is natural with respect to exterior rayed spaces(X,σ ).

Remark 1.14. If φ is an element ofπB
q (X,σ |N), then forq � 1 this element is applied b

the mapπB
q (X,σ |N) → πB

q (X,σ |N) into the elementφ−1 ·shσ φ, whereφ−1 is the inverse
of φ in the groupπB

q (X,σ |N) and shσ φ is given by the shift induced by the base rayσ . The

exactness in the last part of the long sequenceπS(X,σ ) → πB(X,σ |N) → πB(X,σ |N)
0 0 0
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means that the image of the mapπS
0 (X,σ ) → πB

0 (X,σ |N) is the igualator of the map
id,shσ :πB

0 (X,σ |N) → πB
0 (X,σ |N), where ifS0 = {−1,1} and the base point ofS0 is −1

if an element is represented byψ :N ×̄S0 → X then shσ [ψ] is represented by the mapψ ′
given byψ ′(k,1) = ψ(k + 1,1), ψ ′(k,−1) = σ(k), for k ∈ N.

Denote byGps the category of groups and bytowGps the category of tower o
groups, see [4]. In 1975, E.M. Brown [1] gave a definition of the proper fundam
tal groupBπ∞

1 (X) of a σ -compact spaceX with a base ray. He also defined a func
P∞ : towGps→ Gps, that gives the relation between the tower of fundamental gro
{π1(Xi)}, of a tower of neighbourhoods ofX at infinity and Brown’s proper fundament
group.

In the case of exterior homotopy theory, if we restrict ourselves to exterior spaces h
a countable exterior neighbourhood baseX = X0 ⊃ X1 ⊃ X2 ⊃ · · · , and we suppose tha
there is an exterior base rayσ :R+ → X such thatσ(i) ∈ Xi , then we have that the baseσ

induces the following tower of groups

· · · → π1
(
Xi+1, σ (i + 1)

) → π1
(
Xi,σ (i)

) → ·· · → π1
(
X0, σ (0)

)
where the element ofπ1(Xi+1, σ (i + 1) represented byα : I → Xi+1, α(0) = σ(i + 1) =
α(1), is applied to the element represented byσ |[i,i+1] · α · (σ |[i,i+1])−1. This base ray
induces similar sequences for the homotopy group functorsπq . If q = 0 we have a towe
of pointed sets and forq > 1 a tower of abelian groups. The relation between this towe
groups and the Brown–Grossman exterior homotopy groups is given by a global verP
of Brown’s functor (we refer the reader to [12] and [11] for the exact formulation of
global and other versions of this functor).

For exterior spaces, similarly to the results given in the mentioned references, we
the following result.

Theorem 1.15. Let X be an exterior space with a countable exterior neighbourhood b
of the formX = X0 ⊃ X1 ⊃ X2 ⊃ · · · . Suppose that we have an exterior base rayσ :R+ →
X such thatσ(i) ∈ Xi . Then

πB
q (X,σ ) ∼= P

{
πq

(
Xi,σ (i)

)}
.

In this paper we shall also use the inverse limit functor and its first derived in the
of tower of groups.

Let · · · → G2
p1→ G1

p0→ G0 be a tower of groups. Consider the mapd :
∏∞

i=0 Gi →∏∞
i=0 Gi given by

d(g0, g1, g2, . . .) = (
g−1

0 p0(g1), g
−1
1 p1(g2), g

−1
2 p2(g3), . . .

)
.

Then the inverse limit is given by Lim{Gi,pi} = Kerd . We have the right action∏∞
i=0 Gi × ∏∞

i=0 Gi → ∏∞
i=0 Gi given by

x · g = (x0, x1, x2, . . .) · (g0, g1, g2, . . .)

= (
g−1x0p0(g1), g

−1x1p1(g2), g
−1x2p2(g3), . . .

)
.
0 1 2
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The pointed set of orbits of this action is denoted by Lim1{Gi,pi} and it is called the firs
derived of the Lim functor. We shall also use the shorten notation, Lim{Gi} and Lim1{Gi}.
For more properties of this functors we refer the reader to [3] and [4].

Theorem 1.16. Let · · · → G2
p1→ G1

p0→ G0 be a tower of groups.

(i) If eachpi :Gi+1 → Gi is an epimorphism thenLim1{Gi} = ∗,
(ii) theLim andLim1 functors of a short exact sequence

0→ {Gi} → {Hi} → {Ki} → 0,

are connected by the following exact sequence

0→ Lim{Gi} → Lim{Hi} → Lim{Ki}
→ Lim1{Gi} → Lim1{Hi} → Lim1{Ki} → 0.

The exact sequence given in Theorem 1.13 and the Lim and Lim1 functors are relate
as follows.

Theorem 1.17. Let X be a first countable at infinity exterior space having an exte
neighbourhood baseX = X0 ⊃ X1 ⊃ · · · ⊃ Xi ⊃ · · · and letσ :R+ → X be an exterior
base ray such thatσ(i) ∈ Xi , then in the exact sequence

· · · → πB
q+1(X,σ |N) → πS

q (X,σ ) → πB
q (X,σ |N) → πB

q (X,σ |N) → ·· ·

we also have thatKer(πB
q (X,σ |N) → πB

q (X,σ |N)) ∼= Lim{πq(Xi, σ (i))} and for q > 0,

Coker(πB
q (X,σ |N) → πB

q (X,σ |N)) ∼= Lim1{πq(Xi, σ (i))}.

Remark 1.18. For q = 0, Ker(πB
0 (X,σ |N) → πB

0 (X,σ |N)) is the fibre of a map betwee
pointed sets and Lim{π0(Xi, σ (i))} in the inverse limit of a tower on pointed sets. F
q = 1, Coker(πB

1 (X,σ |N) → πB
1 (X,σ |N)) is interpreted as the pointed set of the orbits

the right actionπB
1 (X,σ |N) × πB

1 (X,σ |N) → πB
1 (X,σ |N) given byx · g = g−1x(shσ g),

where shσ denotes the shift operator induced byσ , see [11].

2. Postnikov factorization for Brown–Grossman groups

In this section we construct, for an exterior spaceX, a canonical factorization

· · · → P B
n+1(X) → P B

n (X) → ·· · → P B
0 (X)

where each exterior spaceP B
n (X) is a section of Postnikov type for the exterior Brow

Grossman homotopy groupsπB
q .
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For eachn � 0, consider the set of all exterior maps{uλ :N ×̄Sn+1 → X}λ∈Λ and de-
note byQB

n (X) the exterior space obtained by the following push-out in the categoryE

∐
λ∈Λ(N ×̄Sn+1)λ

∐
λ∈Λ uλ

X

ln∐
λ∈Λ(N ×̄Dn+2)λ

∐
λ∈Λ vλ

QB
n (X)

Since the relative homotopy groupsπB
q (QB

n (X),X) are trivial for eachq � n + 1 and
every base sequenceN → X, the induced homomorphismπB

q (ln) is an isomorphism fo

q � n and an epimorphism forq = n + 1. Then, an element ofπB
n+i (Q

B
n (X)) can be rep-

resented by an exterior map of the form

N ×̄Sn+1 uλ→ X
ln→ QB

n (X), for someλ ∈ Λ,

which has an exterior extensionvλ. ThereforeπB
n+1(Q

B
n (X)) is a trivial group for any bas

sequence. We remark that in the case that the setΛ is empty we have thatQB
n (X) = X.

By iterating the functorial construction above, we obtain a sequence of inclusions

X → QB
n (X) → QB

n+1Q
B
n (X) → ·· · → QB

k QB
k−1 · · ·QB

n (X) → ·· · .
Now consider the exterior space

P B
n (X) = colim

k�n
QB

k · · ·QB
n (X)

and denote byηX
n :X → P B

n (X) the natural inclusion.
Note that, for everyq � 0, N ×̄Sq has the cocompact externology. Since the inc

sionsN ×̄Sm → N ×̄Dm+1 are closed and e-closed, it follows that each inclusion of
above sequence is closed and e-closed. On the other hand,{p} is closed and e-closed i
QB

k · · ·QB
n (X) for all p ∈ QB

k · · ·QB
n (X) \ X. Taking into account thatP B

n (X) has the
colim topology and the colim externology, using an argument analogous to those gi
Section 4 of [7], we can conclude that for every exterior mapN ×̄Sq → P B

n (X) there is an
integerk, k � max{n,q + 1}, such that this map factors throughQB

k · · ·QB
n (X).

Since the inclusion induces isomorphismsπB
i (X) ∼= πB

i QB
k · · ·QB

n (X) for i � n and
the groupsπB

i QB
k · · ·QB

n (X) are trivial for n + 1 � i � k + 1, we obtain thatηX
n :X →

P B
n (X) induces isomorphismsπB

q (ηX
n ) for q � n and the groupsπB

q (P B
n (X)) are trivial

for q � n + 1.
Note that the constructionP B

n (·) is functorial and the pair(P B
n (X),X) is a relative

N-complex, where we are using the notion ofN-complex introduced in [9].
On the other hand, the inclusions{

QB
k · · ·QB

n+1(X) → QB
k · · ·QB

n (X)
}
k�n+1

induce an exterior mapfn+1 :P B
n+1(X) → P B

n (X) such thatfn+1η
X
n+1 = ηX

n .
Then, we obtain the following canonical tower of exterior spaces

· · · → P B
n+1(X)

fn+1−→ P B
n (X) → ·· · → P B

0 (X)

and canonical inclusionsηX
n :X → P B

n (X) with the following properties:
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(1) the pair(P B
n (X),X) is a relativeN-complex,

(2) fn+1η
X
n+1 = ηX

n ,
(3) ηB

q (ηX
n ) is an isomorphism for allq � n,

(4) πB
q (P B

n (X)) is trivial for all q � n + 1.

We summarize the properties of the construction above in the following result.

Theorem 2.1. LetX be an exterior space, then there is a commutative diagram

X
ηX
n+1

ηX
n

ηX
n−1

· · · P B
n+1(X)

fn+1
P B

n (X)
fn

P B
n−1(X) · · ·

such that

(i) πB
q (ηX

n ) is an isomorphism for allq � n,

(ii) πB
q (P B

n (X)) is trivial for all q � n + 1.

ConsiderHo(E) the localized category obtained by inverting the weakB-equivalences
of the closed modelB-structure ofE. Then as for the standard Postnikov sections we ob
the following universal property.

Proposition 2.2. If f :X → Y is an exterior map andπB
q (Y ) are trivial for all q � n + 1,

there is a unique map̃f :P B
n (X) → Y in Ho(E) such thatf̃ ηX

n = f .

Remark 2.3. Let X be an exterior space and suppose that

· · · → Xn+1
gn+1−→ Xn → ·· · → Xn+1

g1→ X0

is a tower of exterior spaces verifying that for everyn � 0 there is an exterior mapµn :X →
Xn such thatgn+1µn+1 = µn, the induced homomorphismπB

q (µn) is an isomorphism fo
all q � n and the homotopy groupsπB

q (Xn) are trivial for allq � n + 1.
Then there are isomorphismshn :P B

n (X) → Xn, n � 0, in Ho(E), such that the follow-
ing diagrams

P B
n+1(X)

hn+1

fn+1
P B

n (X)

hn

Xn+1
gn+1

Xn

P B
n (X)

hn

Xn X
µn

ηX
n

are commutative.

Remark 2.4. Taking into account that every exterior mapf :A → B can be factored a

A
p→ Z

g→ B wherep is a trivialB-cofibration andg is aB-fibration, the canonical facto
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ization {P B
n (X),fn, η

X
n } is isomorphic inHo(E) to a factorization{P ′

n(X),f ′
n, η

′
n} where

eachf ′
n is aB-fibration.

Remark 2.5. Given a topological spaceX consider the exterior spaceXtr which has the
trivial externologyε = {X} and the exterior spaceXto which has the total externology.
X[n] denotes the Postnikov section in standard homotopy theory, see [15,16], then th
dard sections(X[n])tr are weakB-equivalent to the new sectionsP B

n (Xtr). Nevertheless
the sectionsP B

n (Xto) are trivial inHo(E).

3. B-factorizations of first countable at infinity exterior spaces

In this section, we observe that if an exterior space is first countable at infinity w
construct, up to weakB-equivalence, sections which are also first countable at infinity

Lemma 3.1. LetX,Y exterior spaces with exterior neighbourhood basesX = X0 ⊃ X1 ⊃
X2 ⊃ · · · , Y = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · . Suppose thatf :X → Y is an exterior map such
that f (Xi) ⊂ Yi , i � 0, and for all x ∈ Xi , the induced mapsπq(Xi, x) → πq(Yi, f (x))

are isomorphisms for a given integerq � 0. Then for any base sequenceρ :N → X,
πB

q (X,ρ) → πB
q (Y,fρ) is an isomorphism.

Proof. Let p :N → X be a base sequence. Suppose thatβ :N ×̄Sq → Y is an exterior map
such thatβ( ,∗) = fρ(n), n � 0. For eachi ∈ N there isφ(i) � i such thatβ({n} ×̄Sq) ⊂
Yi and ρ(n) ∈ Xi for all n � φ(i). The mapφ :N → N can be chosen satisfying th
φ(0) = 0 and if i < j thenφ(i) < φ(j). Givenk such thatφ(i + 1) > k � φ(i), since the
restriction map,fi = f |Xi

:Xi → Yi , verifies thatπq(Xi, x) → πq(Yi, f (x)) is an isomor-
phims for everyx ∈ Xi , there isαk : (Sq,∗) → (Xi, ρ(k)) such thatfi∗ [αk] = [β|{k} ×̄Sq ]
in πq(Yi, fρ(k)). If we consider the exterior mapα :N ×̄Sq → X given byα|{k} ×̄Sq = αk ,
then we have thatf∗[α] = [β]. This implies thatf∗ :πB

q (X,ρ) → πB
q (Y,fρ) is epimor-

phic.
Using a similar argument we can prove thatf∗ :πB

q (X,ρ) → πB
q (Y,fρ) is also an in-

jective map. �
Given a tower of topological spaces{· · · → X2

X2
1→ X1

X1
0→ X0}, the telescope of{Xi} is

constructed as the following quotient space

Tel{Xi} =
(

X0 × {0} ∪
∞∐
1

Xi × [i − 1, i]
)/∼

where(Xi+1
i (x), i) ∼ (x, i), x ∈ Xi+1, i � 0. Tel{Xi} has a unique externology such th

the family{
En =

(
Xn × {n} ∪

∞∐
Xi × [i − 1, i]

)/∼ ∣∣∣∣ n � 0

}

n+1
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is a countable exterior neighbourhood base. Moreover, given a level map of t
{fi :Xi → Yi}, we get an induced exterior map Tel{fi} : Tel{Xi} → Tel(Yi}.

Note that the map of towers,{pn :En → Xn} given bypn[x, t] = Xi
nx, x ∈ Xi , i � n,

whereXi
n denotes the corresponding boundary composition, satisfies that eachpn is a weak

equivalence. Then, ifX is an exterior space with a countable exterior neighbourhood
X = X0 ⊃ X1 ⊃ X2 ⊃ · · · , by Lemma 3.1, we have that the exterior mapp : Tel{Xi} → X

given byp[x, t] = x, x ∈ X, is a weakB-equivalence. Therefore, we obtain the followi
result.

Proposition 3.2. Let X be a first countable at infinity exterior space. For everyn � 0, the
nth Postnikov sectionP B

n (X) is weakB-equivalent to an exterior spaceX[n]
B which is first

countable at infinity.

Proof. Take a countable exterior neighbourhood baseX = X0 ⊃ X1 ⊃ X2 ⊃ · · · , and the
induced natural mapsηi :Xi → X

[n]
i , whereX[n]

i denotes annth Postnikov section ofXi in

standard homotopy theory. The zig-zag mappingsX
p← Tel{Xi} → Tel{X[n]

i } give a natura

mapη :X → Tel{X[n]
i } in the localized categoryHo(E). By Lemma 3.1 and Remark 2

we have thatP B
n (X) is weakB-equivalent toX[n]

B = Tel{X[n]
i }, which is first countable a

infinity. �

4. Postnikov factorization for Steenrod groups

In order to obtain Postnikov sections for Steenrod groups we remark that it is no
sible to develop a construction similar to the one given in Section 2 for Brown–Gros
groups. Nevertheless, for an important class of exterior spaces, that we have cal
exterior spaces, the authors have found a different argument that permits to constru
sections for Steenrod groups.

Definition 4.1. An exterior spaceX is said to be a cce exterior space ifX is first countable
at infinity and it has a countable exterior neighbourhood baseX = X0 ⊃ X1 ⊃ X2 ⊃ · · ·
such that

(a) Xi is 0-connected for alli � 0,
(b) for any base pointx ∈ Xi+1 the induced mapπ1(Xi+1, x) → π1(Xi, x) is an epimor-

phism.

The cce exterior spaces have the following properties:

(i) If X is a cce exterior space, thenX has only one Freudenthal end, see [6].
(ii) There is an exterior base rayσ :R+ → X such thatσ(i) ∈ Xi , and for every base ra

σ satisfying this condition the induced tower of groups

· · · → π1
(
Xi+1, σ (i + 1)

) → π1
(
Xi,σ (i)

) → ·· · → π1
(
X0, σ (0)

)
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verifies that all boundary homomorphismsπ1(Xi+1, σ (i + 1) → π1(Xi, σ (i)), i � 0,
are surjective.

(iii) A cce exterior space verifies that for any base sequenceρ :N → X, πB
0 (X,ρ) is trivial,

and for any base rayβ, πS
0 (X,β) is trivial.

Let X be a cce exterior space, a base rayσ induces the inverse tower of groups

· · · → πn(X2) → πn(X1) → πn(X0)

and we can consider the group̌πn(X,σ) = Lim{πn(Xi)}. As in this case we have tha
πB

0 (X,σ ) is trivial, it follows that two base raysσ,σ ′ are exteriorly homotopic and the
π̌n(X,σ ) is isomorphic toπ̌n(X,σ ′).

In this section, when the spaces are 0-connected, sometimes, we omit the bas
in the notationπq(X,x) and for cce exterior spaces inπB

q (X,ρ), πS
q (X,β), π̌q(X,x) we

omit the base sequence or base ray.

Proposition 4.2. Let X be a cce exterior space. Then forn � 0 the mapη :X → X
[n]
B

satisfies

(i) if n � 1, the induced mapπS
q (X) → πS

q (X
[n]
B ) is an isomorphism forq � n − 1,

(ii) the induced mapπS
n (X) → πS

n (X
[n]
B ) is an epimorphism andπS

n (X
[n]
B ) ∼= π̌n(X),

(iii) for q > n, πS
q (X

[n]
B ) is trivial.

Proof. By Theorem 1.13, we can consider the following commutative diagram induce
η :X → X

[n]
B between horizontal long exact sequences

· · · πB
q+1(X) πS

q (X) πB
q (X) πB

q (X) · · ·

· · · πB
q+1(X

[n]
B ) πS

q (X
[n]
B ) πB

1 (X
[n]
B ) πB

q (X
[n]
B ) · · ·

By Proposition 3.2 and Theorem 2.1, it follows that, ifq > n, πS
q (X

[n]
B ) ∼= 0; for the

caseq = n, by Theorem 1.17 one has that

πS
n

(
X

[n]
B

) ∼= Ker
(
πB

n

(
X

[n]
B

) → πB
n

(
X

[n]
B

)) ∼= Ker
(
πB

n (X) → πB
n (X)

)
∼= Lim

{
πn(Xi)

} ∼= π̌n(X).

Finally, if q < n, by the five lemma, we have thatπS
q (X) → πS

q (X
[n]
B ) is an isomor-

phism. �
We can consider the following construction in standard homotopy theory. LetY be a 0-

connected pointed space, and suppose that, forn � 1, N is a subgroup ofπn(Y ) invariant
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by the action of the fundamental groupπ1(Y ). If A is a set of generators of theπ1(Y )-
moduleN , we can define the spaceY [N ] as the pushout

∨
a∈A Sn

a

∑
a∈A a

Y

∨
a∈A Dn+1

a Y [N ]
Then it is not difficult to check that the following sequence is exact

0→ N → πn(Y ) → πn

(
Y [N ]) → 0.

The natural mapµ :Y → Y [N ] has the following property: the induced homomorphi
πq(µ) is an isomorphism ifq < n, and, given any mapf :Y → Z such thatπn(f )(N) = 0,
whereZ is a pointed space, there exists a mapf̄ :Y [N ] → Z such thatf̄µ = f , and this
map is unique up to homotopy if we have the additional conditionπn+1(Z) ∼= 0.

Proposition 4.3. Let Y be a cce exterior space. Then, there exists a mapζ :Y → Y (n) in
Ho(E), whereY (n) is an exterior space first countable at infinity, such that

(i) For q < n, πB
q (ζ ) is an isomorphism,

(ii) if q = n, πB
n (ζ ) is an epimorphism andπB

n (Y (n)) ∼= P{πn(Yi)/In(Yi)}, whereIn(Yi)

denotes the image of the canonical mapπ̌n(Y ) → πn(Yi) for a countable exterio
neighbourhood base{Yi} of Y ,

(iii) the groupπ̌n(Y
(n)) is trivial.

Proof. The spaceY has a countable exterior neighbourhood base,Y = Y0 ⊃ Y1 ⊃ Y2 ⊃
· · · , such that the boundary morphisms of the fundamental tower,· · · → π1(Yi+1) →
π1(Yi) → ·· · → π1(Y0), are surjective. So, we have thatIn(Yi) is invariant by the
action of π1(Yi) and therefore we can consider the construction developed abo
obtain a mapµi :Yi → Yi[In(Yi)] and we also have induced mapsYi+1[In(Yi+1)] →
Yi[In(Yi)]. The zig-zag mappingsY

q← Tel{Yi} → Tel{Yi[In(Yi)]} gives a natural ma
ζ :Y → Tel{Yi[In(Yi)]} in the localized categoryHo(E). By the properties of the tele
scopic construction we have thatY (n) = Tel{Yi[In(Yi)]} is an exterior space first countab
at infinity, and, as a consequence of Lemma 3.1 and Theorem 1.15, one has thatY (n) sat-
isfies properties (i) and (ii). From the short exact sequence 0→ {In(Yi)} → {πn(Yi)} →
{πn(Yi)/In(Yi)} → 0, by Theorem 1.16 we obtain the exact sequence

0→ Lim
{
In(Yi)

} → Lim
{
πn(Yi)

} → Lim
{
πn(Yi)/In(Yi)

}
→ Lim1{In(Yi)

} → Lim1{πn(Yi)
} → Lim1{πn(Yi)/In(Yi)

} → 0.

Taking into account that eachIn(Yi+1) → In(Yi) is an epimorphism, we have th
Lim1{In(Yi)} ∼= 0; this implies thaťπ(Y (n)) ∼= Lim{πn(Yi)/In(Yi)} ∼= 0. �
Theorem 4.4. LetY be a cce exterior space. Then there exists a mapηζ :Y → Y

[n]
S , where

Y
[n] = (Y (n+1))

[n+1] is an exterior space first countable at infinity and such that
S B
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(i) For q � n, πS
q (ηζ ) is an isomorphism,

(ii) if q > n, πS
q (Y

[n]
S ) ∼= 0.

Proof. Using the exact sequences of the commutative diagram induced byηζ

· · · πB
q+1(Y ) πS

q (Y ) πB
q (Y ) πB

q (Y ) · · ·

· · · πB
q+1(Y

[n]
S ) πS

q (Y
[n]
S ) πB

q (Y
[n]
S ) πB

q (Y
[n]
S ) · · ·

one has that

(a) By Propositions 4.3 and 3.2 and by the five lemma, we have isomorphismsπS
q (Y ) →

πS
q (Y

[n]
S ) for q � n − 1.

(b) Forq = n, if we denote by

Cokern+1(Y ) = Coker
(
πB

n+1(Y ) → πB
n+1(Y )

)
,

Cokern+1
(
Y

[n]
S

) = Coker
(
πB

n+1

(
Y

[n]
S

) → πB
n+1

(
Y

[n]
S

))
,

Kern(Y ) = Ker
(
πB

n (Y ) → πB
n (Y )

)
and

Kern
(
Y

[n]
S

) = Ker
(
πB

n

(
Y

[n]
S

) → πB
n

(
Y

[n]
S

))
,

we can consider the induced commutative diagram of short exact sequences,

0 Cokern+1(Y ) πS
n (Y ) Kern(Y ) 0

0 Cokern+1(Y
[n]
S ) πS

n (Y
[n]
S ) Kern(Y

[n]
S ) 0

Then, sinceY
[n]
0 = (Y (n+1))

[n+1]
B , from Proposition 4.3, the map Kern(Y ) →

Kern(Y
[n]
S ) is an isomorphism. On the other hand, Cokern+1(Y ) ∼= Lim1{πn+1(Yi)}

and

Cokern+1
(
Y

[n]
S

) ∼= Cokern+1
(
Y (n+1)

) ∼= Lim1{πn+1
(
Yi

[
In+1(Yi)

])}
∼= Lim1{πn+1(Yi)/In+1(Yi)

}
.

Now, by Theorem 1.16 we can use the exact sequence Lim−Lim1 induced by the
short exact sequence 0→ {In+1(Yi)} → {πn+1(Yi)} → {πn+1(Yi)/In+1(Yi)} → 0, to
obtain that the induced map Lim1{πn+1(Yi)} → Lim1{πn+1(Yi)/In+1(Yi)} is an iso-
morphism. Therefore the mapπS

n (Y ) → πS
n (Y

[n]
S ) is also an isomorphism.

(c) As Y
[n]
S = (Y (n+1))

[n+1]
B , it follows from Proposition 4.2 thatπS

n+1(Y
[n]
S ) ∼=

π̌n+1(Y
(n+1)) and by Proposition 4.3 we have thatπ̌n+1(Y

(n+1)) ∼= 0.
(d) From the long exact sequence of the spaceY

[n]
S given in Theorem 1.13, we have th

πS
q (Y

[n]
S ) ∼= 0 for q > n + 1. �
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Theorem 4.5. LetY be a cce exterior space. Then the mapηζ :Y → Y
[n]
S satisfies

(i) For q � n, πB
q (ηζ ) is an isomorphism,

(ii) for q = n + 1, πB
n+1(ηζ ) is an epimorphism and

πB
n+1

(
Y

[n]
S

) ∼= P
{
πn+1(Yi)/In+1(Yi)

}
,

(iii) if q > n + 1, πB
q (Y

[n]
S ) ∼= 0.

Proof. SinceY
[n]
S = (Y (n+1))

[n+1]
B it suffices to apply Propositions 3.2 and 4.3 to obt

the desired properties.�
Remark 4.6. It is interesting to note that for a given 0-connected topological spaceX the
standard Postnikov section(X[n])tr is weakB-equivalent to(Xtr)

[n]
S . The sections(Xto)

[n]
S

are trivial inHo(E).

5. Mix factorization and homotopy fibres

In this section, we work with cce exterior spacesX. Suppose thatX = X0 ⊃ X1 ⊃ X2 ⊃
· · · is a countable exterior neighbourhood base of 0-connected spaces such that the
tower of groups· · · → π1(Xi+1) → π1(Xi) → ·· · → π1(X0) has surjective boundary ho
momorphisms.

We note that the mapX → X(n+1) induces a mapX[n+1]
B → (X(n+1))

[n+1]
B = X

[n]
S . Now,

applying the construction(·)[n]
B to the spaceX[n]

S , we get the induced mapX[n]
S → (X

[n]
S )

[n]
B .

By Theorem 4.5, it follows that(X[n]
S )

[n]
B is weakB-equivalent toX

[n]
B . Therefore, we

obtain the following result.

Theorem 5.1. LetX be a cce exterior space, then there is a commutative diagram

X

· · · X
[n+1]
B X

[n]
S X

[n]
B

· · ·
such that

(i) the subdiagram associated with· · · → X
[n+1]
B → X

[n]
B → ·· · is a B-factorization

of X,
(ii) the subdiagram associated with· · · → X

[n+1]
S → X

[n]
S → ·· · is an S-factorization

of X,
(iii) the mapsX[n+1]

B → X
[n]
S , X

[n]
S → X

[n]
B are B-fibrations(hence,S-fibrations) and the

exterior spacesX[n]
B , X

[n]
S are weakB-equivalent(hence, weakS-equivalent) to exte-

rior spaces which are first countable at infinity.
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Next, we study the exterior homotopy groups of homotopy ray fibres, given in Sect
of the maps of the mix factorization.

Theorem 5.2. For n � 0, let Fn+1
B be the homotopy ray fibre of theB-fibration X

[n+1]
B →

X
[n]
B . Then, this fibre is an(n + 1)-dimensional Eilenberg–Mac Lane exterior space w

respect to Brown–Grossman exterior homotopy groups, determined by the groupπB
n+1(X).

We will denote a space of this type byFn+1
B = KB(πB

n+1(X),n + 1).

Proof. It follows from the long exact sequence of Brown–Grossman exterior homo
groups of theB-fibrationFn+1

B → X
[n+1]
B → X

[n]
B , see Theorem 1.12.�

Theorem 5.3. For n � 0, let Fn+1
B be the homotopy ray fibre of theB-fibration X

[n+1]
B →

X
[n]
B . Then, this fibre has only two possible non trivial consecutive exterior Steenro

motopy groups:

(i) πS
n+1(F

n+1
B ) ∼= Lim{πn+1(Xi)} = π̌n+1(X),

(ii) πS
n (Fn+1

B ) ∼= Lim1{πn+1(Xi)}.

Proof. By Theorem 1.13, we can consider the long exact sequence

· · · → πB
q+1

(
Fn+1

B

) → πS
q

(
Fn+1

B

) → πB
q

(
Fn+1

B

) → πB
q

(
Fn+1

B

) → ·· · .
By Theorem 5.2 we have thatFn+1

B = KB(πB
n+1(X),n + 1), and by Theorem 1.17 it fol

lows that

πS
n+1

(
Fn+1

B

) ∼= Ker
(
πB

n+1(X) → πB
n+1(X)

) ∼= Lim
{
πn+1(Xi)

}
,

πS
n

(
Fn+1

B

) ∼= Coker
(
πB

n+1(X) → πB
n+1(X)

) ∼= Lim1{πn+1(Xi)
}
.

From the long exact sequence above and the fact thatFn+1
B is an Eilenberg–Mac Lan

exterior space, we also get that forq �= n,n + 1, πS
q (Fn+1

B ) ∼= 0. �
Theorem 5.4. For n � 1, let Fn

S be the homotopy ray fibre of theB-fibration X
[n]
S →

X
[n−1]
S . Then, this fibre is ann-dimensional Eilenberg–Mac Lane exterior space with

spect to Steenrod exterior homotopy groups, determined by the groupπS
n (X). A space of

this type will be denoted byFn
S = KS(πS

n (X),n).

Proof. It follows from the long exact sequence of Steenrod exterior homotopy grou
the fibrationFn

S → X
[n]
S → X

[n−1]
S , see Theorem 1.12.�

Theorem 5.5. For n � 1, let Fn
S be the homotopy ray fibre of theB-fibration X

[n]
S →

X
[n−1]
S . Then this fibre has only two possible non trivial consecutive Brown–Gross

exterior homotopy groups:

(i) πB (Fn) ∼= P{πn+1(Xi)/In+1(Xi)},
n+1 S
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(ii) πB
n (Fn

S (Fn
S ) ∼= P{In(Xi)}.

Proof. By Theorem 1.12, we can consider the long exact sequence

· · · → πB
q

(
Fn

S

) → πB
q

(
X

[n]
S

) → πB
q

(
X

[n−1]
S

) → πB
q−1

(
Fn

S

) → ·· · .
Taking into account thatX[n]

S = (X(n+1))
[n+1]
B andX

[n−1]
S = (X(n))

[n]
B , by Theorem 4.5 we

have that
If q > n + 1, πB

q (Fn
S ) ∼= 0.

Forq = n + 1, πB
n+1(F

n
S ) ∼= πB

n+1(X
[n]
S ) ∼= P{πn+1(Xi)/In+1(Xi)}.

If q = n, we have the following commutative diagram of exact sequences

0 P{In(Xi)} P{πn(Xi)} P{πn(Xi)/In(Xi)}

0 πB
n (Fn

S ) πB
n (X

[n]
S ) πB

n (X
[n−1]
S )

where the vertical arrows are isomorphisms. Then we obtain thatπB
n (Fn

S ) ∼= P{In(Xi)}.
SinceπB

n (X
[n]
S ) → πB

n (X
[n−1]
S ) is an epimorphism and ifq < n, πB

q (X
[n]
S ) ∼= πB

q (X), we
have that ifq < n, πB

q (Fn
S ) ∼= 0. �

Theorem 5.6. For n � 0, let Fn+1
BS be the homotopy ray fibre of theB-fibration X

[n+1]
B →

X
[n]
S . Then, this fibre is an Eilenberg–Mac Lane exterior space with respect to Br

Grossman and Steenrod exterior homotopy groups:

(i) Fn+1
BS = KB(P{In+1(Xi)}, n + 1),

(ii) Fn+1
BS = KS(π̌n+1(X),n + 1).

Proof. By Theorem 1.12, we can consider the long exact sequence

· · · → πB
q+1

(
X

[n]
S

) → πB
q

(
Fn+1

BS

) → πB
q

(
X

[n+1]
B

) → πB
q

(
X

[n]
S

) → ·· · .
If q > n + 1, we have thatπB

q (Fn+1
BS ) ∼= 0. Forq = n + 1, by Theorem 4.5 we have th

following commutative diagram of exact sequences

0 P{In+1(Xi)} P{πn+1(Xi)} P{πn+1(Xi)/In+1(Xi)}

0 πB
n+1(F

n+1
BS ) πB

n+1(X
[n+1]
B ) πB

n (X
[n]
S )

where the vertical arrows are isomorphisms. Then, we obtain thatπB
n+1(F

n+1
BS ) ∼=

P{In+1(Xi)}. Since πB
n+1(X

[n+1]
B ) → πB

n+1(X
[n]
S ) is an epimorphism and ifq � n,

πB
q (X

[n+1]
B ) ∼= πB

q (X), andπB
q (X

[n]
S ) ∼= πB

q (X) we get that ifq � n, πB
q (Fn+1

BS ) ∼= 0.
Using the long exact sequence given in Theorem 1.12,

· · · → πS
(
X

[n]) → πS
q

(
Fn+1) → πS

q

(
X

[n+1]) → πS
q

(
X

[n]) → ·· · ,
q+1 S BS B S
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by Proposition 4.2 and Theorem 4.4, ifq > n+1,πS
q (Fn+1

BS ) = 0. Forq = n+1 we obtain
the exact sequence

0→ πS
n+1

(
Fn+1

BS

) → πS
n+1

(
X

[n+1]
B

) → 0.

By Proposition 4.2,πS
n+1(X

[n+1]
B ) ∼= π̌n+1(X). If q < n + 1, then we have thatπS

q (Fn+1
BS )

∼= 0. ThereforeFn+1
BS = KS(π̌n+1(X),n + 1). �

Theorem 5.7. For n � 0, letFn
BSbe the homotopy ray fibre of theB-fibrationX

[n]
S → X

[n]
B .

Then this fibre is an Eilenberg–Mac Lane exterior space with respect to Brown–Gros
and Steenrod exterior homotopy groups:

(i) Fn
SB= KB(P{πn+1(Xi)/In+1(Xi)}, n + 1),

(ii) Fn
SB= KS(Lim1{πn+1(Xi)}, n).

Proof. Consider the long exact sequence

· · · → πB
q+1

(
X

[n]
B

) → πB
q

(
Fn

SB

) → πB
q

(
X

[n]
S

) → πB
q

(
X

[n]
B

) → ·· · .
By Theorem 4.5, ifq > n + 1, we have thatπB

q (Fn
SB)

∼= 0; for q = n + 1, we have the
exact sequence

0→ πB
n+1

(
Fn

SB

) → P
{
πn+1(Xi)/In+1(Xi)

} → 0

and, ifq � n, πB
q (Fn

SB)
∼= 0.

Using the long exact sequence

· · · → πS
q+1

(
X

[n]
B

) → πS
q

(
Fn

SB

) → πS
q

(
X

[n]
S

) → πS
q

(
X

[n]
B

) → ·· · .
By Theorem 4.4 and Proposition 4.2, ifq > n, πS

q (Fn
SB)

∼= 0. Forq = n we obtain the
exact sequence

0→ πS
n

(
Fn

BS

) → πS
n (X) → π̌n(X) → 0.

By Theorem 1.17, from the long exact sequence involving the homotopy groupsπS
q and

πB
q of the spaceX, we obtain the short exact sequence

0→ Lim1{πn+1(Xi)
} → πS

n (X) → π̌n(X) → 0

and we haveπS
n (Fn

SB)
∼= Lim1{πn+1(Xi)}. If q < n, then we have thatπS

q (Fn
SB)

∼= 0. There-

foreFn
SB= KS(Lim1{πn+1(Xi)}, n). �

Remark 5.8. In this paper, we have not developed the analogous of standard Postn
cohomology invariants for exterior spaces. The authors think that the sequential coho
gies introduced in [9] are the right theories to reconstruct an exterior space from its se
and cohomology invariants.
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6. Examples and open questions

In this section, we give some examples of Eilenberg–Mac Lane exterior spaces a
explain some connections between compact metric spaces and exterior spaces.
give some open questions that the authors are trying to solve in order to develop Po
factorizations in shape categories.

6.1. Eilenberg–Mac Lane exterior spaces associated with a tower of groups

A given tower of groups{· · · → G2 → G1 → G0} induces the tower of Eilenberg–Ma
Lane spaces{· · · → K(G2,1) → K(G1,1) → K(G0,1)} and we can consider the exteri
space Tel{K(Gi,1)}, see Section 3, which has a canonical base ray and base seq
induced by the base points ofK(Gi,1), i � 0. Notice that Tel{K(Gi,1)} is an Eilenberg–
Mac Lane exterior space

Tel
{
K(Gi,1)

} = KB

(
P{Gi},1

)
.

The non trivial Steenrod homotopy exterior groups are given byπS
0 (Tel{K(Gi,1)}) ∼=

Lim1{Gi} andπS
1 (Tel{K(Gi,1)}) ∼= Lim{Gi}.

In the case that all bonding mapsGi+1 → Gi , i � 0, are surjective, Tel{K(Gi,1)} is a
cce exterior space and in this case

Tel
{
K(Gi,1)

} = KS

(
Lim{Gi},1

)
is also an Eilenberg–Mac Lane exterior space for the Steenrod exterior homotopy g

Similarly, for n � 2, a given tower of abelian groups{· · · → H2 → H1 → H0} induces
the tower of Eilenberg–Mac Lane spaces{· · · → K(H2, n) → K(H1, n) → K(H0, n)} and
the cce exterior space Tel{K(Hi,n)}.

By taking the mix factorization of this exterior space, we have the following sectio

· · · → (
Tel

{
K(Hi,n)

})[n]
S

→ (
Tel

{
K(Hi,n)

})[n]
B

→ (
Tel

{
K(Hi,n)

})[n−1]
S

→ ·· ·
with the non trivial homotopy ray fibresFn−1

SB = Fn−1
S , Fn

BS = Fn
S and Fn

B which are
Eilenberg–Mac Lane exterior spaces.

Fn−1
SB = Fn−1

S = (
Tel

{
K(Hi,n)

})[n−1]
S

= KS

(
Lim1{Hi}, n − 1

)
= KB

(
P

{
Hi/I (Hi)

}
, n

)
,

F n
BS= Fn

S = KS

(
Lim{Hi}, n

) = KB

(
P

{
I (Hi)

}
, n

)
whereI (Hi) = image(Lim{Hi} → Hi). For q � n the B-sections andS-sections satisfy
that (

Tel
{
K(Hi,n)

})[q]
B

= (
Tel

{
K(Hi,n)

})[q]
S

= Tel
{
K(Hi,n)

} = KB

(
P{Hi}, n

) = Fn
B

are Eilenberg–Mac Lane exterior spaces for Brown–Grossman groups, but they ha
consecutive non trivial Steenrod groups.

We also remark that theB-sections are trivial forq � n−1 and theS-sections are trivia
for q � n − 2.
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6.2. Exterior factorizations associated with a compact metrisable space

It is well known that a compact metrisable spaceX is homeomorphic to a closed subs
of the Hilbert cubeQ. Therefore to study this class of spaces we can consider c
subspaces of the Hilbert cubeQ. Given a compact metric spaceX ⊂ Q, we associate with
X the exterior spaceQX which is the topological spaceQ provided with the externolog
of all open neighbourhoods ofX in Q. (We remark that for a compact metric spaceY ⊂ Q

if X is homeomorphic toY , the exterior spaceQX has the same exterior homotopy ty
thatQY .) For a given base pointx0 ∈ X, the following base rayxS

0 :R+ → QX and base
sequencexB

0 :N → QX are induced byxS
0 (r) = x0, r ∈ R+ andxB

0 (k) = x0, k ∈ N.
It is very interesting to note that the Brown–Grossman exterior homotopy g

πB
q (QX,xB

0 ) is isomorphic to theqth Quigley inward group of(X,x0), see [7] and [17],

and the Steenrod exterior homotopy groupπS
q (QX,xS

0 ) is isomorphic to theqth Quigley
approaching group of(X,x0).

For the exterior spaceQX , we have the exterior “B-sections”P B
n (QX) that give the

“B-factorization” ofQX in the category of exterior spaces. Since the exterior spaceQX is
first countable at infinity, by Proposition 3.2 we have thatP B

n (QX) is weakB-equivalent
to (QX)

[n]
B which is first countable at infinity.

In a natural way the following question arises:
Question 1. Given a compact metric spaceX ⊂ Q, under which conditions for eac

n � 0 there is a compact metric spaceX
[n]
I (⊂ Q, I = Inward) such thatQ

X
[n]
I

is weak

B-equivalent to(QX)
[n]
B .

Given a compact metric space, we remark thatX is connected if and only ifQX has a
countable exterior neighbourhood baseQX = Q0 ⊃ Q1 ⊃ Q2 ⊃ · · · , (

⋂∞
0 Qi = X) such

that fori � 0, Qi is a 0-connected space.
It is interesting to observe that if we also have that fori � 0,π1(Qi+1, x0) → π1(Qi, x0)

is an epimorphism; that is,QX is a cce exterior space, then the pointed continuum(X,x0)

is a pointed 1-movable space.
For a given compact metric spaceX ⊂ Q such thatQX is a cce exterior space, w

have constructed in Section 4, the “S-sections”(QX)
[n]
S and the following natural questio

arises:
Question 2. Given a continuumX ⊂ Q such thatQX is a cee exterior space, und

which conditions for eachn � 0 there is a continuumX[n]
A (⊂ Q, A = Approaching) such

thatQ
X

[n]
A

is weakB-equivalent to(QX)
[n]
S .

The answer to these interesting questions and its extension for more general s
give the construction in the shape (or strong shape) category of Postnikov decompo
for Quigley groups.

Example 1. The Hawaiian earring (Fig. 1)H is a continuum embedded into the planeR
2

which is formed by a sequence of circlesC1,C2,C3, . . . that are all tangent to each oth
at the same point and the sequence of radii converges to zero. SinceR

2 is homeomorphic
to (0,1) × (0,1), which is homeomorphic to(0,1) × (0,1) × {1/2} × · · · ⊂ Q, we can
suppose thatH is also a closed subspace of the Hilbert cube. If we consider on the
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R
2 the externology of open neighbourhoods ofH in R

2, the induced exterior spaceR2
H

andQH have the same exterior homotopy type. Associated with each circleCi , we can
take a generatorxi , i � 1. Now, letF [x1, . . . , xn] be the free group generated by the fin
set{x1, . . . , xn}. It is not hard to take a sequence of open neighbourhoodsR

2 = E0 ⊃ E1 ⊃
E2 ⊃ · · · such that

⋂∞
0 Ei = H and forn � 1 En has the homotopy type ofC1 ∪ · · · ∪ Cn.

The inclusionEn+1 → En induces the mapb :π1(En+1) → π1(En), whereπ1(En+1) ∼=
F [x1, . . . , xn, xn+1], π1(En) ∼= F [x1, . . . , xn] andb carriesx1 to x1, . . . , xn to xn andxn+1

to 1. SinceEn is 0-connected forn � 0, we have thatR2
H is a cee exterior space.

Note that the mix factorization of the exterior spaceR
2
H has only the non trivial homo

topy ray fibresF 1
B = F 1

S = F 1
BS= R

2
H and we obtain that forq � 1, (R2

H )
[q]
B = R

2
H which

is an Eilenberg–Mac Lane exterior space for Brown–Grossman groups

R
2
H = KB

(
P

{
F [x1, . . . , xn]

}
,1

)
and for q � 1, (R2

H )
[q]
S = R

2
H which is also an Eilenberg–Mac Lane exterior space

Steenrod groups

R
2
H = KS

(
Lim

{
F [x1, . . . , xn]

}
,1

)
.

Example 2. Suppose that we have a tower of groups{· · · → G2 → G1 → G0} such that for
eachi � 0 the mapGi+1 → Gi is surjective and eachK(Gi,1) has the homotopy type of
finite CW-complex. Therefore we can take a tower of Eilenberg–Mac Lane spaces{· · · →
K(G2,1) → K(G1,1) → K(G0,1)} of finite CW-complexes and the compact metrisa
spaceX = Lim{K(Gi,1)} satisfies thatQX has the exterior homotopy type of the exter
space Tel{K(Gi,1)}. In this case, one obtains that

QX = KB

(
P{Gi},1

)
, QX = KS

(
Lim{Gi},1

)
.

We leave to the reader the case of a tower of abelian groups{· · · → H2 → H1 → H0}
andn � 2 such thatK(Hi,n) has the homotopy type of a finite CW-complex, one
take the compact metrisable space obtained by the inverse limit and to study the ass
exterior spaces and factorizations.
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