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ABSTRACT 

Given an integer n > 1 and any set P of positive integers, one can 

assign to each topological space X a homotopy universal map X (P,n) -+ X 

where X(P,n) is an (n-l)-connected CW-complex whose homotopy groups 

are P-torsion. We analyze this construction and its properties by means 

of a suitable closed model category structure on the pointed category of 

topological spaces. 

Introduct ion  

This article aims to link recent work of Blanc [B1], Chach61ski [Ch], Dror Far- 

joun [DF96], Hirschhorn [Hir] and Nofech [N93] with parallel advances by Elvira- 

Herns [E-H] and Extremiana-Hern~ndez-Rivas [E-H-R]. We exploit a closed 

model category structure [Q67] on the category Top, of pointed topological 

spaces, for each n > 2 and each set of positive integers P, in which the class 

of weak equivalences is the class of maps X -~ Y inducing isomorphisms of 

homotopy groups with mod m coefficients, 

~ r ( X ; Z / m )  ~ ~ r r ( Y ; Z / m ) ,  for r > n + l and m E P .  
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By suitably factoring, in this closed model category, each map of the f o r m ,  ~ X 

into a cofibration followed by a trivial fibration, * + X (P,~) -~ X ,  one obtains 

a colocalization functor which we call a (P, n)-CW-approxilnation. It is indeed 

reminiscent from the usual CW-approximation, where one associates with any 

space X a CW-complex K together with a map K + X inducing isomorphisms 

of homotopy groups. Thc space X (P,'0 is built from torsion Moore spaces of 

type M ( g / m ,  r), with r _> n and m E P, by means of a countable sequence of 

push-outs. Approximations of spaces using Moore spaces as building blocks have 

also been discussed by Blanc in [B1], where interesting applications have been 

given. 

The closed model category structure used in our article is directly inspired by 

the one given in [E-H-R] for the case of ordinary homotopy groups. It does not 

coincide with the structure studied by Hirschhorn [Hir] and Nofech [N95], [N96], 

although the associated homotopy categories are indeed equivalent. 

Of course, it is also possible to factor each map X ~ * into a cofibration fol- 

lowed by a trivial fibration, X -4 X(p,,~) ~ *. This yields a localization flmctor 

assigning to each X a space whose homotopy groups are uniquely P-divisible 

in dimensions r > n + 1 and P-torsion-free in dimension n. (An abelian group 

A is said to be uniquely P-divisible if multiplication by m is an automorphism 

of A for every m E P,  and an element a C A is said to be P-torsion if there 

are integers m l , . . . ,  mr in P,  not necessarily distinct, such that ml --" rnra = 0.) 

Those functors are variants of the classical localization of spaces at sets of primes. 

We shall not insist in their analysis, as they have been previously discussed by 

Bousfield [B94], [B96], and Casacuberta-Rodrfguez [C-R]. However, we empha- 

size that  the study of such localizations in the framework of abstract homotopy 

theory is more naturally associated with a different closed model category struc- 

ture, in which a functorial model for the localization of a space X is obtained by 

suitably factoring the map X ~ * into a trivial cofibration followed by a fibra- 

tion. This is precisely the point of view adopted by Quillen in his pioneering work 

on rational homotopy theory [Q69]; it was exploited further by Bousfield [B75] 

in connection with homological localization, and by several other authors since 

then. 

This paper intends to be largely self-contained, except for standard input from 

homotopical algebra. Thus we supply alternative, direct proofs of earlier results 

due to Blanc [Bl] and Dror Farjoun [DF92], and improve some of them. Notably, 

Theorem 5.2 below shows that  the homotopy groups of X (P'n) coincide with 

those of the homotopy fibre of the localization map X ~ X(p,,  0 in all dimensions 
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except possibly in dimension n; this gives a positive answer to a question raised 

in [DF92]. Using this fact, we compute K(A, d) (P''~) for any abelian group A and 

every d ~ 1. 

ACKNOWLEDGEMENT: We are indebted to D. Blanc, A. K. Bousfield, 

W. Chach61ski, E. Dror Farjoun, P. G. Goerss, P. S. Hirschhorn and A. Nofech for 

kindly sending us their preprints and for further correspondence. The suggestions 

of the referee led to an improvement of the first version submitted. 

1. P re l imina r i e s  

We shall work in the pointed category Top, of topological spaces. Thus, all maps 

will preserve basepoints and IX, Y] will denote the set of pointed homotopy classes 

of maps from X to Y. 

Given any space M, a space X is called M-cellular [DF96], or an M-CW- 

complex [B1], if X belongs to the smallest class of spaces which contains M and 

is closed under pointed homotopy colimits and homotopy equivalences. A map 

f :  X --+ Y is said to be an M-equivalence if the induced map of based mapping 

spaces 

map , (M,X)  --+ map,(M, Y) 

is a weak homotopy equivalence. As explained in [DF96, 2.B], for every space X 

there exists an M-equivalence CWM(X) -+ X where CWM(X) is an M-CW- 

complex; see also [Ch]. This map is called an M-CW-approximation to X. On 

the other hand, a space X is said to be M-null if the space map, (M, X) is weakly 

contractible. For every space X there is a homotopy universal map X --+ PMX 
into an M-null space; see [B94], [Ch], [DF96, w 1]. This is called an M-nullification 

of X. 

We shall analyze further these concepts in an important special case. For any 

positive integer m and n >__ 2, let M(Z/m,  n) denote the homotopy cofibre of the 

standard self-map of S" of degree m, which is an (n+l)-dimensional CW-complex 

such that  H , ( M ( Z / m ,  n)) ~- Z /m and [-I,.(U(Z/m, n)) --- 0 for r ~ n. We shall 

adhere to Neisendorfer's notation [Ne] for homotopy groups with coefficients, by 

writing 

Try(X; Z/m) = [M(Z/m, r - 1), X], 

which is a group if r > 3. It follows that, if n > 2, then a map f :  X ~ Y is an 

M(Z/m,  n)-equivalence if and only if the induced homomorphisms 

/,:  r(x; z/m)  r(Y; z/m) 
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are isomorphisms for r > n + 1. A space X is M ( Z / m ,  n)-null if 7rr(X; Z / m )  = 0 

for r > n +  1; this amounts to saying that multiplication by m is a monomorphism 

in lr~(X) and an automorphism of 7c~(X) for r _ n + 1, since the following 

sequence is exact [Ne, w 1]: 

(1.1) . . .  -4 rot(X) -~ ~rr(X) -4 7c~(X;Z/m)  -4 7rr - l (X)  --~ 7r~_a(X) --~ - . . .  

The machinery developed by Quillen in [Q67] and [Q69] provides a suitable 

framework to discuss CW-approximations and nullifications, yielding explicit 

models which are functorial in Top.. Recall that a closed model category C 

is a category endowed with three distinguished families of maps called cofibra- 

tions, fibrations and weak equivalences, satisfying certain axioms. For details, 

properties and further terminology we refer the reader to [Q67] and [Q69]. See 

also the recent survey by Dwyer and Spalinski [D-S]. 

A map which is a weak equivalence and a fibration will be called a trivial 

fibration, and a map which is a weak equivalence and a cofibration will be called 

a trivial cofibration. Given a commutative diagram 

A ~ X  

B >Y, 

the map i: A -+ B is said to have the left lifting property (LLP) with respect 

to p: X ~ Y if a map B ~ X exists making both triangles commute. In this 

situation, one also says that p has the right lifting property (RLP) with respect 

to i. 

2. A generalization 

If X and Y are arbitrary pointed spaces, we denote by X )4 Y the half-smash 

product X A Y+, where Y+ denotes the union of Y with a disjoint basepoint. 

Thus X )~ I is the ordinary pointed cylinder. 

In [E-H-R], the following closed model category structures were considered 

on the category Top, of pointed topological spaces, for each n _> 1. A map 

f :  X ~ Y is said to be an n-fibration if f has the RLP with respect to the family 

of inclusions 

(D n+~ )~ {0}) U (S n+~-a )4 I )  ~ D n+r )~ I ,  for r >_ O; 

a map f is a weak n-equivalence if the induced homomorphisms ~rr(X) -+ zr~(Y) 

are isomorphisms for r _> n; f is an n-cofibration if it has the LLP with respect 
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to all trivial n-fibrations. As explained in [E-H-R], the corresponding homotopy 

category is equivalent to the ordinary homotopy category of (n - 1)-connected 

CW-complexes. 

These closed model category structures can be generalized in the following 

way. Let M = ~ M '  be any space which is the pointed suspension of a CW- 

complex M' .  Consider the following families of maps in the category Top. of 

pointed topological spaces. 

Definition 2.1: Let f :  X --+ Y be a map. We say that 

(i) f is a weak M-equivalence if the induced homomorphisms 

f , :  [S~M,X]--~ [SrM, Y] 

are isomorphisms for r >_ 0; 

(ii) f is an M-fibration if it has the RLP with respect to the family of maps 

(CE~M ' x {0}) U (~YM')4 I) -+ C ~ M  ' )4 I for r _> 0, 

where C denotes the pointed cone functor; 

(iii) f is an M-cofibration if it has the LLP with respect to every trivial fibration. 

Since each map in (ii) is both a CW-inclusion and a homotopy equivalence, 

every Serre fibre map is an M-fibration. However, in contrast with [Hir] or [N95], 

an M-fibration need not be a Serre fibre map (for instance, every map between 

non-connected spaces with the same basepoint component is an M-fibration). As 

usual, a space X will be called M-fibrant if the map X - ~ ,  is an M-fibration 

(hence, all spaces are M-fibrant) and X will be called M-cofibrant if the map 

* --+ X is an M-cofibration. 

PROPOSITION 2.2: A map f:  X --+ Y is a trivial M-fibration i f  and only i f  it has 

the right lifting property with respect to the family C of inclusions 

, --+ M,  E r M  -+ CETM, r >_ O. 

Proof: Note that,  if a map f :  X -~ Y has the RLP with respect to E r M  -+ 

C E r M ,  then in particular every diagram of the following form (where the upper 

arrow is the constant map) admits a lifting 

E r M  * ~ X 

1 1, 
CE~ M ~ Y. 
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Therefore, f has the RLP with respect to * --+ E~+IM as well. As a consequence, 

if a map f has the RLP with respect to thc maps in C, then the induced homo- 

morphisms [E~M, X] -+ [ErM, Y] are isomorphisms for all r, so that f is a weak 

M-equivalence. In order to check that f is an M-fibration, we use the fact that 

by glueing together two copies of (CE~M ' ~ {0}) U (E~M ' >~ I) one obtains a 

space which is homeomorphic to E~+IM ', while CE~+aM ~ is homeomorphic to 

the space obtained by glueing together two copies of C ~ r M  t )~ I in the same way. 

Conversely, let f :  X --~ Y be a trivial M-fibration. Suppose given a commuta- 

tire diagram of the form 
Y],rM ~' ) X 

CN~ M ) Y 
V 

with r > 0. Then we may argue as follows; cf. [E-H, 2.4]. Since f is a weak 

M-equivalence, there is a map w: C E r M  ~ X such that wi = u and f w  ~- v. 

Let H: C E r M  ~ I --+ Y be a homotopy with HOo -- f w  and H01 = v, where 00, 

01 denote the face maps. Using the fact that f is an M-fibration, we can find 

a homotopy F: C E r M  )~ I ~ X such that f F  = H, extending both w and the 

constant map (x,t)  ~-+ u(x) for x E E~M and t E I. Then w' = FO1 satisfies 

f w  ~ = v and u/i  = u, as desired. A similar argument shows that f has the RLP 

with respect to the map * -+ M, hence completing the proof. | 

THEOREM 2.3: For every space M which is the suspension of a CW-comple• the 

category of pointed topological spaces together with the above families of weak 

M-equivalences, M-fibrations and M-cofibrations has the structure of a dosed 

model category. 

We denote by Top, M this closed model category structure on the category Top,,  

and thus by Ho(Top, M) the category obtained from Top, M by formally inverting 

the family of weak M-equivalences. For pointed spaces X and Y, the set of 

morphisms from X to Y in the category Ho(Top M) will be denoted by [X, y]M. 

Thc routine verifcation of the Quillen axioms CM1 to CM5 in order to prove 

Theorem 2.3 proceeds as in [D-S, w 8], [E-H-R, w 2], or [Q67, II.3]; compare with 

the approaches of Hirschhorn [Hir] and Nofech [N95]. In order to construct the 

factorizations stated in axiom CM5, we resort to Quillen's "small object argu- 

ment" (see [Q67, II.3.3] or [D-S, 7.12]), using the maps given in Proposition 2.2 

above. Hence, the resulting factorizations are functorial. 

Notice that,  in the process of constructing such factorizations, it suffices to take 

the colimit of a countable sequence whenever the space M is compact. Otherwise 
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it will normally require transfinite sequences, as in [B75], [Hir], or [J]. However, if 

the space M is a (possibly infinite) wedge VseA Ms where each Ms is compact, 

then one can still avoid the use of transfinite sequences by replacing the family 

g in Proposition 2.2 by the family consisting of * -+ Ms and E rMs  -~ CE"Ms 

for r > 0 and all a E A; further details are given in the next section. 

3. Loca l i za t ion  and co loca l i za t ion  

If one considers the M-cofibrant space X M constructed by factoring a m a p ,  --~ X 

into an M-cofibration followed by a trivial M-fibration, 

* -~ X M -+ X, 

by means of the "small object argument", what one has is a functor (__)M : 

Top. -~ Top.  together with a natural transformation ~: (_)M ~ Id. This is in 

fact a model for an M-CW-approximation in the sense of [DF96]. On the other 

hand, by factoring each map X -+ * into an M-cofibration followed by a trivial 

M-fibration, 

X ~ XM -+ *, 

one obtains a functor (--)M: Top. -~ Top, together with a natural transforma- 

tion ~: Id --+ (--)M, yielding a model for M-nullification. The canonical maps 

X M ~ X and X ~ XM will be called colocalization and localization, respec- 

tively. In this section we describe some basic properties of colocalization. 

Since M-cofibrations are ordinary cofibrations and Serre fibre maps are M- 

fibrations, it follows from standard arguments (see e.g. Theorem 9.7 in [D-S]) 

that for all spaces X and Y there is a natural bijection 

(3.1) [X, y]M _~ [X M, y], 

that is, the functor (_)M is left adjoint to the "identity" functor from Ho(Top.)  

to no(Top.M). 
If we suppose in addition that  X is M-cofibrant, then, since all spaces axe M- 

fibrant, the set [X, y]M is in one-to-one correspondence with the set of homotopy 

classes maps from X to Y in TopM; see [Q67, 1.16]. Now, arguing as in [D-S, 4.15] 

and [D-S, 9.10], we infer from (3.1) that if X is M-cofibrant and Y is any space 

then there is a natural bijection [X, y]M ~ [X, Y]. Since weak M-equivalences 

axe isomorphisms in Ho(TopM), we have the following. 
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THEOREM 3.1: f i r :  Y -~ Z is a weak M-equivalence, then f induces a bijection 

[X, Y] ~ [X, Z] for every M-cofibrant space X .  

As an immediate consequence, one obtains a broad generalization of the 

classical Whitehead theorem; see also [DF96, 2.E]. 

THEOREM 3.2: I f  X and Y are M-cofibrant spaces, then a map f: X -+ Y is a 

homotopy equivalence i f  and only i f  it is a weak M-equivalence. 

COROLLARY 3.3: For every space Y ,  the colocalization map y M  __~ y has the 

following universal properties: 

(1) It is homotopy initial among weak M-equivalences f:  X -~ Y.  

(2) It is homotopy terminal among maps f:  X -4 Y where X is M-cofibrant. 

COROLLARY 3.4: I f  X is M-cofibrant, then the colocalization map X M --~ X is 

a homotopy equivalence. 

COROLLARY 3.5: The adjoint pair 

(_ M 

Ho(Top,M) ~-- 0~ - -~  Ho(Top,) 
Id 

sets up an equivalence of categories between Ho(Top M) and the full subcategory 

of r io(Top,)  whose objects are the M-cofibrant spaces. 

The M-cofibrant spaces are precisely the retracts of M-CW-complexes, since 

for every cofibrant X the m a p ,  --~ X has the LLP with respect to X M -+ X .  

A more explicit description of M-cofibrant spaces is given in the next section in 

the special case where M is a wedge of torsion Moore spaces. 

Let F be the homotopy fibre of the localization map X -+ XM. Since X M  --~ * 

is a weak M-equivalence, the map F -~ X is a weak M-equivalence as well. 

Hence, F M --+ X M is a weak M-equivalence and we infer the following result, 

which will be used for calculations in Section 5. 

THEOREM 3.6: Let X be any space and let F be the homotopy fibre of  the 

localization map X ~ X ~ .  Then F M ~ X M. 

If the space M is an infinite wedge V~eA Ma, where each M~ is compact, but 

M itself is not compact, then the construction of X M described above will require 

the use of transfinite sequences in general. However, we can obtain a model for 

X M whose construction stops at the first infinite ordinal by proceeding as follows. 

Notice that  a map f :  X ~ Y is a trivial M-fibration if and only if it has the 

RLP with respect to the family C' of inclusions * -+ M,~ and P."Mc, --+ CZ"M,~ 
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with r >_ 0 and a E A; cf. Proposition 2.2. Hence, for each space X,  we can 

construct a suitable model for X M by means of the "small object argument" 

using the family C ~ instead of the family C displayed in Proposition 2.2. For 

convenience, we next recall the details of the process used to decompose a given 

map f:  A --+ X into an M-cofibration followed by a trivial M-fibration. 

Firstly, we consider all maps of the form g: M~ --+ X, with a E A, and use 

them to construct a space X ~ = Av(Vg,  ~ M~) equipped with a map p0: X 0 ~ X 

which coincides with f on A and with g on the wedge summand labelled with 9, 

for each 9. This map p0: X 0 _+ X has the RLP with respect t o ,  --+ M~ for all 

a C A. Next, we construct inductively a sequence 

X ~ j~ X 1 j2 X 2 �9 ) > ) . . .  

together with maps p~: X r --~ X such that  pr S = pr-1.  Assuming that  the map 

pr-1 has been constructed, we take all commutative diagrams D of the form 

E~M~ ~D > X~_I 

1 I p~-~ 

CE~ M~ .~ X 
~d D 

(3.2) 

with r _> 0 and a E A, and define j r :  X r - 1  __~ X r by the push-out 

(3.3) 

V D E r M a  > x r - 1  

l I; 
V D CEr  M~ > x r "  

The map pr: X r __+ X is the sum of pr-1 and all the maps VD in diagram (3.2). 

Passage to the direct limit yields a trivial M-fibration p: X ~176 --+ X and the 

desired factorization of f as 

A --+ X ~176 -~ X, 

where X ~176 is M-cofibrant. In particular, if we choose A to be a point, then 

X ~176 "" X M, by Theorem 3.2. 

This construction can be modified in order to obtain substantially smaller 

(although possibly non-functorial) models for X M. For instance, it suffices to 

pick one representative within each pointed homotopy class of maps at each step 

of the process. Thus, if f :  A --+ X is a map of CW-complexes and we use cellular 
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maps in the construction above, then we obtain a factorization A --+ )f  --+ X, 

where A --+ )(  is an M-cofibration, )(  -+ X is a weak M-equivalence (which need 

not be an M-fibration) and 2( is a CW-complex. If X is M-cofibrant then X 

itself is homotopy equivalent to X M. If all maps Ms ~ X are nullhomotopic, 

then X M is homotopy equivalent to a point. 

4. T h e  case o f  t o r s i on  M o o r e  spaces  

In the rest of the paper we specialize to the case where M is a wedge of certain 

compact, torsion Moore spaces. Thus let P be any set of positive integers, not 

necessarily prime, and n _> 2 a fixed integer. Let M = VmeP M ( Z / m ,  n). We 

shall use the notation Top (P'n) for the associated closed model category struc- 

ture, and refer to the corresponding families of maps as weak (P, n)-equivalences, 

(P, n)-fibrations and (P, n)-cofibrations, respectively. Likewise, we denote the 

localization (--)M by (-)(P,n) and the colocalization (_)M by (_)(P,n). 

Thus, a map f :  X -+ Y is a weak (P, n)-equivalence if and only if the induced 

homomorphisms f . :  rr(X;  Z /m)  ~ ~rr(Y; Z/m)  are isomorphisms for r > n + 1 

and each m E P. Note that,  if P1 C_ P2 and nl _> n2, then every weak (P2, n2)- 

equivalence is a weak (P1, nl)-equivalence. 

Our first aim is to provide an algebraic characterization of (P, n)-cofibrant 

spaces. We shall discuss primarily the cases when 

p = {pk} or p _- {p, p2,p3, . . .  }, 

where p is a prime and k > 1. In fact, Theorem 4.4 and Theorem 4.5 below 

will demonstrate that this is sufficiently general. Thus, let M -- M ( Z / p  k, n) or 
O O  , - -  - -  M = Vi=l M(Z /P  ~ n), where p is a prime, k > 1, and n > 2. 

Recall from [K-M, 3.10] that every torsion abelian group is the direct sum of 

its primary components, and every abelian p-group of finite exponent is a direct 

sum of cyclic groups. For a torsion abelian group G and a prime p, we denote by 

Gp the p-primary component of G. 

LEMMA 4.1: Let f: X --+ Y be a map between 1-connected spaces with torsion 

homotopy groups. Suppose that 7rr(X)p : 0 and ~rr(Y)p = 0 for r <_ n - 1, 

where p is a prime. Then f induces isomorphisms 7r~ ( X ; Z/p  k ) ~ r~ (Y; Z/p k) for 

r > n + 1 i f  and only if  the induced maps 7rr(X)p --+ 7r~(Y)p are isomorphisms 

for r > n + 1 and Tor(~rn(X),Z/p k) -+ Tor(~rn(Y),Z/p k) is an isomorphism as 

wet1. 

Proo~ In order to prove the first implication, let F be the homotopy fibre 

of f .  The homotopy groups of F are torsion and r , (F)p  = 0 for r < n - 2. 
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Moreover, the assumption made implies that  ~r~(F;Z/p k) = 0 if r >_ n + 1. 

Hence, 7r~(F;Z/p k) = 0 for all r, except perhaps for r = n and r = n - 1. Now 

we exploit the exact sequence derived from (1.1), 

(4.1) 0 -+ 7rr(F) | Zip k -+ Zrr(F; Z/p k) -+ Tor(Tr~_l (F),  Zip k) --~ O, 

together with the fact that  the homotopy groups of F are torsion, to infer that  

lr~(F)p = 0 for r ~ n -  1. Thus, the map f induces isomorphisms ~r~(X)p 

zr~(Y); for all r, except perhaps for r = n, and the homomorphism f.: ~r,~(X)p -+ 
7rn(Y)v is injective. This implies that Tor(Tr~(X),Z/p k) -+ Tor(lr~(Y), Z/p k) is 

injective as well. In order to prove that the latter is surjective, consider the 

commutative diagram 

7Cn+l(X;Z/p k) > Tor(Trn(X),Z/p k) 

~r~+l (Y; ZIp k) > Tor(Tr~(Y), Zip k), 

in which the horizontal maps are epimorphisms, and hence the right-hand map is 

an epimorphism too. The converse is proved using the exactness and naturality 

of the sequence (4.1). | 

THEOREM 4.2: Let X be a space, p a prime and n >>_ 2. 

(1) I f P  = {pk} with k >_ 1, then X has the weak homotopy type o f a  (P ,n) -  

cofibrant space if and only if X is (n - 1)-connected, ~rr(X) is p-torsion 
for all r and ~r~(X) is annihilated by pk. 

(2) I f  P = {p, p2,p3, . . .  }, then X has the weak homotopy type of a (P, n)- 
cofibrant space if and only if X is (n -  1)-connected and 7rr(X) is p-torsion 
for all r >_ n. 

Proof'. In both cases, if X is (P, n)-cofibrant then the colocalization map 

X (P''~) --+ X is a homotopy equivalence, by Corollary 3.4. In the construc- 

tion of X (P''~) described at the end of Section 3, we see inductively that  X r is 

( n -  1)-connected for all r. Hence X (P,~) is ( n -  1)-connected too. Since the class 

of p-torsion abelian groups is a Serre class IS] and it is closed under direct limits, 

it follows from a Mayer-Vietoris argument that  the reduced singular homology 

groups H~(X (P,~)) are p-torsion for all r, and Serre's version of the Hurewicz 

theorem IS] ensures that  the homotopy groups ~r~(X (P'n)) are p-torsion for all r 

as well. Moreover, H~(X (P,~)) is an epimorphic image of H~(X~ hence, in 

case (1) the group Hn(X (P'n)) is a Z/pk-module and therefore 1rn(X (v,'q) is also 

a Z/pk-module. 
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In order to prove the converse statements in (1) and (2), we need to show that 

the hypotheses made imply that the colocalization map X (p,'~) -~ X induces 

isomorphisms 7rr(X (p''~)) ~- ~rr(X) for all r. But this follows from Lemma 4.1. 
| 

Notice that  M ( Z / p  2, n) is not (P, n)-cofibrant if P = {p}. 

If P = (p}, then the homotopy category Ho(Top! P'n)) is equivalent to the 

homotopy category of ( n -  1)-connected CW-complexes such that  Irn(X) is a 

Z/p-vector space and ~r~(X) is p-torsion for r _> n + 1. This class of spaces was 

considered by Bousfield in [B94]. It would be interesting to develop algebraic 

models for their homotopy category; recent work of Goerss [G] has opened the 

way into this direction. 

We next show that the case where P is any set of positive integers can be 

reduced to the special cases discussed above. We say that a prime p has finite 

height in the set P if there is a nonnegative integer h such that ph+l does not 

divide any number m E P. If this is the case, then the height of p in P is the 

minimum of such integers h; we shall denote it by h(p). Otherwise, we say that  

p has infinite height in P. The following result generalizes Theorem 4.2. 

THEOREM 4.3: Let n ~ 2 and let P be an arbitrary set of positive integers. Then 

a space X has the weak homotopy type of a (P, n)-cofibrant space if  and only i f  

X is (n - 1)-connected, ~r~(X) is P-torsion for all r and ~rn(X)p is annihilated 
by ph(p) for each prime p which has finite height h(p) in P. 

THEOREM 4.4: For every space X and every set P of positive integers, let Q be 

the union of the sets {p, p2,p3,. . . ) for each prime p of infinite height in P, and 

{ph(v)) for each pr imep  of nonzero fn i te  height h(p) in P. Then X (P'~) ~- X (Q''~) 

for any n > 2. 

Proof." By Theorem 4.3, the classes of (P,n)-cofibrant spaces and 

(Q, n)-cofibrant spaces coincide. Hence, our claim follows from Corollary 3.3. 
| 

THEOREM 4.5: Let P be any set of positive integers and n ~_ 2. Suppose that 

P is the union of a family of sets Pi such that the numbers in Pi are mutually 

prime with the numbers in Pj whenever i ~ j.  Then, for each space X ,  we have 

x(P"~) "~ V x(P"n).  
i 

Proof: Since every weak (P, n)-equivalence is a weak (Pi, n)-equivalence, there 



Vol. 107, 1998 MODELS FOR TORSION HOMOTOPY TYPES 313 

is a map X (P~'n) ~ X (P,n) for each i. These yield together a map 

(4.3) V x(P"~ 
i 

For each index i, the inclusion of X (P{'n) into V{ x(P{'n) induces an isomorphism 

in homology with coefficients in Pi. Hence, by [Ne, 3.10], it also induces an 

isomorphism in homotopy with coefficients in P{, that is, it is a weak (Pi, n)- 

equivalence. Therefore, the natural map V{X (P"n) --+ X is a weak (P{,n)- 
equivalence for all i, and hence it is a weak (P, n)-equivalence. It follows that  

(4.3) is a weak (P, n)-equivalence between (P, n)-cofibrant spaces, and thus it is 

a homotopy equivalence. | 

We finally address the case where M is a wedge of Moore spaces of various 

dimensions. Observe that i f  M~ = M ( Z / p  kl , nl)  and M2 = M(Z/p k2 , n2) satisfy 

either nl  > n2 or nl = n2 and kl < k2, then the classes of weak (M1 V M2)- 
equivalences and M2-equivalences coincide, which implies that  X MIvM2 ~- X M2 , 
by Corollary 3.3. In order to generalize this fact, the following notation will be 

convenient. If k is an integer, then we write M(p, k, n) = M(Z/p k , n); otherwise, 

M(p, 0% n) : Vi~176 M ( Z / p  i, n). 
Let X be a space and W = Vn_>2 VmeP, M(Z/m,  n), where each Pn is a set 

of positive integers, possibly empty. For each prime p, let n(p) be the smallest 

value of n such that  p divides some number in Pn, or omit p from the indexing if 

it does not occur in W. Let h(p) be the height of p in the set Pn(p) (here we do 

not exclude the possibility that h(p) = oo). Let M : Vp M(p, h(p), n(p)). Then 

(4.4) x W  "~ x M  ~-- V xM(p'h(P)'n(P))" 
P 

Indeed, the first homotopy equivalence follows from the fact that the classes 

of weak W-equivalences and weak M-equivalences coincide, and the second 
equivalence is proved as in Theorem 4.5. 

Let P be any set of primes and M = VpEp M(p, kp, np), where np >_ 2 and kp 
is either a positive integer or oo. Then one shows as in Theorem 4.2 that  a space 

X has the weak homotopy type of an M-cofibrant space if and only if 

(1) X is 1-connected, 

(2) 7rr(X) is P-torsion for all r > 1, 

(3) 7r,.(X)p = 0 for r < Up, and 
(4) if kp is finite, then 7r~ (X)p is annihilated by pkp. 

As applications, we prove the following results. 
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THEOREM 4.6: Let P be any set of primes. Let P1,. . . ,  Pr be a finite partition 

of P into mutually disjoint subsets. Let M~ = Vpep~ M(p, kp, rip), where np >_ 2 

and kp is either a positive integer or oo. Then, for each space X,  the inclusion 

(4.5) V x M '  ~ 1 - I X  Mi 
i i 

is a weak homotopy equivalence. 

Proof." Each projection rL xM'  --+ xM'  induces isomorphisms on homotopy 

with coefficients in Pi and hence it is a weak (P~, 2)-equivalence. Likewise, each 

inclusion X M' --+ Vi xM'  induces isomorphisms on homology with coefficients 

in Pi, and hence it is also a weak (P~, 2)-equivalence, by [Ne, 3.10]. Since the 

composite 

xM' V XM' II XM'-  XM' 
i i 

is the identity for all i, the arrow (4.5) is a (P/, 2)-equivalence for all i and hence 

it is a (P, 2)-equivalence. Finally, observe that the domain of (4.5) is (P, 2)- 

cofibrant and the codomain has the weak homotopy type of a (P, 2)-cofihrant 

space. | 

This result remains true for an infinite partition of P into mutually disjoint 

subsets, provided we take [L xM~ to be the weak product of the spaces X M~ ; 

thus, ~rn (I-I ix  M~) ~ ~ i  rn(XM~) for all n. This fact, together with Theo- 

rem 4.5, shows that every n-connected space X (where n >_ 1) with torsion ho- 

motopy groups decomposes, up to weak homotopy equivalence, as a wedge Vp xp  

or also as a weak product l ip Xp, where each Xp is an n-connected, p-torsion 

CW-complex. 

Given arbitrary spaces X and Y, the natural map X (P'n) • y(P,n) _~ X x Y 

is a weak (P, n)-equivalence. Hence, there is a map 

(4.6) (X • y)(P,n) ~, X (P'n) x y(P,n), 

which is also a weak (P, n)-equivalence. Since the domain of (4.6) is (P, n)- 

cofibrant and the codomain has the weak homotopy type of a (P, n)-cofibrant 

space (by Theorem 4.3), the map (4.6) is a weak homotopy equivalence. As 

above, this result remains true for infinite weak products. 



Vol. 107, 1998 MODELS FOR TORSION HOMOTOPY TYPES 315 

5. C a l c u l a t i n g  (P, n ) - C W - a p p r o x i m a t i o n s  

Fix a set P of positive integers and an integer n > 2. Recall from Theorem 3.6 

that,  for every space X, the colocalization X (P,n) is closely related to the homo- 

topy fibre of the localization map X ~ X(p,n ). The space X(p,n ) is constructed 

from X by means of a sequence of push-outs involving (n - 1)-connected spaces, 

in the process of factoring the map X --+ * into a (P, n)-cofibration followed by 

a trivial (P, n)-fibration. Therefore, we have 

Try(X) TM 7rr(X(p,n)) for r _< n - 1, 

and 7r,.(X(p,n);Z/rn) = 0 for r >_ n +  1 and m E P,  since X(p,n ) is weakly (P,n)- 
equivalent to a point. By (1.1), this implies that  the homotopy groups 7r~ (X(p,, 0 ) 
are uniquely P-divisible for r _> n + 1 and 7r~ (X(p,,~)) is P-torsion-free. Moreover, 

if we denote by Z[P -1] the smallest subring of the rationals containing 1/m for 

all m E P,  then 

(5.1)  r(x) | z iP  -11 for r >__ n + 1, 

while ~rn(X(p,~)) is isomorphic to the quotient of rn(X) by its P-torsion sub- 

group; cf. [B94, 5.2]. We shall use the fact that the P-torsion subgroup of an 

abelian group A is isomorphic to Tor(A, Z[P-1]/Z),  since Z[P-1 ] /Z  is a direct 

sum of groups Z/p ~ , where p ranges over all primes dividing the numbers in P.  

THEOREM 5.1: The homotopy fibre F of the map ~: X --+ X(p,~) is weakly 
equivalent to a (P, n)-cofibrant space if and only if the two following conditions 
are satisfied for every prime p which has finite height h(p) in P: 

(1) The p-torsion subgroup of r,~(X) is annihilated by ph(p) ; 
(2) | Z / p  = o. 

Proof: We infer from the homotopy exact sequence associated to F -+ X 

X(p,,~) that  F is always ( n -  1)-connected and its homotopy groups are P-torsion. 

Thus, if no prime has finite height in P,  then F is weakly equivalent to a (P, n)- 

cofibrant space by Theorem 4.3. In the general case, it follows from (5.1) that  

there is a short exact sequence for r > n, 

(5.2) 0 -+ ~r+l(X)  | (Z[P-1]/Z) -+ r r ( F )  -+ Tor(~rr(X), Z[P-1] /Z)  -+ 0, 

which splits because the kernel is a divisible group. Look at the case r = n and 

observe that,  for any abelian group A, the group A | Z/p ~176 is p-divisible and 
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hence it cannot be annihilated by any power of p unless it is zero. 

our claim. II 

Note that  

(5.3) X (P'n) -'~ X ~ X(p ,n  ) 

This proves 

is a homotopy fibre sequence if and only if conditions (1) and (2) of Theorem 5.1 

are fulfilled for every prime which has finite height in P. Of course, this restriction 

disappears if all primes dividing the numbers in P have infinite height, e.g. if P 

is multiplicatively closed. In that case, (5.3) is a homotopy fibre sequence for all 

spaces X. 

The following result answers a question left open in [DF92, 6.4], where it was 

asked if F and X (P,~) differ at most in one homotopy group. 

THEOREM 5.2: Let X be any space and P = {pk}, where p is a prime. Let F 

be the homotopy fibre of the localization map rl: X --+ X(p,,q. Then there is a 

homotopy fibre sequence 

X (P'n) --). F ~ K(~r, n) 

where r = ~rn(F)/ Tor(Trn(F), Z/pk).  

Proo~ Since F is (n - 1)-connected, we have Hn(F;Tr) ~ Hom(rn(F),Tr),  

and hence we may pick a map g: F -+ K(~r, n) inducing the natural projec- 

tion ~rn(F) --~ 7r. Let F ~ be the homotopy fibre of g. Then l r r (F )  ~ 7rr(F) for 

r _> n + 1, and 7rn(F') - Tor(Trn(F),Z/pk). Therefore, the map F '  -~ F is a 

weak (P, n)-equivalence and F '  has the weak homotopy type of a (P, n)-cofibrant 

space. This shows that  F ~ is weakly equivalent to X (P''~). | 

Now the homotopy groups of X (P'") can easily be computed in terms of the 

homotopy groups of X, for any n _> 2 and any set P of positive integers. In the 

case P = {p, p2,p3, . . .  }, the homotopy groups of X (P'") are isomorphic to those 

of F,  and the latter can be read directly from the split exact sequence (5.2). The 

case P = {pk} is covered by Theorem 5.2. Finally, by resorting to Theorem 4.4 

and Theorem 4.5, one can compute X (P'") for other sets P of positive integers. 

Example 5.3: Let P = {pk}, where p is a prime. Then, for any abelian group A 

and d > 1, we have 

, i f d _ < n - 1 ;  

g(Tor(A,  Z/pk),  n) if d = n; 

K ( A ,  d) (p''~) ~- K ( B ,  u) • K(TpA, n + 1) if d = n + 1; 

K ( A  | Z /p  ~176 d - 1 )  x K(TpA, d) i f d _ > n + 2 ,  
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where B = Tor(A | Zip ~176 Zip k) ~- A/(pkA + TpA) and we denote by TpA 
the p-torsion subgroup of A. To check this, consider the homotopy fibre F of 

~: K(A, d) -+ K(A, d)(p,n) and use Theorem 5.2. If d _> n + 1, then 

K(A, d)(p,n) ~- K(A | Z[1/p], d) 

and F is in fact a product 

F ~_ K(A | Zip ~ ,  d - 1) x K(TpA, d); 

cf. [B82, w 4]. If d = n, then F ~- K(TpA, n). 

Example 5.4: Let P = {p, p2,p3,.. .},  where p is a prime. Using similar 

arguments as in the previous example, for any abelian group A and d >_ 1, 

we have 

, i f d < _ n - 1 ;  

K(A, d) (P'n) ~- K(TpA, n) if d = n; 

K(A | Z/p~176 d - 1 )  x g(TpA, d) i f d > n + l .  
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