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Abstract. For each integer n > 0, we give a distinct closed model category
structure to the category of pointed spaces Top? such that the corresponding
localized category Ho(Topn? ) is equivalent to the standard homotopy category
of (n− 1)-connected CW-complexes.

The structure of closed model category given by Quillen to Top? is based on
maps which induce isomorphisms on all homotopy group functors πq and for
any choice of base point. For each n > 0, the closed model category structure
given here takes as weak equivalences those maps that for the given base point
induce isomorphisms on πq for q ≥ n .

§0. Introduction

D. Quillen [7] introduced the notion of closed model category and proved that
the categories of spaces and of simplicial sets have the structure of a closed model
category. This structure has been very useful in the development of the homotopy
theory. For example, Quillen [8] used this structure to find algebraic models for
rational homotopy theory.

Recently, C. Elvira and L.J. Hernández [2] have given a closed model structure
for the notion of n-type introduced by Whitehead. They take as weak equivalences
those maps f : X −→ Y which induce isomorphisms on the homotopy functors πq
for q ≤ n. In this case, the localized category Hon(Top) obtained by formal inversion
of the corresponding weak equivalences is equivalent to Ho(Top)|(n+1)-coconnected,
the full subcategory of the localized category Ho(Top) determined by the (n+ 1)-
coconnected topological spaces (πq = 0, q ≥ n+ 1).

The aim of this paper is to study the homotopy category of (n − 1)-connected
spaces, which in some sense is dual to the homotopy category of n-coconnected
spaces. Quillen [8] writes: “It is unfortunate that the category Topn of (n − 1)-
connected topological spaces is not closed under finite limits, for this prevents us
from making this category into a closed model category.” However, he solves the
problem by considering the category of n-reduced simplicial sets SSn and the functor
En Sing that induces an equivalence between the localized categories Ho(Topn),
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Ho(SSn) . When some homotopy construction needs finite limits, then the functor
En Sing carries the corresponding diagrams to the category Ho(SSn) which is closed
under finite limits, and afterwards the realization functor carries again the diagrams
to the category of (n−1)-connected spaces. We propose a different solution; we use
the category of pointed spaces which is closed under finite limits. As Quillen we also
have equivalent localized categories, but now all the usual homotopy constructions
can be done in the category of pointed spaces.

In this paper, for each n > 0, we take as weak n-equivalences those maps of
Top? which induce isomorphisms on the homotopy group functors πq for q ≥ n .
We complete this family of weak n-equivalences with families of n-fibrations and n-
cofibrations in such a way that Top? admits the structure of a closed model category
and its localized category is equivalent to the localized category of (n−1)-connected
spaces and to the localized category of n-reduced simplicial sets.

§1. Definitions and statement of the Theorem

We begin by recalling the definition of a closed model category given by Quillen
[8].

Definition 1.1. A closed model category C is a category endowed with three dis-
tinguished families of maps called cofibrations, fibrations and weak equivalences
satisfying the axioms CM1–CM5 below:
CM1. C is closed under finite projective and inductive limits.
CM2. If f and g are maps such that gf is defined, then, whenever two of these

f, g and gf are weak equivalences, so is the third.
Recall that the maps in C form the objects of a category Maps(C) having com-

mutative squares for morphisms. We say that a map f in C is a retract of g if there
are morphisms ϕ : f −→ g and ψ : g −→ f in Maps(C) such that ψϕ = idf .

A map which is a weak equivalence and a fibration is said to be a trivial fibration,
and, similarly, a map which is a weak equivalence and a cofibration is said to be a
trivial cofibration.
CM3. If f is a retract of g and g is a fibration, cofibration or weak equivalence,

then so is f .
CM4. (Lifting.) Given a solid arrow diagram

A −−−−→ X

i

y yp
B −−−−→ Y

(∗)

the dotted arrow exists in either of the following situations:

(i) i is a cofibration and p is a trivial fibration,
(ii) i is a trivial cofibration and p is a fibration.

CM5. (Factorization.) Any map f may be factored in two ways:
(i) f = pi, where i is a cofibration and p is a trivial fibration,
(ii) f = qj, where j is a trivial cofibration and q is a fibration.

We say that a map i : A −→ B in a category has the left lifting property (LLP)
with respect to another map p : X −→ Y , and p is said to have the right lifting
property (RLP) with respect to i if the dotted arrow exists in any diagram of the
form (∗).
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The initial object of C is denoted by ∅ and the final object by ?. An object X of
C is said to be fibrant if the morphism X −→ ? is a fibration and it is said cofibrant
if ∅ −→ X is a cofibration.

We shall use the following notation: For each integer n ≥ 0, 4[n] denotes the

“standard n-simplex”, and for n > 0, 4̇[n] (resp. V(n, k) for 0 ≤ k ≤ n) de-
notes the simplicial subset of 4[n] which is the union of the images of the faces
∂i : 4[n− 1] −→ 4[n] for 0 ≤ i ≤ n (resp. 0 ≤ i ≤ n, i 6= k.) We write skq( ) for
the q-skeleton functor and | | for the geometric realization functor.

In this paper, the following closed model categories given by Quillen [7], [8] will
be considered:

(1) The category of pointed topological spaces Top? : Given a map f : X −→ Y
in Top?, f is said to be a fibration if it is a fibre map in the sense of Serre; f
is a weak equivalence if f induces isomorphisms πq(f) for q ≥ 0 and for any
choice of base point, and f is a cofibration if it has the LLP with respect to
all trivial fibrations.

(2) The category of pointed simplicial sets SS? : A map f : X −→ Y in SS? is
said to be a fibration if f is a fibre map in the sense of Kan; f is a weak
equivalence if its geometric realization, |f |, is a homotopy equivalence, and f
is a cofibration if it has the LLP with respect to any trivial fibration.

(3) The category of n-reduced simplicial sets SSn . A pointed simplicial set
X is said to be n-reduced if skn−1X is isomorphic to the simplicial subset
generated by the base 0-simplex of X . We write SSn for the full subcategory
of SS? determined by all the n-reduced simplicial sets. A map f : X −→ Y in
SSn is said to be a cofibration in SSn if f is injective, f is a weak equivalence
if it is a weak equivalence in SS?, and f is a fibration if it has the RLP with
respect to the trivial cofibrations in SSn .

Let Ho(Top?), Ho(SS?), and Ho(SSn) denote the corresponding localized cate-
gories obtained by formal inversion of the respective families of weak equivalences
defined above.

In the category of pointed topological spaces and continuous maps, Top?, for
each integer n > 0, we consider the following families of maps:

Definition 1.2. Let f : X −→ Y be a map in Top? .

(i) f is a weak n-equivalence if the induced map πq(f) : πq(X) −→ πq(Y ) is an
isomorphism for each q ≥ n.

(ii) f is an n-fibration if it has the RLP with respect to the inclusions

|V(p, k) / skn−1 V(p, k) | −→ |4[p] / skn−14[p] |
for every p > n and 0 ≤ k ≤ p.

A map which is both an n-fibration and a weak n-equivalence is said to be a
trivial n-fibration.

(iii) f is an n-cofibration if it has the LLP with respect to any trivial n-fibration.

A map which is both an n-cofibration and a weak n-equivalence is said to be a
trivial n-cofibration.

A pointed space X is said to be n-fibrant if the map X −→ ? is an n-fibration,
and X is said to be n-cofibrant if the map ? −→ X is an n-cofibration.

Remark. We note that the homotopy group πq(X) only depends on the path com-
ponent C of the given base point of X . Therefore the inclusion C −→ X is always
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a weak n-equivalence. On the other hand, the objects |V(p, k) / skn−1 V(p, k) | ,
|4[p] / skn−14[p] | used in the definition of n-fibration are considered as pointed
spaces. It is also clear that all objects in Top? are n-fibrant.

Using the notions given above the main result of this paper is:

Theorem 1.3. For each n > 0, the category Top? together with the families of
n-fibrations, n-cofibrations and weak n-equivalences, has the structure of a closed
model category.

We denote by Topn? the closed model category Top? with the distinguised fam-
ilies of n-fibrations, n-cofibrations and weak n-equivalences, and by Ho(Topn? ) the
category of fractions obtained from Topn? by formal inversion of the family of weak
n-equivalences.

§2. Proof of the Theorem

It is well known that Axiom CM1 is satisfied by Top?, Axiom CM2 is an im-
mediate consequence of the properties of group isomorphisms, and the definition
of n-cofibration implies obviously Axiom CM4 (i). Then, it only remains to prove
Axioms CM3, CM4 (ii) and CM5.

Theorem 1.3 will follow from the results given below.

Lemma 2.1. If a map f is a retract of a map g and g has the RLP (resp. LLP)
with respect to another map h, then f also has this property.

Proposition 2.2 (Axiom CM3). In Top? if a map f is a retract of a map g and
g is an n-fibration, n-cofibration or weak n-equivalence, then so is f .

Proof. If g is an n-fibration or an n-cofibration, by Lemma 2.1 we have the same
for f . If g is a weak n-equivalence, since πqf is a retract of πqg it follows that f is
also a weak n-equivalence.

Proposition 2.3. For a map f : X −→ Y in Top?, the following statements are
equivalent:

(i) f is a trivial n-fibration,
(ii) f has the RLP with respect to the inclusions

| 4̇[p] / skn−1 4̇[p] | −→ |4[p] / skn−14[p] |
for all integers p ≥ n.

Proof. Let Sing : Top? −→ SS? denote the “singular” functor which is right adjoint
to the “realization” functor | | : SS? −→ Top? . Consider also the “n-reduction”
functor Rn : SS? −→ SS? defined as follows: Given a pointed simplicial set X , the
n-reduction Rn(X) is the simplicial subset of X of those simplices of X whose q-
faces for q < n are degeneracies of the base 0-simplex. The left adjoint of Rn is the
functor ( )(n) : SS? −→ SS? defined by X(n) = X/ skn−1X . Then the composite
functor | |( )(n) is left adjoint to the functor Rn Sing.

On the other hand, because for any pointed space X , SingX is a Kan simplicial
set, Rn SingX is the n-Eilenberg subcomplex of SingX . Therefore, for q ≥ n, we
have the isomorphisms

πq(Rn SingX) ∼= πq(SingX) ∼= πq(X).
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Taking into account the above remarks, for a map f : X −→ Y in Top? we have
that f is a trivial n-fibration if and only if Rn Sing f has the RLP with respect to the
inclusions V(p, k) −→ 4[p], p > n, 0 ≤ k ≤ p, and πq(Rn Sing f) is an isomorphism
for q ≥ 0. By [8, Proposition 2.12] the last conditions are equivalent to the fact
that Rn Sing f is a trivial fibration in SSn . Now we can apply [8, Proposition 2.3]
and, in this case, this is equivalent to saying that Rn Sing f is a trivial fibration
of SS? . However, the trivial fibrations in SS? are characterized by the RLP with
respect to 4̇[p] −→ 4[p], p > 0.

Applying again that Rn Sing and | |( )(n) are adjoint functors, we conclude that
f is a trivial n-fibration if and only if f has the RLP with respect to

| 4̇[p] / skn−1 4̇[p] | −→ |4[p] / skn−14[p] |, p ≥ n.

Proposition 2.4 (Axiom CM5). Let f : X −→ Y be a map in Top?; then f can
be factored in two ways:

(i) f = pi, where i is an n-cofibration and p is a trivial n-fibration,
(ii) f = qj, where j is a weak n-equivalence having the LLP with respect to all

n-fibrations and q is an n-fibration.

Proof. Given a class M of maps, denote by M′ the class of maps which have the
RLP with respect to the maps ofM.

(i) Consider the family M of inclusion maps

| 4̇[r] / skn−1 4̇[r] | −→ |4[r] / skn−14[r] |, r ≥ n.

By Proposition 2.3, M′ is the class of trivial n-fibrations.
At this point, in order to use the “small object argument”, we refer the reader to

Lemma 3 of Chapter II, §3 of Quillen [7]. In a similar way, we construct a diagram

X
f0−−−−→ Z0 f1−−−−→ Z1 −−−−→ · · ·

f↘
yp0 ↙ p1

Y

but in our case, we use all commutative diagrams of the form

| 4̇[r] / skn−1 4̇[r] | −−−−→ Zk−1y ypk−1

|4[r] / skn−14[r] | −−−−→ Y

for every r ≥ n. We also consider Z = colimZk, p = colim pk and i : X −→ Z the
induced inclusion. With this construction, we can factor f : X −→ Y as f = pi,
where p : Z −→ Y is in M′ and i : X −→ Z has the LLP with respect to the maps
ofM′. Then, p is a trivial n-fibration and i is an n-cofibration. It is interesting to
note that this construction factors maps f in a functorial way.

(ii) Now, take the family M of maps

|V(r, k) / skn−1 V(r, k) | −→ |4[r] / skn−14[r] |, r > n, 0 ≤ k ≤ r.

By Definition 1.2,M′ is the class of n-fibrations. Analogously to (i), we can factor
f = qj, where q is an n-fibration and j has the LLP with respect to all n-fibrations.
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To complete the proof, we note that the inclusion

|V(r, k) / skn−1 V(r, k) | −→ |4[r] / skn−14[r] |, r > n, 0 ≤ k ≤ r,

is a trivial cofibration in Top . Therefore, for any map |V(r, k) / skn−1 V(r, k) | −→
X in Top?, r > n, 0 ≤ k ≤ r, the inclusion

X −→ X
⋃

|V(r,k) / skn−1 V(r,k) |
|4[r] / skn−14[r] |

is a trivial cofibration. Using this fact we can check that the map j is a weak
n-equivalence.

Remark. Note that if X = ?, the n-cofibrant space Z constructed in the proof of (i)
is (n − 1)-connected. In this case, we denote Z by Y n. This construction induces
a well defined functor Top? −→ Top? , Y −→ Y n .

Proposition 2.5 (Axiom CM4 (ii)). Given a commutative diagram in Top?

A −−−−→ X

i

y yp
B −−−−→ Y

where i is a trivial n-cofibration and p is an n-fibration, then there is a lifting.

Proof. From Proposition 2.4 (ii), i can be factored as i = qj, where j : A −→W is a
weak n-equivalence having the LLP with respect to all n-fibrations and q : W −→ Y
is an n-fibration. Since CM2 is verified, q is a trivial n-fibration. Then, there is a
lifting r : B −→W for the commutative diagram

A
j−−−−→ W

i

y yq
B −−−−→

id
B

So, the map i is a retract of j and applying Lemma 2.1, it follows that a lifting
exists for the given diagram.

§3. The category Ho(Topn? )

In this section, we compare the closed model category Topn? with the closed model
categories Top? and SSn (see §1). We obtain that the localized category Ho(Topn? )
is equivalent to Ho(SSn) and to Ho(Top?)|(n−1)-connected , the full subcategory of
Ho(Top?) determined by (n− 1)-connected spaces.

We note that the identity functor Id : Top? −→ Topn? preserves weak equiva-
lences and fibrations. One also has the following result:

Proposition 3.1. (i) If Y is n-cofibrant, then Y is (n− 1)-connected.
(ii) If f : X −→ Y is a weak n-equivalence and X,Y are n-cofibrant, then f is a

weak equivalence.

Proof. (i) Let j : ? −→ Y be an n-cofibration. Applying Proposition 2.4 (i) and
the remark after it, j can be factored as j = pi : ? −−−−−→Y n−−−−−→Y , where i
is an n-cofibration, p is a trivial n-fibration and Y n is an (n− 1)-connected space.
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Because p is a trivial n-fibration and j is an n-cofibration, j is a retract of i. It
follows that πq(j) is an isomorphism for q ≤ n− 1 , hence Y is (n− 1)-connected.

(ii) For q ≥ n , we have that πq(f) is an isomorphism. On the other hand, since
X , Y are n-cofibrant, one can apply (i) to obtain that X , Y are (n− 1)connected,
hence for 0 ≤ q < n we also have that πq(f) is an isomorphism. Since n > 0, it
follows that f is a weak equivalence.

Recall that if F : C −→ D is a functor between closed model categories, and F
carries a weak equivalence between cofibrant objects of C into a weak equivalence
of D, there exists a left derived functor FL : Ho(C) −→ Ho(D) defined by FL(X) =
F (LX), where LX −→ X is a trivial fibration and LX is a cofibrant object in C.
In a dual context one has right derived functors.

For example, by Proposition 3.1 the identity functor Id : Topn? −→ Top? carries
weak n-equivalences between n-cofibrant spaces to weak equivalences, therefore one
has the left derived functor IdL : Ho(Topn? ) −→ Ho(Top?) defined by IdL(X) =
Xn, where Xn −→ X is a trivial n-fibration and Xn is an n-cofibrant space, which
can be obtained by the functorial factorization given in Proposition 2.4 (i).

By the properties of the adjunction

Topn?

Id
−−−−−→←−−−−−

Id
Top?

with respect to the families of cofibrations, fibrations and weak equivalences, we
have the right derived functor IdR = Id : Ho(Top?) −→ Ho(Topn? ) and the left
derived functor IdL = ( )n : Ho(Topn? ) −→ Ho(Top?) which are adjoint

Ho(Top?)(X
n, Y ) ∼= Ho(Topn? )(X,Y ).

Let Ho(Top?)|(n−1)-connected be the full subcategory of Ho(Top?) determined by the
(n− 1)-connected spaces.

Theorem 3.2. The pair of adjoint functors ( )n , Id induces an equivalence of
categories

Ho(Topn? )
( )n

−−−−−→←−−−−−
Id

Ho(Top?)|(n−1)-connected.

Proof. It suffices to check that the unit and the counit of the adjunction are iso-
morphisms. This follows from Proposition 3.1.

Remarks. (i) The functor ( )n : Ho(Topn? ) −→ Ho(Top?) preserves cofibration se-
quences and its right adjoint Id : Ho(Top?) −→ Ho(Topn? ) preserves fibration se-
quences.

(ii) Let ΣL , Ω denote the suspension and loop functors of the category Ho(Top?),
and σLn , ωn their analogues for the category Ho(Topn? ); then we have the isomor-
phisms

(σLnX)n ∼= ΣLXn , ΩX ∼= ωnX

in the categories Ho(Top?) and Ho(Topn? ) , respectively.
(iii) Let A be an (n − 1)-connected space and f : X −→ Y be a map between

(n− 1)-connected spaces with homotopy fibre Ff in the category Ho(Top?) ; then
the following sequence is exact:

· · · → [A, (Ω2Ff )n]→ [A, (ΩX)n]→ [A, (ΩY )n]→ [A,Fnf ]→ [A,X ]→ [A, Y ],

where [ , ] denotes the hom-set in the category Ho(Top?) .
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Next we compare the closed model category Topn? with the closed model category
SSn. For the adjoint functors

SSn

| |
−−−−−→←−−−−−
Rn Sing

Topn?

we have the following results:

Proposition 3.3. Let f : X −→ Y be a map in Top?. Then

(i) f is an n-fibration if and only if Rn Sing f is a fibration in SSn.
(ii) f is a weak n-equivalence if and only if Rn Sing f is a weak equivalence in

SSn.

Proof. (i) The result is obtained by using the pairs of adjoint functors | |, Sing and
( )(n), Rn and taking into account that a fibration g : K −→ L in SSn, when L is a
Kan complex, is characterized in [8, Proposition 2.12] by the RLP with respect to
the inclusions V(p, k) −→ 4[p], p > n, 0 ≤ k ≤ p.

(ii) Note that for q ≥ n , πq(Rn SingZ) ∼= πqZ and for q < n , πq(Rn SingZ) ∼= 0 .

Because for a map f in SSn, f is a weak equivalence in SSn if and only if |f |
is a weak n-equivalence, it follows that the functors | | and Rn Sing induce adjoint
functors in the respective categories of fractions:

Ho(SSn)
| |

−−−−−→←−−−−−
Rn Sing

Ho(Topn? ).

Checking that the unit and the counit of the adjunction are isomorphisms, then
one has:

Theorem 3.4. The realization functor and the n-reduction of the singular functor
induce the following equivalence of categories:

Ho(SSn)
| |

−−−−−→←−−−−−
Rn Sing

Ho(Topn? ).

Remarks. (i) Let πCWn denote the category of pointed CW-complexes whose
(n− 1)-skeleton consists just of one 0-cell and the morphisms are given by pointed
homotopy classes of pointed maps. Then the above functors induce an equivalence
between the categories Ho(Topn? ) and πCWn .

(ii) The localized category Ho(Top1
?) is equivalent to the localized category of

simplicial groups Ho(SG) .
(iii) The localized category Ho(Topn? ) is equivalent to the localized category of

(n− 1)-reduced simplicial groups Ho(SGn−1) .
(iv) We can combine the notion of weak equivalence for m-types given in [2] and

the notion of weak equivalence given here to give algebraic models for spaces with
nontrivial homotopy groups between n and m (n ≤ m.) There are many algebraic
models closely connected with simplicial groups for these spaces; see [1], [4].
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