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Abstract. In a previous paper we characterized, in the Category Theory setting,
a class of implementations of Abstract Data Types, which has been suggested
by the way of programming in the EAT system. (EAT, Effective Algebraic
Topology, is one of Sergeraert’s systems for effective homology and homotopy
computation.) This characterization was established using classical tools, in an
unrelated way to the current mainstream topics in the field of Algebraic Spec-
ifications. Looking for a connection with these topics, we have found, rather
unexpectedly, that our approach is related to some object-oriented formalisms,
namely hidden specifications and the coalgebraic view. In this paper, we explore
these relations making explicit the implicit object-oriented features of the EAT
system and generalizing the data structure analysis we had previously done.

1 Introduction

1.1 The role of modelling in Symbolic Computation

Formal methods, understood as the application of mathematical formalisms to
software engineering, are nowadays a central part in many methodologies of
software development [32], [5], [2]. Even if the formal methods are now mainly
related to specification and validation tasks, there is a wide consensus on the
idea that formal methods should be also used in other areas. In particular, there
is an increasing interest in the application of formal methods in quality control.

Though the mathematics could be the same in both cases, there are several
differences when a formalism is used to specify a system or when it is used
to analyze system features. A first obvious difference is a temporal one: the
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specification occurs at early stages of the software development process and
the quality control at later stages. In other words, the specification takes place
with non-yet-existing systems while the quality control is performed on exist-
ing systems. Let us express this idea by saying that, in the first case, the formal
methods are used to design a system, and in the second one they are used to
model a system1. This simple remark has important consequences. The first
one is that the design is a prescriptive task, while modelling is a descriptive
task. The former indicates how things should be, while the latter concentrates
on how things are. This means that in the design the degree of freedom is much
higher than in modelling. Another consequence has to do with the abstraction
levels allowed in each task. In the design, there is a wide range of abstraction
levels which can be used. In an ideal scenario, starting from a very general
formal specification, successive refinements give rise to a very detailed design,
very close to the running code. Several proposals have been documented in
the literature (see [48] for instance) to obtain executable programs from formal
specifications. Nevertheless, a formal specification is usually a very abstract
artifact (an algebraic specification, for instance) in which some algorithmic
aspects can be overriden. On the contrary, in the modelling, even if several lev-
els of abstraction can also be used, it is clear that the formalism must deal with
real properties of the system under observation. In particular, the implementa-
tion programming language can be elided in the design, but it is mandatory to
deal with its peculiar characteristics in the modelling.

As a general rule, it can be said that the more formal the initial specification
of a system, the easier its modelling. In systems where the development process
has been done almost without reference to documents of formal requirements,
the modelling task is more challenging and, also, more necessary. This is the
case, generally speaking, of the symbolic computation systems, where the early
stages of the life cycle of software may be poorly structured. One reason for
this trend could be the (erroneous) belief that, since a computer algebra system
deals with formal mathematical objects, this is unnecessary to formally prepare
the software development. However, the object representing a mathematical
object in the computer memory is not a mathematical object itself (or rather
it is a mathematical object of a very different nature than the initial one). This
point of view is always present in our approach. Another pragmatic reason for
this kind of development of non-commercial symbolic computation programs
is that they are frequently written in academic contexts, where the feasibility
of the algorithms (usually found by the same persons who write the programs)
and the illustration of their theoretical interest are put before the software engi-
neering guidelines. Anyway, it is clear that the modelling in symbolic compu-

1 It is worth noting that the term modelling is sometimes also used in software engineering associ-
ated to early stages: a model is built and then is implemented. We are using the term modelling in
a broader sense: to make a (mathematical) model of a situation or fact. In our case, we construct
models on an already existing software system (namely, the EAT system).
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tation becomes a main issue in order to increase the reliability of the systems.
This point is especially important in systems capable of computing algebraic
objects whose correctness has not been, up to date, confirmed (or refuted!) by
other theoretical or mechanical methods. This is the situation of EAT [42] and
Kenzo [15], Sergeraert’s systems devoted to symbolic computation inAlgebraic
Topology. A brief overview of the EAT system is given in the next subsection.

1.2 Symbolic Computation in Algebraic Topology

Algebraic Topology does not seem to be, in principle, a computational disci-
pline. Symbolic computation in Algebraic Topology presents some particular-
ities which make difficult its realization on actual machines. On the one hand,
the theory in Algebraic Topology works with very rich mathematical structures
(chain complexes, simplicial sets and so on), whose translation to computer data
structures is far from obvious. On the other hand, the algorithms in this field
require that mathematical structures are constructed at runtime, as intermediary
steps of the calculations. Hence, the programmer is confronted to the problem
of handling complex data structures at runtime, with the additional difficulty
posed by the fact that some of these intermediary mathematical structures are
of infinite nature. Let us illustrate these points with a sample of an EAT session.

The implementation language of EAT is Common Lisp [49], and this is also
the interface language. Let us assume that we are interested in the homology
group H5(�

2S3), that is to say, the fifth homology group of the second loop
space of the sphere of dimension 3, S3. The loop space of a topological space
X is, roughly speaking, the space of continuous functions from the 1-sphere
S1 (the circle) to X which preserve the base point, endowed with a convenient
topology (the compact-open topology). This space, usually denoted by �X, is
infinite dimensional. The construction can be iterated: we can consider the loop
space of �X, denoted by �2X and so on.

In EAT [42] we can compute the abovementioned homology group by
typing:

> (cc-homology (oeh-ecc (loop-space-eh (ess-sseh
(sphere 3)) 2)) 5)
Component Z/3Z
Component Z/2Z
---done---

Here, the Common Lisp expression following the prompt symbol > has
been typed by the user; then EAT displays the text Component... This text
explains to the user that H5(�

2S3) = Z2 × Z3, an abelian group with 6 ele-
ments. Apparently, this interaction is not very different from standard Maple or
Mathematica experiences: we type some predefined utilities and we introduce
some standard data. Namely, three integers: the dimension of the sphere (3), the
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degree of iteration (2) and the degree of the sought homology group (5). Then,
the system responds with some standard data or, as in this particular case, with
a text displayed on the screen.

During the previous computation process, several (computer representa-
tions of) mathematical structures have been constructed, at runtime. To be pre-
cise, in this particular example it has been needed to construct 94 (computer
representations of) chain complexes, 328 chain complexes morphisms and up
to 9 different kinds of mathematical structures.

Furthermore, if we give details on the process, some more peculiarities
appear. We will start assigning to the symbol sphere3 the sphere of dimen-
sion 3, S3.

> (setf sphere3 (sphere 3))
[SS-4]

The returned result indicates that a Simplicial Set has been constructed: the
object (displayed) [SS-4] is (the machine representation of) that topological
space. Now, we are going to briefly set out some details on the EAT way of rep-
resentation. Using the Common Lisp function inspect (see [49], page 698)
it can be seen how these mathematical structures are stored in the computer.

> (inspect sphere3)

The previous typing shows us the picture below, where we can see the
structure of the object sphere3.

Fig. 1. Inspect of s3

This example shows that a mathematical structure is coded in EAT essen-
tially by as a tuple of functions. The main slots in the previous object are of
functional nature, either primitive functions (#<function ...>) or lexical
closures (#<closure ...>) defined by the program; the rest of slots are
interesting from the software engineering point of view but irrelevant for the
modelling.

The object [SS-4] represents a topological space of finite type, it is an
implementation of a finite mathematical structure. Sergeraert called this kind
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of object effective object (this terminology appeared published for the first time
in [41]). The EAT system is capable of obtaining the list of simplices of this
object in, for instance, dimension 3:

> (sbs sphere3 3)
(<S3>)

Hence, there is only a (geometric) simplex in dimension 3 (internally de-
noted by the symbol <S3>). But, in the computation of the homology group
H5(�

2S3), another kind of spaces are involved, for instance the second loop
space of S3:

> (setf l2s3 (loop-space (loop-space sphere3)))
[SS-6]

The object (displayed) [SS-6] is also (the representation of) a simplicial
set, but of infinite nature, a locally effective object in the terminology of [41].
The object l2s3 includes the non-finite nature of the mathematical structure
that is being implemented and gathers all the information needed to carry out
the calculations. For instance, we can compare simplices, we can apply the face
operators, etc. The following expression allows us to compute the 0-face of a
simplex of l2s3.

> (gdl l2s3 0 3 (asm nil (loop2 (asm nil (loop3 nil
’<S3> 1)) 1)))
<ASM 1-0 <<LOOP *>>>

But unlike what happens with the object sphere3, the set of simplices is
not available in the computer, since there are dimensions with an infinite num-
ber of elements. This fact can be seen in the picture below, which corresponds
to the EAT representation of the object l2s3. In this case, there is no function
in the slot sbs, but the label :locally-effective.

Fig. 2. Inspect of l2s3

Therefore, in the case of the object l2s3, it is not possible to compute its
simplices in a given dimension:
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> (sbs l2s3 3)
;; Error: The simplicial set [SS-6] is locally-
effective

However, EAT incorporates complex homological algorithms (see details
in [47], [40]) that allow the program to obtain relevant information on l2s3,
such as the fifth homology group computed above. As previously explained,
EAT has provided homology groups which up to date could not be calculated
by any other means (this is not the case of H5(�

2S3) which is well-known; see
more interesting examples in [40], [43]). Since no formal specification of the
software system was written before developing the programs, the reliability of
the system (apart from the exhaustive testing already done) relies on its for-
mal modelling. Taking into account the handling of infinite (locally effective)
objects, it is clear that the modelling is not a trivial task. As a mathematical tool
to undertake this task we have chosen algebraic specifications.

1.3 Algebraic Specification of the EAT system

It is well-known that algebraic specifications provide an appropriate means to
develop correct software, and in fact, they are one of the main formalisms to
the above mentioned design task. Algebraic specifications can also be used as
modelling tools, enabling the analyst to reason, in an abstract way, on the data
handled by the programs. If the system to be analyzed is a symbolic computation
package, the algebraic specifications provide, through the notions of signature
and algebra, the necessary link between the data structures of the programs and
the mathematical structures (based on universal algebra concepts in the field of
Algebraic Topology) which are the ultimate goal of the calculations.

In [27] we undertook the analysis of the data structures appearing in the EAT
system [42]. This program was designed to calculate the effective homology
[47] of some complex topological spaces, namely iterated loop spaces (as it has
been shown in the previous subsection). These spaces are of an infinite nature,
and thus, some data structures in EAT must be designed to encode these infinite
spaces (in a finite way, of course). From our first attempts, we were convinced
that the EAT way of working with these structures follows a pattern with certain
generic properties (it should be considered a universal pattern), in such a way
that it could be exported to other systems of similar characteristics. The search
for these properties took us to the definition of an operation between abstract
data types (called ()Imp) and to a characterization of the EAT data structures as
final objects in suitable categories of implementations [27].

This result was proved within a framework based on the well-known 1972
Hoare’s paper [24], and far from other more algebraic approaches (some of
them are surveyed in [34]). Looking for relations between our work and the
current trends in the field of Algebraic Specification, we have found that our
approach was close to the theoretical studies on object-oriented programming.



An Object-oriented Interpretation of the EAT System 193

This finding was unexpected because, in our minds, the object-orientation in
the effective homology setting began with the next-generation Sergeraert’s sys-
tem, called Kenzo [15], which was developed in CLOS (Common Lisp Object
System). Thus, in principle, EAT depends on functional programming (as
stressed, and necessarily used, in [27]) and Kenzo depends on object-oriented
programming (but functional programming is still present in Kenzo). In this
paper we will show that, in fact, EAT is also object-oriented or, at least, a sim-
plified object-oriented theory provides tools to easily specify its data structures.
More precisely, object-oriented features appear in EAT due to the handling of
families of implementations of Abstract Data Types (ADTs from now on).

The relation between EAT and the object-oriented paradigm is then two-
fold. On one hand, the EAT programming methods are close to certain for-
malisms (variants of λ-calculi) introduced by Cardelli and other authors (see,
for instance, [1], [8], [7]), in order to model object-oriented programming lan-
guages. On the other hand, the operation on Abstract Data Types which we
introduced in [27] with the aim of explaining EAT data structures can be inter-
preted in terms of object-oriented algebraic specifications, more precisely in
the context of the hidden specifications (see, for instance, [20], [6]) and in the
coalgebraic framework (see, for instance, [39], [44]).

1.4 Scope and Organization of the Paper

In this paper it is shown that the ideas suggested by certain formalisms for the
study of object-oriented programming can be applied to analyze a concrete sym-
bolic computation system, namely the EAT system. As a consequence, some
results extending the previous work [27] are introduced.

As far as its originality, this paper can be seen as an application from sym-
bolic computation to the theoretical study of object-oriented programming.
On one hand, because two main trends in the formalization of object-oriented
programming appear in the very concrete problem of analyzing a symbolic
computation system for Algebraic Topology. On the other hand, this relation-
ship allows us to present another descriptions of the final objects appearing in
object-oriented specifications and studying them in larger contexts.

The main theoretical contribution of the paper consists of the results in
Sections 4 and 6 and the techniques used to derive them.

The paper is organized as follows. Section 2 introduces some object-ori-
ented terminology and some clues on the implicit object-oriented nature of
the EAT system. Section 3 deals with the algebraic specification of the EAT
data structures, introduces the key notion of �Imp-algebra and explains our
primary approach to this notion, namely from a programming point of view.
The notion of �Imp-algebra is then studied from three additional perspectives.
First, Section 4 illustrates our proposal for interpreting �Imp-algebras in the
context of Category Theory. The two previous views are compared with hidden
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specifications and with coalgebras in Section 5. Then, we go back to symbolic
computation and in Section 6 the results on EAT data structures of [27] are
generalized. The paper ends with a section of conclusions and further work.

2 Object-oriented Features

When talking about object-oriented programming, one can usually think of sev-
eral concepts: objects, of course (that is, entities which share the characteristics
of data and behavior), classes, methods, message passing, local state or object
identity (the possibility of changing attribute values in an object, while the
object is still “the same”), inheritance, modularity and/or information hiding,
generic functions, polymorphism, etc. However, it is quite unlikely to find an
actual object-oriented system supporting all these features. The three necessary
items for object-orientation are (see [1], [52]): objects, state and inheritance.

Let us present a simple example. To work with points (pairs of integer num-
bers) we can consider methods to access to the first and the second component,
and, for instance, an operation to move points. This leads us to introduce three
functions (expressed as a C-like signature):

int first ();
int second ();
point move (int,int);

as the ingredients of a point. So, a typical example to introduce the underly-
ing ideas of the object-oriented programming could be the following simple
signature for points:

cons : int int → p

f irst : p → int

second : p → int

move : p int int → p

Ignoring the constructor cons (this kind of operations deserves a different
treatment), we observe that these two signatures are closely related. This rela-
tion will be tackled later in this paper. In an informal way, we can state that
the latter is a signature for a class and the former is a signature for objects
(i.e., instances of the class). The last operation, move, is a simplified way to
deal with updating operations, but without considering side-effects. This allows
the analyst to work within a pure functional programming framework which
is easier to model (this decision is justified because the subsequent inclusion
of side-effects has become a matter of routine; see [1]). These simplifications
are shared in the field of programming languages (see, for instance, [1]) and
in the field of algebraic specifications (see, for instance, [20]), where this kind
of examples are usually chosen as a starting point for more elaborate work.
But, what is the relation between such an example and the complex structures
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of a symbolic computation program such as EAT? Three clues lead us to the
relations between EAT and object-oriented programming.

The first clue is Cardelli’s model of “objects as records of functions” [7].
Now, let us recall how algebraic structures are encoded in EAT (this point has
been already illustrated in Subsection 1.2). For example, chain complexes (that
is to say, differential graded free abelian groups) are encoded by a Common
Lisp record (struct) which starts as ([42], page 9):

(defstruct cc eqc dp ...)

where cc is the name of the structure, the field eqc is intended to be a func-
tion (the equality test between generators), the field dp will contain another
function (the differential operator) and so on. It is very tempting to reverse the
metaphor and consider these “records of functions” as “objects”. In doing so,
we find very special kinds of objects (due to implementation decisions in EAT).
For instance the signature below is a suitable simplification (idealization) of the
actual interface for chain complexes in EAT:

cc − eqc : cc gnr gnr → bool

cc − dp : cc cmb → cmb

...

Here, cc is the sort for chain complexes, gnr is the sort for generators, cmb

is the sort for linear combinations on generators (see [42] for details) and, as
usual, bool is the sort for boolean values. It is important to note that this kind of
signature has no updating operations, even in the abovementioned simplified
functional sense. They are objects whose behaviour is always to be observed, or,
let us say, immutable objects. This fact shows that the division between immu-
table data and mutable objects, which is quoted in several papers in the hidden
specifications domain (see, for instance, [30]), is not so sharp. The difference
is rather between data (which are usually specified as immutable entities) and
elements sharing data and behavior, namely objects (which can be mutable or
not), as it is frequently explained in books on object-oriented programming.
From our point of view, an immutable object is nothing but the representation
of an implementation of an ADT. Or, rather, the representation of the physical
part (that is to say, the part which is present in the computer memory) of such
an implementation. For example, an instance of the struct cc would be the
minimal information to recover (the implementation of) a chain complex (see
Section 6 for details). And this minimal information indeed looks like an object,
in Cardelli’s sense.

The second clue is related to the kind of result we found in [27]: EAT data
structures were characterized by means of a final object in a category. This
fact suggests that our work is closer to the final semantics setting (final algebra
semantics was defined by Wand [51] and, in some sense, even previously in
[17]) than to the initial semantics one. In the same way it is reasonable to sup-
pose that we will be able to express our results in terms of hidden specifications
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([6], [20]) and also (and not in an independent way) within the coalgebraic
framework ([39], [44], [25]). Recall that one of the goals of these two research
domains is to reach the object-oriented systems for which the initial models are
not convenient.

The third and last clue is related to the nature of the mathematical structures
used in effective Algebraic Topology. Another explicit goal of the coalgebraic
approach is to deal with infinite data structures, but this was also one of Ser-
geraert’s objectives from the beginning of his research in effective Algebraic
Topology [46]. Coalgebraic authors think in potentially infinite sequential struc-
tures (infinite lists, streams, generators and other mechanisms related to lazy
evaluation strategies) and not in the representation of infinite algebraic or com-
binatorial structures (chain complexes, simplicial sets, simplicial groups, and so
on) which are needed for symbolic computation in Algebraic Topology. How-
ever, it is very appealing to search a relationship between these two apparently
distant topics.

The rest of the paper is mainly devoted to the second clue, to explaining, in
an elementary way, this unexpected relationship and to suggesting the conse-
quences it might have on symbolic computation, through the EAT system.

3 Algebraic Specification of the EAT Data Structures

In the EAT system [42], two different layers of data structures coexist. On one
hand, there are data types based on symbol lists, integer arrays, and so on; these
data structures can be specified in the usual way using algebraic specification
and considering the initial semantics. On the other hand, there are data types
corresponding to mathematical structures (such as chain complexes, simplicial
sets, etc.). The instances of the former appear in EAT as elements of instances
of the latter (this is the relation between cmb and cc in our previous discussion
on chain complexes). In [27], we started the formal analysis of this second kind
of data structures, showing how initial semantics is no longer useful and intro-
ducing an operation on ADTs which seems suitable for explaining the essence
of these structures.

Although a group is a very elementary structure, simpler than the complex
structures used in EAT, it will allow us to introduce the syntactical aspects of
this operation on ADTs. Let us consider the signature GRP with only one sort
g and three operations:

prd : g g → g

inv : g → g

unt : → g

This signature is obviously the basis for an algebraic specification of one group,
whose underlying set is abstracted by the sort g. But when this is translated to a
computer, something is missing. As Cook pointed out in [11]: “[another] type is
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present, but invisible, within an ADT; this is the type of the concrete representa-
tion of the abstract type values”. Now, for a specific implementation of an ADT,
it can be considered that the sort g abstracts these concrete values (for instance, g
could be the concrete type of Common Lisp symbols). But if, as usual in Sym-
bolic Computation packages, several groups sharing the same concrete type
have to be handled, an ingredient is still missing: the type of the groups repre-
sented on g is present though is invisible in the signature GRP. Making explicit
this invisible (or hidden) type, we obtain a signature where the operations are:

imp prd : imp g g g → g

imp inv : imp g g → g

imp unt : imp g → g

The prefix imp has been chosen because this new signature is not intended to
specify one group, but to deal with implementations of groups. We can ob-
serve how the relationship between these two signatures is similar to the one
which can be established between the two signatures for points presented in
Section 2.

This construction is generalized for any signature in the following way. Let
� = (S, �) be a signature, where � = (ω1, . . . , ωm) is an enumeration of
the operation symbols (each operation ωj has associated an arity s1

j . . . s
kj

j →
s
kj +1
j , where sr

j belongs to S for each r ∈ {1, . . . , kj + 1}). A new signature
�Imp = (SImp, �Imp) is defined as follows:

– SImp = {imp s} ∪ S, where imp s is a fresh symbol.
– �Imp = {imp ω1, . . . , imp ωm} in which for each operation ω with arity

s1 . . . sn → s in �, an operation imp ω with arity imp s s1 . . . sn → s is
included in �Imp.

As usual, given a signature �, we denote by Alg(�) the category of (total)
�-algebras and �-homomorphisms. In this paper the categories Alg(�Imp) are
going to be interpreted from several points of view.

The first perspective we are going to consider is that related to real pro-
gramming issues. This was our primary perspective, since we were interested
in formally explaining the implementation strategies used in an actual software
product: the EAT system. The construction ()Imp allowed us to reach this goal,
as shown in [27]. Nevertheless, the context in which [27] worked was more
complex than the category Alg(�Imp) in at least three aspects:

– The categories Alg(�) are too big. An ADT is usually identified with a
subcategory of Alg(�) (closed by isomorphisms), the subcategory being
explicitly defined by properties of the �-algebras which belong to it or by an
axiomatic specification which determines a subclass of �-algebras (those
that satisfy the axioms, called the models of the specification).

– In programming, we are frequently faced with partiality matters (because
algorithms are rarely well-defined for each syntactically correct input) and
then the interest focuses on partial �-algebras rather than on the total ones.
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– Finally, Alg(�) is related to the specification of an ADT, while in real pro-
gramming we are interested in the implementation of ADTs. This is the
reason why in [27] we relied on Hoare’s classical notions [24], which are
closely related to the actual programming matters.

The first two points can be tackled with little effort. The third item represents
a more radical change which will be dealt with in Section 6. In the following
sections we focus on the easier case of Alg(�Imp), since our main objective
is to clearly explain the relations between our approach and others stemming
from the object-oriented approach. We will go back to implementation matters
and to symbolic computation applications in Section 6.

In any case, we illustrate the programming meaning of �Imp by means of
examples based on the signature GRP previously introduced, and we assume
that all the models in the examples will be groups and not only GRP-alge-
bras. Let n be a natural number and for each example we consider the set
D = {0, 1, . . . , n − 1}. Then we define a GRPImp-algebra A with D as the car-
rier set Ag of sort g, and Aimp g = {(n1, . . . , nk) | k ≥ 1, ni ∈ N, ni > 1, ∀i =
1, . . . , k, and n = n1 ∗ . . . ∗ nk}. The idea is that a tuple (n1, . . . , nk) encodes
the finite abelian group Z/n1Z× . . . × Z/nkZ. Introducing a bijection between
the elements of this group and the set D, it is straightforward to complete the
definition of a GRPImp-algebra. So, this algebra represents a family of groups.
For instance, if n = 12, the tuples (2, 2, 3), (2, 6) and (4, 3) represent three
groups (the first two are isomorphic). It is obvious that any representation for
abelian groups defined on D can be mapped on this GRPImp-algebra A. And
it is also obvious that the representations of non-abelian groups fall beyond
the scope of this particular representation. Anyway, from a programming point
of view, the most relevant aspect is that each implementation of the GRPImp-
algebra A gives us the means to work with every (abelian) group such that its
underlying set of elements is (a representation of) D.

Then, a suitable formal setting for our work is the category, denoted by
AlgD(GRPImp), whose objects are those GRPImp-algebras such that their carrier
set of sort g is D and whose morphisms are the identity map on D (remaining
free the map in the carrier set of sort imp g). The GRPImp-algebra A belongs to
AlgD(GRPImp).

To cover the non-abelian case, we will define another GRPImp-algebra B

with Bg = D and Bimp g = {n × n matrix | the matrix is the multiplication
table of a group on D}. Since D is finite, the multiplication table allows us to
obtain the inverses and the unit, and in that way the definition of the GRPImp-
algebra B can be completed. It is clear that any representation of groups on D

can be mapped on B and, if the underlying data set D remains unchanged, this
GRPImp-homomorphism is unique. So, B is the most “general” algebra among
the representations of groups on D.

The problem of finding such a “most general” representation for any signa-
ture � and any domain D has an easy solution. We will see it in the following
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section, where it will be nicely (almost trivially) described. To introduce the
subject, let us observe that carrier sets such as Aimp g and Bimp g can be inter-
preted in a more “set-theoretical” way: instead of seeing an element of Aimp g as
a representation of a group, we can consider it as an index for a group, in such
a way that a �Imp-algebra is considered as an indexed family of �-algebras.

4 The Category Theory View

In order to formalize the interpretation of �Imp-algebras as indexed families of
�-algebras, we place ourselves in the more general setting of Category Theory.
If C is a category, its object class will be denoted by Obj (C), its morphism
class by Mor(C) and, if A, B ∈ Obj (C), the morphisms from A to B will be
denoted by MorC(A, B).

Given a category C, we define a new category, denoted by CSet , to capture the
notion of “indexed family of C-objects”. So, an object of CSet is a pair (A, αA),
where A is a set and αA:A → Obj (C) is a mapping from A to Obj (C). A
morphism in CSet between two objects αA:A → Obj (C) and αB :B → Obj (C)

is a pair (h, H), where h:A → B is a map and H :A → Mor(C) is such that
H(a) ∈ MorC(αA(a), αB(h(a))), ∀a ∈ A. These categories CSet are particular
cases of indexed or fibered categories [50], as explained below.

Note that if we consider a set A as a discrete category and a map αA:A →
Obj (C) as a functor from A to C, then the map H can be understood as a natural
transformation from the functor αA to the functor αB ◦ h. In this context, the
category CSet can be defined in a more formal way as the flattened category
[50] obtained from the indexed category C:Setop → CAT which associates
to each set A the category CA of functors from A to C (where Set denotes the
category of sets and maps, and CAT the category of categories and functors).
It is very easy to prove that CSet is endowed with general coproducts, which
are induced by the disjoint union of the index sets. For finite coproducts, if αA

and αB are two objects in CSet , their coproduct is [αA, αB]:A � B → Obj (C),
where the map is defined in an obvious way.

There is a canonical embedding of C into CSet . It is enough to define a func-
tor F :C → CSet in such a way that each C-object is indexed by the only element
of a singleton. This functor will be called embedding functor of C in CSet .

Now, if C is a small category (and therefore the class Obj (C) is a set), there
is a very singular object in CSet , namely, the identity � :Obj (C) → Obj (C).
In a sense, � represents the category C itself. This modest (even trivial) object
turns out to be a close relative of all the final objects and families of final objects
which appeared in the recent years in the field of the object-oriented algebraic
specifications (see [6], [20], [25], [39], [9]). The object � is characterized in
Category Theory by the following evident property.
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Theorem 1. If C is a small category, the object � is the coproduct in CSet of
the objects in the image of the embedding functor of C in CSet . In addition, there
is at least one morphism from each object in CSet to � .

The second part of this result seems clearly linked to the notion of final
object. But, in general, the distinguished morphism from an object αA to �
is not unique: the degree of freedom is related to the definition of the map
between the sets of indexes (it can be different from αA) and to the morphisms
in MorC(αA(a), αA(a)) for each a ∈ A.

Let us go back to signatures and algebras. Let � = (S, �) be a signature,
being S the set of sorts and � the set of operations of �. We consider the
corresponding categories Alg(�Imp) and Alg(�)Set . It is clear that a functor
I :Alg(�Imp) → Alg(�)Set can be defined, fulfilling the intuitive idea of inter-
preting a �Imp-algebra as an indexed family of �-algebras. To be precise, for
each �Imp-algebra A = (Aimp s, (As)s∈S, (imp ωA)ω∈�), the family of �-alge-
bras I (A) = (Aimp s, α) is defined as follows. For each x ∈ Aimp s , α(x) =
((As)s∈S, (ωA(x)

)ω∈�), where ωA(x)
(d1, . . . , dn) = imp ωA(x, d1, . . . , dn). Ob-

serve that this functor is not surjective on objects (for a given �Imp-algebra
A, all the �-algebras of the family I (A) have the same carrier sets, namely
(As)s∈S , and this is not true for each family in Alg(�)Set ).

Now, in order to formalize the ideas of Section 3, all the elements of the
structures must belong to a same set, and this implies that some subcatego-
ries of Alg(�)Set and Alg(�Imp) have to be considered. We fix an S-set D =
(Ds)s∈S and define a subcategory AlgD(�Imp) of Alg(�Imp). The objects of
AlgD(�Imp) are the �Imp-algebras A such that As = Ds for each sort s dif-
ferent from imp s (the carrier set Aimp s remains free). Its morphisms are those
�Imp-morphisms such that they are identities on D (the map between the carrier
sets of sort imp s remains free). In Section 3 we have shown the computational
interest of this kind of categories, and now we are going to look for an adequate
corresponding subcategory of Alg(�)Set .

Given a category C, we denote by C{} the category with the same objects
as C and whose morphisms are only the identities. Note that the category C{} is
nothing but a class of objects (and when C is a small category, it is just a set).
This seems to take meaning away from this category (this explains the notation
{}), but this radical situation appeared in a natural way in our approach [27]
and also in the field of the hidden specifications (see, for example, [20]). The
underlying idea is that EAT (and other Symbolic Computation systems) does
not need to represent a category of mathematical structures, for instance the
category of groups, but rather the class of groups and, sometimes, the class of
group homomorphisms. This is exactly the situation in EAT which provides the
user two kinds of data structures, one for the objects and another one for the
morphisms. We will use C{}

Set to denote the category (C{})Set . Let us note that
(C{})Set is different from (CSet )

{}, since the morphisms in (C{})Set from (A, αA)

to (B, αB) are maps h:A → B such that αA = αB ◦ h. From now on we will
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think of C{}
Set as a subcategory of CSet . Then, we trivially obtain the following

consequence (that, besides, is a well-known fact, since C{}
Set is nothing but the

slice category Set/Obj (C)).

Corollary 1. If C is a small category, the object � is final in C{}
Set .

Now, given a signature � = (S, �) and fixed an S-set D = (Ds)s∈S , we
consider the category, denoted by AlgD(�), whose objects are those �-alge-
bras A such that As = Ds , for each sort s ∈ S, and whose morphisms are only
the identities. Then, we have the corresponding category AlgD(�)Set . This cat-
egory can be considered as a subcategory of Alg(�)Set and then it is clear that,
when restricting the functor I to the subcategory AlgD(�Imp), we obtain an
isomorphism between this category and AlgD(�)Set .

We denote by �D the object of AlgD(�Imp) which corresponds to the final
object� of AlgD(�)Set . Hence, the carrier set for the sort imp s in�D is given by
the set of �-algebras whose S-set (its carrier sets) is D. The interpretation of an
operation imp ω in �D is given by: imp ω� D(A, d1, . . . , dn):= ωA(d1, . . . , dn),
being s1 . . . sn → s the arity of ω ∈ �, and being ωA the interpretation of the
operation ω in A.

Moreover, there is a canonical embedding of the category AlgD(�) into
AlgD(�Imp). Each �-algebra can be interpreted as a �Imp-algebra (it suffices
to consider the singleton {∗} as carrier set of sort imp s). The next result obvi-
ously follows.

Theorem 2. The object �D is the coproduct in AlgD(�Imp) of the objects in
the image of the embedding functor of AlgD(�) in AlgD(�Imp). In addition,
the object �D is final in the category AlgD(�Imp).

This final object �D is isomorphic, in certain particular cases (immutable
objects), to the final object which appears in the hidden specification context,
and this is fairly simpler and more intuitive. But before comparing these two
objects, two final remarks must be made.

First, in AlgD(�Imp), there is an object isomorphic to �D which can be
presented in a more practical way. Since D is fixed, giving a �-algebra is
equivalent to giving the functions realizing each operation of �. So, the carrier
set of sort imp s in the object isomorphic to �D can be described as the set of
tuples of functions realizing the operations in a �-algebra. For instance, in the
case of the signature GRP, the carrier set for imp g would be {(f1, f2, f3) |
f1:D × D → D, f2:D → D, f3:{∗} → D}. The relation between these tuples
of functions and the records of functional objects (and therefore with the final
object) described in [27], is clear. The resemblance to the models introduced by
Cardelli and other authors ([1], [8]) to study theoretical aspects in object-ori-
ented programming is also very appealing. Moreover, if we restrict ourselves



202 L. Lambán et al.

to the case of the groups (and not general GRP-algebras), the final object can
be described through the tuples (f1, f2, f3) satisfying the group axioms. Then,
if we go back to the example where D = {0, 1, . . . , n− 1}, it is quite clear that
this final object is isomorphic to the �Imp-algebra B introduced in the previous
section.

Second, even in the larger subcategory Alg{}(�Imp) of Alg(�Imp) (which
is obtained by considering only morphisms that are the identities on the carrier
sets for the sorts different from imp s) the class of objects �D can be charac-
terized by a universal property, namely by a multi-colimit of a particular kind.
The notion of multi-colimit was introduced by Diers in [12] and was used in
the context of Algebraic Specifications by Cı̂rstea [10]. (See these papers for
detailed definitions.) For our purpose it is enough to know that, given a cate-
gory C, a final family in C is a class {Oj }j∈J of objects of C such that for any
object A of C, there exists only one j ∈ J such that there is a morphism from
A to Oj and, in addition, this morphism is unique. To guarantee that Alg(�)

is a small category, we are going to consider only �-algebras such that their
carrier sets are subsets of a fixed set U (the universe of data). This constraint,
which is very natural in a programming context, will not be explicitly pointed
out in the statements. Therefore, we can index the family {�D} on all S-sets D.
In a slightly inappropriate way (since D is an S-set and not a set), we denote
this family by {�D}D∈P(U). Under these conditions and notations, the following
result is obtained.

Theorem 3. The family {�D}D∈P(U) is final in the category Alg{}(�Imp).

5 The Hidden Specifications View

Hidden specification is a special case of behavioural or observational specifica-
tions which were introduced by Reichel [38] and further studied by other authors
[45], [35], [33], [23], [21]. The terminology hidden specification appeared in
[18] for the first time and its theory has been extensively developed in recent
years (see [19], [20], [6], [9]). Although the definitions vary slightly from one
paper to another, we present a version which seems to summarize the essence
of the notions.

Let V � = (V S, V �) be a signature. The elements of V S are called visible
sorts and those of V � visible operations. Let us fix a V �-algebra D and let
us include in V �, as constants, the elements of the carrier sets of D which do
not correspond to constants present in V �. The V �-algebra D is called data
domain. Then a hidden signature on V � and D is a signature H� = (S, �)

such that:

– S = HS � V S; the elements of HS are called hidden sorts of H�.
– � = H� � V �, and for each operation ω : s1 . . . sn → s in H�, the

following two properties hold:
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• there is at least one hidden sort in s1, . . . , sn, s.
• if there is a hidden sort in s1, . . . , sn, it is unique (it is assumed, by

convention, that the hidden sort appears in the first position).

This last constraint is roughly equivalent to working with the “message
passing” model instead of the “generic function” model for object-oriented
programming (see [22]). The idea underlying this definition is that a hidden
sort is used to name a set of objects, while a visible sort names a set of data.

The operations in H� of a hidden signature are classified in two classes:

– the operations ω : s1 . . . sn → s, such that s is a hidden sort, are called
constructors;

– the rest (that is, operations ending in a visible sort) are called deconstructors.

In turn, constructors are classified into:

– constructors from data when s1, . . . , sn are visible sorts;
– constructors from objects (and data) when s1 is different from s (both, of

course, being hidden sorts); and
– updating operations when s1 = s.

These last operations correspond to the functional way of representing the
updating of the local state of an object, as pointed out in Section 2. In the
example of the points in that section, there is only one hidden sort p, only
one visible sort int , the data domain is implicitly assumed to be Z, and there
is one constructor from data (cons), one updating operation (move) and two
deconstructors (f irst and second).

Remark (on terminology): In the area of hidden specifications, the construc-
tors from data are called generalized hidden constants, the rest of the con-
structors are called methods, and the deconstructors are called attributes. The
deconstructors correspond to the observers in the classical theory of algebraic
specifications [16], if every hidden sort is declared a distinguished sort. In
these operations, our terminology is a variant of Reichel’s terminology [39]
who called them destructors.

A hidden algebra A for a given hidden signature H�, on V � and D, is a
H�-algebra such that AV � = D (in other words, the reduct of A to the visible
part is equal to the data domain D). A hidden morphism between two hidden
algebras is a H�-homomorphism f such that fD is the identity on D.

Hidden algebras for H�, on V � and D, and hidden morphisms define a
category, which will be denoted by HAlgD(H�). The following result can be
found in [20].

Theorem 4. If H� is a hidden signature without constructors from data, then
the category HAlgD(H�) has a final object.
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In [20] an explicit description of the final object is given and its carrier
sets are defined by so-called “magical formula” (see [20]). This object will be
introduced below, but first we will go back to the �Imp-algebras.

It is clear that a signature �Imp can be considered a hidden signature which
satisfies the following properties:

– it only has one hidden sort (the sort imp s);
– it has no visible operations;
– each operation is a deconstructor.

Besides, each hidden signature H where the three properties we have just intro-
duced hold, is isomorphic (i.e., equal up to renaming) to a signature �Imp for
a suitable signature �. This signature � is obtained by erasing the hidden sort
wherever it occurs in H . This way of obtaining � from H corresponds to the
definition of an interface for objects, as pointed out by Cook in [11], page 169.
(This is also the operation we have implicitly applied in Section 2 between the
two signatures for points.)

Now, one can wonder what is the interest of this kind of hidden signatures
since they have no constructors. However, note that the same objection could
be raised regarding the hidden signatures for which the last theorem applies,
since without constructors from data, we are not able to generate any object
from scratch. The underlying idea is that the constructors from data are very
special methods which must be tackled separately. This point of view seems
to be well-established in every object-oriented programming language. In our
particular case, there are no updating operations because we are interested in
a pure functional programming approach, and constructors from objects are
considered part of the system as a whole, but they are considered as algorithms
and processes outside any particular algebraic structure. For instance, in EAT
[42], there is an operator constructing (the implementation of) a chain com-
plex from (the implementation of) a simplicial set. Would such an operator
belong to the simplicial sets signature, or rather to the chain complexes signa-
ture? Discarding the possibility of specifying the complete system by means
of a huge signature, the option of including only operations handling elements
of a concrete structure has been chosen. In other words, our signatures gather
only the behaviour of the implementations, considering every kind of construc-
tors as external to any signature. Needless to say that to complete the sys-
tem modelling, we should integrate standard signatures and signatures �Imp,
through constructors, but it is also clear that this is a different (and subsequent)
task.

In any case, the relevant remark is that the category HAlgD(�Imp) is iso-
morphic to the category AlgD(�Imp) which has been defined in Section 4 and,
therefore, that the final object in the previous theorem is isomorphic to �D.
Note that �D has no “magical” aspect and looks rather natural (but we must
stress again: this only applies to a very particular case). It could be interesting
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to establish an explicit isomorphism between these two final objects. In order
to do it, some auxiliary definitions are needed (extracted from [20]).

Given a hidden signature H� and a hidden sort h, a H�-context of sort h

is a visible sorted H�-term (in other words, it is an expression where the last
operation applied is a deconstructor) having a single occurrence of a variable,
this variable z being of sort h.

The intuitive idea is the following. In the absence of constructors from data,
the variable z (the name of this variable is not relevant, of course) is used as the
starting point for all the possible observations of the “local state” of an object of
sort h. Even without any more variables, there are enough H�-contexts thanks
to the technical condition that makes the elements of D to be considered con-
stants in the hidden signature (in the hidden specification framework, semantics
is based on behavioural satisfaction; that is, two terms with the same visible
behaviour are considered as equivalent). The set of H�-contexts of sort h is
denoted by CH�[zh] and can be considered as an V S-set since it is stratified by
the sort of the deconstructor applied (remember that V S stands for the visible
sorts of H�).

Then, the so-called “magical formula” providing the carrier set for a hidden
sort h in the final object FH� is given by:

FH�,h =
∏

v∈V S

[CH�[zh]v → Dv]

where, as usual, we write [A → B] for the set of maps from A to B.
Instead of further explaining these formulas (which are described in [20] as

“a kind of continuation”), we focus on our particular case of hidden signatures,
looking for an explicit comparison with our final object �D. First, note that if
there is no constructor, the H�-contexts are very simple: they are expressions
ω(z, d2, . . . , dn), for each operation ω : h v2 . . . vn → v, where di ∈ Dvi

, for
i = 2, . . . , n. (We are relying here again on the condition that the elements of
Dv are constants in the signature; this strong condition implies that, for the sake
of expressiveness, the operations of the algebra D can be skipped.) Thus, in the
case of the signatures �Imp in which, in addition, there is only one hidden sort,
the set C�Imp

[zimp s]v can be seen as a sum of sets (one set for each operation ω

of sort v) and then a map from C�Imp
[zimp s]v to Dv can be unfolded as a tuple

of maps corresponding to the v-sorted functions in �D (here we are referring to
the “practical presentation” of �D introduced in Section 4). When the symbol v

ranges over the visible sorts, it is clear that every function in �D is reached. This
bijection easily extends to a hidden �Imp-isomorphism between the “magical
final object” and �D. For example, in the case of GRP, there is only one visible
sort g, and each context imp prd(imp g, d1, d2) contributes to the definition
of f1:D × D → D, each context imp inv(imp g, d) to f2:D → D and the
context imp unt(imp g) to f3:{∗} → D.
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It is well-known that hidden algebras are closely related to coalgebras.
Hence, it is reasonable to suppose that we will be able to express the categories
AlgD(�Imp) as categories of coalgebras.

The coalgebraic approach provides a general framework to study object-
oriented features (in a very close way to hidden specifications) and to specify
infinite data structures. The original ideas appeared in [39], and they were
developed in [44], [25], among others.

Let F :Set → Set be an endofunctor of Set , the category of sets. Then a
F -coalgebra is a pair (A, αA), where A is a set and αA:A → F(A) is a map.
A morphism between F -coalgebras (A, αA), (B, αB) is a map f :A → B such
that F(f ) ◦ αA = αB ◦ f .

For a given endofunctor F , F -coalgebras and morphisms between F -coal-
gebras form a category, which is denoted by CoAlg(F ). Given a fixed set A,
a simple example of a category of coalgebras is the abovementioned slice cat-
egory Set/A. The category Set/A corresponds to the functor FA:Set → Set

constant onto A (a functor F :Set → Set is said to be constant onto a set
A if for each set X, F(X) = A, and for each map f , F(f ) is the identity
map 1A, that is, the image of a constant functor is the smallest non-empty
category).

Now, we are going to briefly explain the relations between the hidden spec-
ifications and the coalgebraic perspective, which were studied in [30] and [9],
for example. Let H� = (S, �) be a hidden signature on V � = (V S, V �) and
data domain D, without constructors from data and without visible operations
(that is, V � = ∅ and thus � = H�). To make the notation easier, let us fo-
cus on the particular case where H� only has one hidden sort h. Under these
conditions, we consider an enumeration of � = (ω1, . . . , ωk, ωk+1, . . . ωm)

where ωi are deconstructors for i = 1, . . . , k and ωi are updating opera-
tions for i = k + 1, . . . , m. In addition, ωi : h v2 . . . vni

→ v for i =
1, . . . , k and ωi : h v2 . . . vni

→ h for i = k + 1, . . . , m, where the
symbol v refers to visible sorts. Let us denote by αi the set of visible sorts
{v2, . . . , vni

} corresponding to the operation ωi, ∀i = 1, . . . , m. Then we write
Dαi = Dv2 × · · · × Dvni

, ∀i = 1, . . . , m. Now, we are ready to define an
endofunctor FH�:Set → Set from such a hidden signature H�. Given a set
X, we define FH�(X) = {(f1, . . . , fk, fk+1, . . . , fm) | fi :Dαi → Dv, ∀i =
1, . . . , k and fi :Dαi → X, ∀i = k +1, . . . , m} and, given a map g:X → Y , we
define (FH�(g))((f1, . . . , fk, fk+1, . . . , fm)) = (f1, . . . , fk, g ◦fk+1, . . . , g ◦
fm), ∀(f1, . . . , fk, fk+1, . . . , fm) ∈ FH�(X). It is not difficult to prove that the
category CoAlg(FH�) is isomorphic to the hidden category HAlgD(H�).

Our case, that is to say the case of �Imp-algebras, is very close to the
hidden signatures H� above. Such a hidden signature, but without updating
operations, can be considered as �Imp for a convenient signature �, namely its
interface of objects. Moreover, if we consider a hidden signature �Imp, since it
has no updating operations, the functor F�Imp

is the constant functor onto the
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set F of functional tuples F = [Dα1 → Dv1 ] ×· · ·× [Dαm → Dvm
]. Hence, an

object of AlgD(�Imp) can be described as a F�Imp
-coalgebra, that is, a map from

a set X into the set of tuples of functions which have the arity of the operations
of � (each one of these tuples of functions corresponds to the operations of a
�-algebra with carrier sets D).

The section finishes with a remark about the existence of final object in
CoAlg(F�Imp

). First, the following result, due to Barr [4] (and which has a
constructive proof), implies that the category CoAlg(F�Imp

) has a final object.

Theorem 5. If F is a polynomial functor, then the category CoAlg(F ) has a
final object.

The definition of polynomial functor can be found, for instance, in [25].
For our purpose, it suffices to know that a constant functor is a polynomial
functor.

Second, we have shown that there is an isomorphism betweenHAlgD(�Imp)

and CoAlg(F�Imp
). Then, we can consider in CoAlg(F�Imp

) the object which
corresponds to the final object �D in HAlgD(�Imp). Finally, since F�Imp

is
a constant functor, its respective category of coalgebras is the slice category
Set/F and then, the final object is given by the identity map 1F :F → F

(this gives an expression which corresponds exactly to the “practical pre-
sentation” for the final hidden algebra which has been introduced in this
section).

To sum up, it has been seen that the categories AlgD(�Imp), HAlgD(�Imp)

and CoAlg(F�Imp
) are the same. These isomorphisms allow us to use different

presentations for the final object of these categories. The “practical” presenta-
tion, that is, the coalgebraic one, is the most appropriate for the implementation
perspective.

6 Applications to Symbolic Computation

In the previous sections we have seen that the EAT constructions and represen-
tations are closely related to object-oriented programming (and also, and not in
an independent way, to functional programming). This claim sets a framework
to continue the analysis of the EAT data structures.

But, besides, the previous discussion allows us to extend the results given in
[27] on the EAT implementations of mathematical structures. We must empha-
size that the main goal of that work was to formalize the implementation pattern
used in EAT to deal with mathematical structures, since we were convinced that
this pattern had suitable properties from a programming point of view and could
probably be used in other Symbolic Computation systems with similar require-
ments. So, the starting point was an actual software system and the analysis of
its data structures led us to different formal frameworks. The underlying idea
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is that in the implementation of a Symbolic Computation system, algebraic
structures are data which are accessed through references, which can be con-
sidered as indexes (or as values of a hidden sort for a suitable kind of hidden
signatures). Now, once the appropriate theoretical ideas have been developed,
we can describe the implementation issues studied in [27] in a better and more
general way.

The important fact is to realize that in order to deal with data which are
mathematical structures, a software system has to be able to handle classes
(families) of implementations of these structures and that these classes of imple-
mentations are given by objects of appropriate categories AlgD(�Imp).

Remember that the category where the EAT implementation pattern was
characterized was denoted in [27] by ImpT,S(TImp). In order to introduce this
category some preliminary definitions are needed. The key notion is that of
implementation of an algebra. An implementation has two basic parts: the rep-
resentations of the carrier sets of the algebra and the programs which implement
the operations. Now, we are going to briefly describe these notions. A detailed
development of these issues can be found in [36]. (We suppose the reader is
familiar with the elementary Common Lisp terminology.)

A (Common Lisp) program is a tuple p = (cp, Sp, T
p
1, . . . , T

p
n, Tp) where:

T
p
1, . . . , T

p
n, Tp are (Common Lisp) concrete types (a concrete type is a decid-

able set of Common Lisp objects together with an equality); Sp is a subset of
T
p
1 × · · · × T

p
n (called definition domain of the program); cp is a functional

object (called program code) which can be applied to the data types Tp1, . . . , T
p
n

(this means that, given (d1, . . . , dn) ∈ T
p
1 × · · · × T

p
n, the evaluation of the

expression (funcall cp d1 ... dn) does not signal an error either “wrong
number” or “wrong type” of arguments), and the evaluation of (funcall cp

d1 ... dn) finishes for all (d1, . . . , dn) ∈ Sp returning an element of Tp. This
element will be denoted by cp(d1, . . . , dn). In addition, cp must preserve the
concrete types equalities.

A program p = (cp, Sp, T
p
1, . . . , T

p
n, Tp) defines a (partial) function, which

will be denoted by F(p), F(p):Tp1 × · · · × T
p
n → Tp, whose definition domain

is Sp and which is defined by: F(p)(s) := cp(s), for each s ∈ Sp.
Given a set M, a representation of M is a tuple R = (DR, SR, =R, αR)

where: DR is a concrete type called representation domain; SR is a subset of
DR called representation support; =R is an equivalence relation on SR (greater
than the equivalence relation on SR inherited from the domain DR) called rep-
resentation equality; and, finally, αR: DR → M is a (partial) function whose
definition domain is SR, called abstraction function, compatible with =R (that
is, if t1 =R t2 then αR(t1) = αR(t2), for all t1, t2 ∈ SR).

Now, let p = (cp, Sp, T
p
1, . . . , T

p
n, Tp) be a program and let R =

(R1, . . . , Rn, R) be n + 1 representations of M1, . . . , Mn, M respec-
tively, such that the representation domains D1, . . . , Dn, D are respectively
T
p
1, . . . , T

p
n, Tp. The program p is said to be coherent with respect to R if the
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following conditions hold: i) Sp ⊆ SR1 × · · · × SRn
; ii) F(p)(Sp) ⊆ SR;

iii) p is compatible with the representation equalities (that is, if (d1, . . . , dn),
(d′

1, . . . , d
′
n) ∈ Sp are such that di = Ri

d′
i for all i = 1, . . . , n, then

F(p)(d1, . . . , dn) = RF(p)(d′
1, . . . , d

′
n)); iv) the program p is compatible with

the abstraction equalities (that is, if (d1, . . . , dn), (d′
1, . . . , d

′
n) ∈ Sp are such

that αRi
(di) = αRi

(d′
i) for all i = 1, . . . , n, then αR(F(p)(d1, . . . , dn)) =

αR(F(p)(d′
1, . . . , d

′
n))).

The basic idea is that ifp is coherent with respect to R (being Ri a represen-
tation of MRi

for all i = 1, . . . , n and being R a representation of MR), then
the partial function F(p)R : MR1 ×· · ·×MRn

→ MR, whose definition do-
main is Def (F (p)R) = {(m1, . . . , mn) ∈ MR1 ×· · ·×MRn

: ∃(d1, . . . , dn) ∈
Sp such that αRi

(di) = mi ∀i = 1, . . . , n} and which is given by
F(p)R(αR1(d1), . . . , αRn

(dn)) := αR(F(p)(d1, . . . , dn)), is well-defined. This
function will be called function defined by p through R.

Let f : A1 ×· · ·×An → A be a function and let R = (R1, . . . , Rn, R) be
n+1 representations such that Ri is a representation of Ai , for all i = 1, . . . , n,
and R is a representation of A. We will say that p implements f through R (or
that p is an implementation of f through R) if the following conditions hold: i)
p is coherent with R; ii) Def (F (p)R) ⊆ Def (f ) and F(p)R = f |Def (F (p)R);
iii) for each (a1, . . . , an) ∈ Def (f ) such that there is (d1, . . . , dn) ∈ SR1

× · · · × SRn
with αRi

(di) = ai for all i = 1, . . . , n and f (a1, . . . , an) ∈
Im(αR), then there is (d′

1, . . . , d
′
n) ∈ Sp with αRi

(d′
i) = ai , for all i =

1, . . . , n.
In particular, if T is a concrete type, the identity map defines a representation

of T which will be called the literal representation of T. Note that any program
is coherent with respect to the literal representations of its types and then, a
program p implements the function F(p).

Now, we are going to introduce a notion of implementation of a �-algebra.
Given a signature � = (S, �) and a �-algebra A, an implementation of A is
a pair (RA, (pωA)ω∈�), where RA is a representation of A (that is, RA is an
S-family RA = (RAs

)s∈S of representations, being RAs
a representation of

the carrier set As , for each s ∈ S) and (pωA)ω∈� is a family of programs which
implement the operations (ωA)ω∈� through RA.

Moreover, the notion of transformation between implementations, or
i–transformation, is defined as follows. Let � = (S, �) be a signature, let A and
B be two �-algebras and let IA = (RA, (pωA)ω∈�) and IB = (RB, (pωB)ω∈�)

be implementations of A and B, respectively. An i–transformation from IA to
IB is a pair (t, f ) = (ts, fs)s∈S such that, for each s ∈ S, ts :DRAs

→ DRBs
is

a partial function whose definition domain is SRAs
and fs : MRAs

→ MRBs

is a total function, in such a way that the following conditions hold: i) (t, f )

is a transformation between representations (in other words, for any s ∈ S,
ts(SRAs

) ⊆ SRBs
, fs ◦αRAs

= αRBs
◦ ts , and besides, the representation equal-

ities are preserved); ii) f : A → B is a total �-homomorphism; iii) and, for each
operation ω : s1 . . . sn → s in �, it holds that (ts1, . . . , tsn

)(Def (F (pωA))) ⊆



210 L. Lambán et al.

Def (F (pωB)) and ts(F (pωA)(d1, . . . , dn)) = F(pωB)(ts1(d1), . . . , tsn
(dn)), for

each (d1, . . . , dn) ∈ Def (F (pωA)).
It is not difficult to prove that implementations and i–transformations define

a category. Using the same terminology as [29], an abstract data type (ADT,
in short) is a pair T = (�, C), where � is a signature and C is a subcategory
of Alg(�) (closed by isomorphism). Given an ADT T = (�, C), an imple-
mentation of T is an implementation of any �-algebra in C; we will denote by
Imp(T ) the category of implementations of T .

From the programming perspective, we are interested in the type of the
families of implementations of T . In this line, from an ADT T = (�, C), we
define a new ADT that we denote by TImp = (�Imp, CImp), whose underlying
signature is �Imp. The intuitive idea is that an algebra belonging to CImp corre-
sponds to a family of implementations of algebras in C (note that the domains
of an implementation of T , together with the functions defined by its programs,
determine a �-algebra; a �Imp-algebra belongs to CImp if the �-algebra defined
for each index of the carrier set of sort imp s comes from an implementation of
an algebra of C). The type TImp is called the ADT of the families of the imple-
mentations of T . In order to handle a class of implementations of T we need
only one implementation of TImp. Following the same ideas which have led
us in the algebraic level, we have to fix a data domain. At the implementation
level, this consists in fixing an S-set T of (Common Lisp) concrete types, that
is, an S-type. In this way, only the implementations whose underlying sets of
elements are (represented by) T are going to be considered. This accurately fits
the way in which EAT was programmed.

For a given S-type T, there is a distinguished �Imp-algebra: each element
of the carrier set of sort imp s is a tuple of functions being the operations of an
algebra in C with S-type T (for any sort s ∈ S, the carrier set is the type Ts).
However, now we have to point out an important difference between handling
algebras and implementations of algebras: the operations (in an algebra) are
functions and the natural representation of a function in computer memory is
a functional code. But, from a given functional code c (and a suitable family
of types T for c), we cannot determine a function, since we do not know its
definition domain. So, a way of determining the definition domains of the oper-
ations is needed. In [27], we solved this problem by fixing an �-set S which
describes the definition domain of (the implementations of) the operations in
�. (Other alternatives are also possible; some of them were explored in [36]
and [28].)

Therefore, fixed an S-type T and an �-set S, a distinguished �Imp-algebra
can be precisely defined: it is the algebra whose carrier set for the sort imp s

consists of all the tuples of functions coming from implementations of T with
S-type T and definition domains S (note that different implementations can give
rise to the same tuple of functions); the operations are defined by applying the
appropriate function from the first argument, an argument which is always a
tuple of functions, over the other arguments. This algebra plays the same role
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as the object �D given in Section 4. It has the same coproduct and final ob-
ject properties which were proven in [36]. In particular, the coproduct property
implies that this object gathers all the implementations of T , that is to say, each
implementation of T is a datum of this canonical algebra. Then, an implemen-
tation of this algebra can be considered as an “implementation squared” of the
ADT T . These properties of the distinguished �Imp-algebras allow us to only
consider their implementations in order to gather all the implementations of
T .

The rest of this section is devoted to introduce an implementation of the dis-
tinguished �Imp-algebra. This implementation is an idealization of the imple-
mentation actually used in EAT. For each S-type T and each �-set S, a canonical
implementation IEAT ,T,S of the corresponding distinguished �Imp-algebra was
constructed in [27] (there, it was denoted by IEAT ) as follows. For each sort
s of �, the literal representation of Ts is chosen. Let (ω1, . . . , ωm) be an enu-
meration of the operation symbols of �. For the distinguished sort imp s, we
choose as type for imp s, DEAT ,T,S

imp s , the instances of the structure

(defstruct IMP-s imp-ω1 ... imp-ωm)

such that their slots are Common Lisp functional codes. (For further details on
the use of the Common Lisp structures, the reader can refer to [49].)An instance
of DEAT ,T,S

imp s will be in the support SEAT ,T,S
imp s whether there exists at least one

implementation of the initial ADT T such that the codes of their programs
are the components of the instance and the definition domains of the programs
implementing the operations are S. An example of this construction in EAT was
briefly evoked in Subsection 1.2, in the case of chain complexes.

The abstraction function carries each struct to the tuple of functions defined
by these functional codes on S. We consider as representation equality the
abstraction equality, which is, in essence, the behavioural equality in each com-
ponent. (Two functional codes c1, c2 are behaviourally equal with respect to
n + 1 concrete types T1, . . . , Tn, T and S ⊆ T1 × · · · × Tn if F(p1) = F(p2),
where pi = (ci , S, T1, . . . , Tn, T), i = 1, 2 must be programs.)

Finally, the program chosen to implement imp ωi has SEAT ,T,S
imp s × Sωi as

definition domain and its functional code is:

#′(lambda(instance − of − IMP − s d1 . . . dn)

(funcall(IMP − s − imp − ωiinstance − of − IMP − s) d1 . . . dn))

As we have said, the object IEAT ,T,S is aimed at capturing the nature of the
implementations actually used in the EAT system. Although each actual mathe-
matical structure in EAT (chain complexes or simplicial sets, for instance) has
certain particularities, we claim that the objects IEAT ,T,S accurately express
the very nature of the EAT implementations.

We still have to introduce the category where the EAT implementation pat-
tern was characterized, which will be denoted by ImpT,S(TImp). This category
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is intended to collect information on some implementations of the correspond-
ing distinguished �Imp-algebra; roughly speaking, those which can be defined
on T and S (some more technical constraints have to be imposed; the interested
reader can find them in [27]). Moreover, the morphisms in ImpT,S(TImp) are
transformations between implementations such that they are identities on the
concrete types T (that is, all the implementations we are going to consider share
the same way of representation for the elements of the mathematical structures
which are being implemented).

We will denote by ImpT,S(T ) the category of implementations of T onT and
S (under constraints similar to those of the implementations in ImpT,S(TImp);
see [27]). Finally, let us consider the canonical embedding of ImpT,S(T ) in
ImpT,S(TImp) which is defined by considering an implementation I of T as an
implementation of TImp with only one element in the support of the sort imp s

(this element is the tuple of functional objects which realize the operations in
I ). Bearing in mind these notations, using the machinery introduced in [27]
and following the guidelines provided in Section 5 for the algebraic case, the
following result is proven.

Theorem 6. The object IEAT ,T,S is the coproduct in ImpT,S(TImp) of the imple-
mentations in the image of the canonical embedding functor of ImpT,S(T ) in
ImpT,S(TImp). In addition, there is at least one morphism from any object of
ImpT,S(TImp) to IEAT ,T,S.

Note that the previous theorem shows that the implementation IEAT ,T,S

gathers all the individual implementations of T and, moreover, it can be con-
sidered as a maximal implementation: there is a natural path from any imple-
mentation of TImp (on T and S) to IEAT ,T,S. Then, the main result in [27] appears
as a direct consequence of this theorem (the reader has to take into account the
changes in the notation when comparing both results).

Corollary 2. The object IEAT ,T,S is the final object of the category ImpT,S

(TImp).

Finally, if we denote by Imp(TImp) the category obtained by grouping the
categories ImpT,S(TImp) when S ranges over the set of subsets of T and then
T ranges over the collection of S-types, the following result can be proven,
explaining how the different final objects are gathered.

Theorem 7. The family {IEAT ,T,S} is final in the category Imp(TImp).

7 Conclusions and Further Work

In the last section we have stressed how the ideas suggested by certain formal-
isms for the study of object-oriented programming can be applied to analyze a
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concrete symbolic computation system, namely the EAT system. In particular,
object-orientation appears in EAT when modelling its data structures as fami-
lies of implementations of abstract data types. As a consequence, some results
extending the previous work on the subject [27] have been introduced, in such
a way that the canonical EAT implementations can be characterized in a larger
category.

Another contribution of our work can be interpreted as an application from
symbolic computation to the theoretical study of object-oriented programming.
First, at a conceptual level, because in our very concrete problem (the formal
analysis of a symbolic computation system for Algebraic Topology) two main
trends in the formalization of object-oriented programming appear: that of “cal-
culus for objects” (see, for instance, [1]) and that of hidden specifications (see,
for instance, [20]).

Second, at a more technical level, this relationship allows us to offer a
simpler description of the final object which appears in the hidden context
(the “magical formula” in [20]) and moreover it allows to study this object in
categories larger than the hidden category. Even if our results only work in
a particular case (immutable objects or, equivalently, hidden signatures with-
out constructors from data or updating operations), this opens lines for future
research. We conjecture that the general case tackled in [20] (hidden signatures
without constructors from data) admits a description in our functional context.
We also conjecture that this description will establish a link with Cardelli’s
recursive records [8]. Still in order to bring the hidden algebraic specifications
closer to the object-oriented programming language type theory, the study of
the relations between the existential types [31] and our final objects should
be undertaken (since our �Imp-algebras seem to be a convenient domain over
which existentially quantified variables could range).

With respect to the applications to Symbolic Computation, a next step will
be to study how our modelling of the system can be used in order to verify (i.e.
to prove the correctness of) certain fragments of the EAT program (see some
preliminary results in [3]). But, before undertaking this task as a whole, the
modelling of EAT should be completed (since in [27], [28] and in this paper we
have only dealt with isolated data structures; see our comments on constructors
in Section 5, and some particular results in [13]).

The following step is to adapt our constructions and results to the Kenzo
system, the last of Sergeraert’s systems to compute homology and homotopy
groups (see some preliminary results in [14]). Kenzo, which is much better than
EAT in terms of performance [15], was developed using the powerful object-
oriented tools provided in CLOS (Common Lisp Object System). However, the
implicit object-oriented features of the EAT system (which have been analyzed
in this paper) are also present in Kenzo, and thus, the question of how they can
be integrated (into our algebraic specifications framework) with a more explicit
CLOS (class-based) object-orientation is unsolved. The problem is even more
challenging because Kenzo relies on the multiple inheritance abilities of CLOS,
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and it is well-known that the formal study of multiple inheritance is much more
difficult than that of simple inheritance (see, for instance, [1], [7]).

Finally, we have planned to transfer our results to general symbolic com-
putation environments, such as Axiom [26]. We have also foreseen to translate
our approach to typed functional programming languages, such as ML [37],
where our results could be properly expressed.

Acknowledgement. We would specially like to thank the referees for their comments and sug-
gestions for improvements to the first version of this paper.
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