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The finite dimensional flexible composition algebras include the Hurwitz alge-
Ž .bras composition algebras with unit element , but also other interesting classes of

algebras: the para-Hurwitz and the Okubo algebras. The above mentioned algebras
present many symmetries, and this is reflected in their large derivation algebras. In
the present paper we study the opposite question: What can be said about the
composition algebras if we have some information about their derivation algebras?
Our main result is the classification of all the composition algebras with such large
derivation algebras. Q 1997 Academic Press

1. INTRODUCTION

Throughout this paper, a composition algebra is an algebra A defined
over a field F and equipped with a strictly nondegenerate quadratic form
q: A ª F verifying

q xy s q x q y 1Ž . Ž . Ž . Ž .
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for any x, y g A. The form q being strictly nondegenerate means that the
associated bilinear form f defined by

f x , y s q x q y y q x y q yŽ . Ž . Ž . Ž .
is nondegenerate. Usually, the additional hypothesis of the existence of a

Ž .unit element 1 1 x s x1 s x for any x is assumed, but WE WILL NOT
DO SO.

In case a unit element exists, the algebras that appear are well known.
They all have dimension 1, 2, 4, or 8, and are either the field F, if its
characteristic is not 2, F [ F, the quadratic separable field extensions K
of F, the generalized quaternion algebras over F, and the Cayley]Dickson

Ž w x.algebras over F see S1, ZSSS . These unital composition algebras will be
called Hurwitz algebras in the sequel.

On the other hand, from any finite dimensional composition algebra,
Ž w x.one can construct a Hurwitz one see K . Just take an element a g A

Ž . Ž Ž .. 2 Ž .with q a / 0, then b s 1rq a a verifies q b s 1, the right and left
multiplications, R and L , by b are orthogonal transformations relativeb b

Ž .to q by 1 and the vector space A, with the new multiplication

x ? y s Ry1 x Ly1 y 2Ž .Ž . Ž .b b

Ž . Ž . Ž . 2still verifies q x ? y s q x q y and b is the unit element. Hence, again
we conclude that the dimension of A is 1, 2, 4, or 8. We also conclude
from here that any finite dimensional composition algebra can be obtained
from a Hurwitz algebra C, with norm q, by means of a new multiplication

x) y s w x c y , 3Ž . Ž . Ž .
where w and c are orthogonal transformations relative to q. Examples of

Ž .infinite dimensional composition algebras necessarily non-unital have
w xbeen obtained in UW over the real field, commutative examples over

w xgeneral fields appear in EM4 , and examples with a one-sided identity
w xelement in EP3 .

Ž .In dimension 2, the orthogonal transformations in 3 are easily de-
scribed. This led Petersson to the classification of the two-dimensional
composition algebras. For any such algebra A, there exists a Hurwitz
algebra C, defined on the same vector space A, with multiplication
denoted by juxtaposition and with canonical involution x ¬ x, such that
the product x) y in A is given by one of the following equations,

i x) y s xy ii x) y s xy iii x) y s xy iv x) y s ux y ,Ž . Ž . Ž . Ž .
4Ž .

Ž . Ž w xwhere u is a norm 1 element, that is, q u s 1 see P2 and extend easily
.the arguments there to cover the characteristic 2 case .
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In particular, for an algebraically closed ground field, there are, up to
isomorphism, only four different two-dimensional composition algebras,

Ž .since case iv above can be reduced to x) y s x y.
In the same paper, Petersson proved that there are infinitely many

isomorphism classes of composition algebras of dimension 4 and 8 over
algebraically closed fields.

In dimension 4, orthogonal transformations in a generalized quaternion
algebra can also be described in terms of the multiplication and canonical

Ž w x w x.involution of the algebra. As a consequence see Sh , S-R , if A is any
four-dimensional composition algebra with quadratic form q over a field
of characteristic not 2, there is a generalized quaternion algebra C,
defined on the same vector space A, and three elements a, b, c with
Ž . Ž . Ž .q a q b q c s 1 such that, with the same conventions as above, the

multiplication x) y on A is given by one of the following:

i x) y s axbyc ii x) y s axbycŽ . Ž .
5Ž .

iii x) y s axbyc iv x) y s axbyc.Ž . Ž .

w xStampfli-Rollier S-R shows that some restrictions can be imposed on a,
b, c so that isomorphism conditions can be given. No similar description is
known for eight-dimensional composition algebras.

w xOkubo introduced in O1 an interesting composition algebra which he
Ž .called the algebra of pseudo-octonions, in connection with the SU 3

particle physics. This algebra is flexible and Lie-admissible. The forms of
w xthe pseudo-octonion algebras were called Okubo algebras in EM1 . Other

interesting composition algebras were introduced by Okubo and Myung
w x Ž . Ž .OM , called the para-Hurwitz algebras, which are related to type iv in 4

Ž .and 5 . Given a Hurwitz algebra C with canonical involution x ¬ x, the
new algebra defined on C with multiplication

x ? y s x y 6Ž .

Žis called the associated para-Hurwitz algebra. These algebras Okubo and
.para-Hurwitz , under some restrictions, have appeared too in Petersson’s

w xresearch on ‘‘involutorial’’ algebras P1 . The connection between these
w xdifferent approaches is clarified in EP2 .

Ž Ž .Both para-Hurwitz and Okubo algebras are flexible that is, xy x s
Ž . .x yx for any x, y . Moreover, they satisfy

xy x s x yx s q x y 7Ž . Ž . Ž . Ž .

w xfor any x, y. Over fields of characteristic / 2, 3, Okubo and Osborn OO
showed that, under some restrictions which can be removed for alge-

Ž .braically closed fields, any composition algebra satisfying 7 is a para-
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w xHurwitz algebra or an Okubo algebra. Moreover, later on, Okubo O3
proved that for algebraically closed fields of characteristic / 2, 3, the

Ž .non-unital finite dimensional flexible composition algebras satisfy 7 .
w xMore recently, Myung and the first author EM2 simplified Okubo’s

arguments and classified Okubo algebras and the forms of para-Hurwitz
algebras, thus finishing the classification of flexible composition algebras
over fields of characteristic / 2, 3. Here, an algebra A over F will be
called a form of the algebra B over the algebraic closure F of F in case
F m A is isomorphic to B. By the way, a form of a para-Hurwitz algebraF

Ž . Ž . wis either a para-Hurwitz algebra or an algebra as in type iv of 4 by EP2,
x Ž w x.Lemma 3.3 see also EM2, Sect. 4; EP1, Proposition 1.2 . In the proof of

Ž w x. Žthis result the concept of a para-unit see O2 plays a key role because a
.composition algebra is para-Hurwitz if and only if it contains a para-unit .

Since this will happen in several parts of this paper too, we pause to give
the definition.

An element e of a composition algebra is termed a para-unit if it
Ž . Ž .verifies q e s 1 and ex s xe s f x, e e y x for any x g A.

Ž 2 .In particular, any para-unit is an idempotent element e s e .
w xIn EP1 , it is shown that if we assume only third-power associativity

Ž .characteristic / 2, 3 again only the flexible composition algebras appear.
w x w xFollowing an idea of Faulkner F , it is proved in EM4 that there is an

equivalence between the categories of non-unital finite dimensional flexi-
ble composition algebras over fields of characteristic / 2, 3 and of certain

Žseparable alternative algebras actually, this result can be extended to
.cover the characteristic 2 case . This will allow us to determine very easily

in Section 3 the group of automorphisms and the Lie algebra of deriva-
tions of the flexible finite dimensional composition algebras. In dimension
4 or 8, these algebras have large automorphism groups and derivation
algebras. This is equivalent to saying that they present much symmetry.

This suggests the idea of classifying composition algebras according to
the different possibilities for their attached Lie algebra of derivations and
of studying those composition algebras which present more symmetries
Ž .which is reflected in larger derivation algebras . We will show that if large
derivation algebras are imposed we obtain an analogue of Petersson’s

Ž .results 4 in dimensions 4 or 8, with the exception of the appearance of
the Okubo algebras and certain eight-dimensional composition algebras

Ž .related to the so-called Color Algebra see Section 5 .
More precisely, we will determine all the possibilities for the Lie algebra

of derivations for composition algebras of dimension 4 and all the possibil-
ities with ‘‘maximum toral rank’’ in dimension 8. Then, we will classify
those composition algebras with the largest derivation algebras and, in
particular, those with the same derivation algebras as the flexible composi-
tion algebras.
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The paper is structured as follows. Section 3 will be devoted to study
Ž .analogues in dimensions 4 and 8 of the algebras that appear in 4 . These

algebras will appear throughout the paper. Section 4 will deal with the
derivations of the flexible composition algebras and Sections 5 and 6 will
be devoted to dimensions 4 and 8, respectively. In order to accomplish
these results, the next section will provide an important preliminary result:
the invariance of the quadratic form of a composition algebra under the
Lie algebra of derivations.

In concluding this introduction, we note that some of our results have
w xbeen announced in the monograph M , where also detailed proofs and

historical remarks about some of the above mentioned results can be
found.

2. INVARIANCE OF THE QUADRATIC FORM

Of fundamental importance for our investigation will be the fact that if
A is any finite dimensional composition algebra with quadratic form q and
associated nondegenerate symmetric bilinear form f , then any derivation
is skew symmetric relative to f. That is, for any x g A and any d g Der A
Ž .the Lie algebra of derivations of A ,

f dx , x s 0. 8Ž . Ž .

In other words, q is in¨ariant under the action of Der A. This is a
linearized version of the fact, that any automorphism of A is orthogonal

w xrelative to q, which follows from P2, Corollary to Proposition 1 . To prove
Ž .8 we need:

w x Ž 2 .LEMMA 2.1. Let K s F t t s 0 be the algebra of dual numbers and let
V be a ¨ector space o¨er F. Assume that ¨ and w are linearly independent
¨ectors in V and ¨ 9, w9 arbitrary ¨ectors. Then, ¨ q ẗ 9 and w q tw9 are
linearly independent ¨ectors of K m V o¨er K.F

Ž .Proof. For a s a q a t and b s b q b t in K, a ¨ q ẗ 9 q0 1 0 1
Ž .b w q tw9 s 0 if and only if a ¨ q b w s 0 and a ¨ 9 q a ¨ q b w9 q0 0 0 1 0

b w s 0 if and only if a s 0 s b and a ¨ q b w s 0 if and only if a s1 0 0 1 1
b s 0.

LEMMA 2.2. Let A be a Hurwitz algebra of dimension ) 1 with quadratic
form q and associated nondegenerate symmetric bilinear form f. Let K be the

˜ ˜algebra of dual numbers, A s K m A and assume that Q: A ª K is aF
Ž Ž . Ž . Ž .quadratic form o¨er K permitting composition Q xy s Q x Q y for any

˜ ˜. Ž .x, y g A . Assume there is no 0 / x g A such that F x, z s 0 for any
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˜ Ž . Ž . Ž . Ž .z g A, where F x, y s Q x q y y Q x y Q y is the associated bilinear
Ž .form, then the quadratic form Q is the extension of q; that is, Q a q tb s

Ž . Ž .q a q tf a, b holds for any a, b g A.

˜Ž . Ž . Ž .Proof. If Q xy s Q x Q y for any x, y g A, linearizing we obtain
Ž . Ž . Ž . Ž . Ž . Ž . Ž .that F xy, xz s Q x F y, z and F xy, zw q F xw, zy s F x, z F y, w

˜for any x, y, z, w g A. Therefore, with w s 1 and y s x,

F x 2 , z q F x , zx s F x , z F x , 1 ,Ž . Ž . Ž . Ž .
Ž . Ž . Ž .and, since F x, zx s Q x F 1, z , we arrive at

F x 2 y F x , 1 x q Q x 1, z s 0Ž . Ž .Ž .
˜for any z g A. Thus,

x 2 y F x , 1 x q Q x 1 s 0Ž . Ž .
˜for any x g A. But, if we keep the notations q and f for their extensions

˜to A, we also have

x 2 y f x , 1 x q q x 1 s 0,Ž . Ž .
˜for any x g A. Hence, for any a g A linearly independent with 1 and for

any b g A, Lemma 2.1 gives

F a q tb , 1 s f a q tb , 1 and Q a q tb s q a q tb .Ž . Ž . Ž . Ž .
Ž . Ž . Ž . Ž .From this, we obtain that Q a s q a and F a, b s f a, b for any

a, b g A and the result follows.

Now, the announced result:

THEOREM 2.3. Let A be a finite dimensional composition algebra o¨er the
field F with associated nondegenerate symmetric bilinear form f. Let d be any
derï ation of A. Then, for any x g A

f dx , x s 0.Ž .
Ž .Proof. Let a g A be any element with q a / 0. Then, the left multi-

Ž Ž ..plication by a is a bijection it is a similarity of A, q . Hence, there exists
Ž . Ž .an element e g A such that ae s a. From 1 it follows that q e s 1. As

Ž . Ž y1 .Ž y1 .in 2 we consider the new product x ? y s R x L y on the vectore e
space A. The element 1 s e2 is the unit element of the Hurwitz algebra

˜Ž .A, ? . Let A s K m A be as in Lemma 2.2. For any derivation of A,F
˜d g Der A, we again denote by d its extension to a derivation of A. Let us

˜ ˜ Ž .consider the application w : A ª A: x ¬ x q t dx . Then, w is an auto-
˜ ˜ Ž .morphism of A. We define now the K-quadratic form on A by Q x s

˜Ž Ž ..q w x for any x g A.
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˜ y1 y1With x, y g A, let x s R x, y s L y. Then,ˆ ˆe e

q w x s q w xe s q w x w e s q w x q w e .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ

But, since ae s a,

f da, a s f da e q a de , a s f da e, ae q f a de , aeŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .
s f da, a q q a f de, e ,Ž . Ž . Ž .

Ž .so f de, e s 0 and

q w e s q e q t de s q e q tf de, e s q e s 1.Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..Therefore, q w x s q w x and also, q w y s q w y . Now,ˆ ˆ

Q x ? y s q w x ? y s q w x y s q w x q w yŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž .ˆˆ ˆ ˆŽ .
s q w x q w y s Q x Q y .Ž . Ž . Ž . Ž .Ž . Ž .

By Lemma 2.2, for any u g A,

q u s Q u s q u q t du s q u q tf u , du ,Ž . Ž . Ž . Ž . Ž .Ž .

Ž .so f du, u s 0 and we get the theorem.

3. STANDARD COMPOSITION ALGEBRAS

Ž Ž .. Ž .Both Petersson’s classification in dimension 2 see 4 and 6 inspire
the next definition: let A be a Hurwitz algebra of dimension G 2 with
canonical involution x ¬ x. Then, the new algebras defined over A with
respective multiplications

i x( y s xy , ii x( y s xy , iii x( y s xy , or iv x( y s x yŽ . Ž . Ž . Ž .
9Ž .

will be called the standard composition algebras associated to A.
These algebras will play a fundamental role in what follows. The four

standard composition algebras associated to A are not isomorphic, since
Ž . Ž .only in case i there is an identity element, only in case ii there is a left

Ž .but not right identity element, and the same in case iii interchanging left
and right. We can state a more general result over fields of characteristic
not 2 which has its own independent interest. To do this, notice that by
Kaplansky’s argument mentioned in the Introduction, any finite dimen-
sional composition algebra of dimension 2, 4, or 8 is obtained from a
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Hurwitz algebra C, with norm q and canonical involution x ¬ x, with new
Ž .multiplication as in 3 . Since the canonical involution has determinant

Ž .y1, 3 can be separated into four types,

x) y s w x c y 10-IŽ . Ž . Ž .
x) y s w x c y 10-IIŽ . Ž . Ž .
x) y s w x c y 10-IIIŽ . Ž . Ž .
x) y s w x c y 10-IVŽ . Ž . Ž .

Ž .with w and c in the special orthogonal group of C, q .
We say that a finite dimensional composition algebra of dimension G 2

Ž . Ž .A, ? is, say, of type II in case there is a Hurwitz algebra C with A, ?
Ž . Ž .isomorphic to C, ) , with x) y as in 10-II .

Now the announced general result, which extends and is inspired by
w x.S-R, 3.9 Satz :

THEOREM 3.1. Finite dimensional composition algebras of dimension
G 2 o¨er a field of characteristic not 2 and of different types are not
isomorphic.

ŽProof. Assume that C is a Hurwitz algebra multiplication denoted by
. Ž . Ž .juxtaposition and form the algebra C, ) as in 10-II . Take any arbitrary
Ž . U Ux g C with q x s 1. Then, the linear maps L : y ¬ x) y and R :x x

U Uy ¬ y) x verify L s L c and R s R w j, where j denotes thex w Ž x . x c Ž x .
canonical involution of C and L and R are the left and right multiplica-a a

Ž .tions by the element a in C. However, for any a g C with q a s 1, La
Ž . Uand R belong to the special orthogonal group of C, q . Thus, det L s 1a x

U Ž .s ydet R . Therefore, for any x g C with q x s 1, types I]IV arex
determined by

Type I. det LU s 1 s det RU
x x

Type II. det LU s 1 s ydet RU
x x

Type III. det LU s y1 s ydet RU
x x

Type IV. det LU s y1 s det RU
x x

and the type is determined by the left and right multiplications by any
element of norm 1.

Ž .In particular, standard algebras of different types in 9 are not iso-
morphic.

We will often work first over algebraically closed fields by extending
scalars and then will descend to the ground field. It is clear that any form
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of a Hurwitz algebra is itself a Hurwitz algebra. More generally we have:

PROPOSITION 3.2. Any form of a finite dimensional composition algebra is
itself a composition algebra.

Proof. Let A be a form of a composition algebra and let q be the
nondegenerate quadratic form permitting composition of A s F m AF
Ž w x. Ž .unique by P2, Proposition 1 . Take x g A with q x / 0. Then A is a

Ž y1 .Ž y1 .Hurwitz algebra with the new multiplication given by a) b s R a L bx x
Ž . Ž Ž .2 . Ž .and the form q a s 1rq x q a . Since this new product is already˜

Ž . Ž .defined on A, A, ) is a Hurwitz algebra and q a g F for any a g A.˜
Ž . Ž Ž .. Ž .Therefore, q x s 1rq x g F and q a g F for any a g A, so A,˜

together with the restriction of q, is a composition algebra.

As mentioned in the Introduction, the forms of para-Hurwitz algebras
are known to be either para-Hurwitz or the two-dimensional algebras that

Ž .Ž .appear in 4 iv . Finally, to complete our knowledge of the forms of the
standard composition algebras we prove:

PROPOSITION 3.3. Any form of a standard composition algebra of type
Ž .Ž . Ž .Ž . Ž .9 ii or 9 iii is again a standard composition algebra of the same type .

Proof. Let A be a form of a standard composition algebra of type
Ž .Ž . Ž .9 ii , so there is a multiplication ? in A s F m A, such that A, ? is aF
Hurwitz algebra with unit element e, norm q, and canonical involution
x ¬ x and the product in A is given by xy s x ? y. Take x g A with

y1Ž .q x / 0, then ex s e ? x s e ? x s x, so e s R x g A. Also, for any y gx
A, y s ye g A and, therefore, A is closed under the Hurwitz product ?, so

Ž .Ž .we obtain that A is the standard composition algebra of type 9 ii
Ž .associated to the Hurwitz algebra A, ? .

4. AUTOMORPHISMS AND DERIVATIONS OF THE
FLEXIBLE COMPOSITION ALGEBRAS

In this section, we will always assume that the characteristic of the
ground field F is / 2, 3.

w xAccording to EM4 , any flexible composition algebra is either a Hurwitz
algebra or it is intimately connected to a separable alternative algebra of
degree three. More precisely, if A is a finite dimensional separable
alternative algebra of degree three over the ground field F, then any
element of A satisfies the equation

x 3 y T x x 2 q S x x y N x 1 s 0Ž . Ž . Ž .
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Ž .for some linear form T the trace , quadratic form S, and cubic form N
Ž .the norm . If F contains the cube roots of 1 or, equivalently, contains the

'element j s y 3 , we can define a new multiplication on the set A of0
elements of trace zero as

2v q 1
2a) b s v ab y v ba y T ab 1 11Ž . Ž .

3

Ž w x. Ž .for a, b g A see EM4 . Here v is a cube root of 1, v s y1 q j r2.0
Ž .The product in A can be recovered from 11 , since A s F1 [ A and for0

w Ž .xa, b g A EM4, 4.4 ,0

S a, b 1Ž .
2ab s y 1 q v y 1 a) b y v y 1 b) a , 12Ž . Ž . Ž .Ž .

3 3

Ž .where S , is the symmetric bilinear form associated to S. The algebra
Ž .A , ) is a flexible composition algebra.0

Also, if F does not contain j and A is a finite dimensional separable
w xalternative algebra of degree three over the field K s F j , equipped with

� Ž .a KrF-involution of the second kind J, and A s x g A: T x s 0 and0
Ž . 4 Ž .J x s yx , then again we can define a product on A by Eq. 11 and0

Ž .recover the product in A by Eq. 12 , since A s K1 [ KA . The F-algebra0
Ž .A , ) is a flexible composition algebra.0

To unify both situations, we take K s F and J s 1 in case j g F and
w xK s F j and J of second kind in case j f F. Then, in both cases we shall

Ž .speak of A, J with A a finite dimensional separable alternative algebra
of degree 3 over K.

w xTHEOREM 4.1 EM4 . Any finite dimensional flexible composition algebra
Ž .o¨er F either is Hurwitz or can be obtained as the algebra A , ) gï en by0

Ž . Ž . Ž .11 for a pair A, J as abo¨e. Moreo¨er, two such algebras A , ) and0
Ž X . Ž . Ž .A , ) are isomorphic if and only if so are the pairs A, J and A9, J9 ; that0

Ž J . Ž . J 9is, there is a K-isomorphism w between A and A9 such that w x s w x
for any x g A.

The group of automorphisms and the Lie algebra of derivations of
w xHurwitz algebras are well known J1, S1 so, in order to determine the

group of automorphisms and Lie algebras of derivations of the flexible
Ž .composition algebras, we need the next result, where Aut A, J denotes

Ž .the group of automorphisms over K which commute with J and similarly
Ž .for the Lie algebra of derivations Der A, J .

Ž . Ž .THEOREM 4.2. Let A, J be as abo¨e. Then, with A , ) as in Theo-0
rem 4.1, the restriction map from A to A gï es isomorphisms between the0

Ž . Ž .group of automorphisms Aut A, J and Aut A , ) and between the Lie0
Ž . Ž .algebras of derï ations Der A, J and Der A , ) .0
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Proof. The result on automorphisms follows essentially from the argu-
w Ž . Ž .xments in EM4, Proof of the Main Theorem I and II . As for deriva-

Ž .tions, if d g Der A, J , it is clear that dA : A . Now, for a, b g A0 0 0

2v q 1
2da ) b q a) db s v da b y v b da y T da b 1Ž . Ž . Ž . Ž . Ž .Ž .

3
2v q 1

2q v a db y v db a y T a db 1Ž . Ž . Ž .Ž .
3

s v da b q a db y v 2 b da q db aŽ . Ž . Ž . Ž .Ž . Ž .
s v d ab y v 2d baŽ . Ž .

2v q 1
2s d v ab y v ba y T ab 1Ž .ž /3

s d a) bŽ .
Ž . w xsince T dx s 0 for any x g A J2, Theorem 6.1 . Therefore, the restric-

< Ž . Ž .tion map d ¬ d gives an homomorphism from Der A, J to Der A , ) .A 00

Ž .Since A s K1 [ KA and KA s A [ j A in case j f F , given d g0 0 0 0
Ž . Ž . Ž .Der A , ) , we can extend it to A by imposing d K1 s 0 and d j a s0

Ž .j da for a g A . The quadratic form that permits composition in A , ) is0 0
Ž . w x Ž .precisely the restriction of S , EM4 , so we may use 12 and Theorem

Ž .2.3 to check that this extension of d to A is a derivation in Der A, J and
the theorem follows.

Ž . Ž .The groups Aut A, J and the Lie algebras Der A, J are now easily
computed. We separate into two cases according to j g F or j f F. In the
first case the next theorem follows from known results:

THEOREM 4.3. Let A be a finite dimensional separable alternatï e algebra
of degree 3 o¨er a field F containing the cube roots of 1. Then, one of the
following possibilities occurs:

Ž .i A is a central simple associatï e algebra of degree three, so that
either A is the algebra of 3 = 3 matrices o¨er F, or a dï ision algebra o¨er F.
In both cases Aut A ( A=rF=, where A= denotes the group of in¨ertible

Ž Ž . Ž ..elements of A in particular, Aut Mat F ( PGL 3, F and Der A ( A ,3=3 0
the Lie algebra of trace zero elements of A under commutation. This is a
central simple Lie algebra of type A .2

Ž .ii A s F [ C, where C is a Hurwitz algebra of dimension 2, 4, or 8.
Then Aut A is naturally isomorphic to Aut C unless C s F [ F, where
Aut A is the symmetric group on three elements. Moreo¨er, Der A is naturally
isomorphic to Der C, which is trï ial if dim C s 2, a central simple Lie
algebra of type A if dim C s 4 and a central simple Lie algebra of type G in1 2
case dim C s 8.
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Ž .iii ArF is a cubic field extension. Then Der A s 0 since ArF is
separable, and Aut A is either the cyclic group of three elements, if this is a

Ž w x Ž 3 .Galois extension so, with our hypotheses on F, A ( F X r X y a for
.some a g A, a f F , or otherwise, Aut A is the trï ial group.

Ž .Case i in the theorem above corresponds to the Okubo algebras, case
Ž . Ž .ii to the para-Hurwitz algebras, and case iii to forms of para-Hurwitz

Žalgebras in dimension 2. The same can be said after the next theorem see
w x. Ž .EM4 . Notice that for C s F [ F in ii , the corresponding flexible

Ž Ž ..composition algebra is the para-Hurwitz algebra obtained from C see 6 .
Ž . Ž 2 . Ž 2 .This algebra contains three para-units: 1, 1 , v, v , and v , v , and the

action of the automorphism group is just the action by permutations on
the set of para-units.

THEOREM 4.4. Let F be a field not containing the cube roots of 1,
w xK s F j , and A a separable alternatï e algebra of degree 3 o¨er K, equipped

with a KrF-in¨olution of second kind. Then, one of the following possibilities
occurs:

Ž .i A is a central simple associatï e algebra of degree three, then
Ž . � J =4 = Ž . � JAut A, J ( b g A: b b g F rK and Der A, J ( x g A : x s0
4yx , the Lie algebra of trace zero elements of A which are skew relatï e to J

under commutation. Again, this is a central simple Lie algebra of type A .2

Ž .ii A s K [ C, where C is a Hurwitz algebra of dimension 2, 4, or 8
< Jo¨er K, J is the nontrï ial F-automorphism in K and C s C. Then, ifK

J˜ ˜� 4C s x g C: x s x , where x ¬ x is the canonical conjugation in C, C is a
˜Ž .Hurwitz algebra o¨er F, and Aut A, J ( Aut C, unless A s K [ K [ K

Ž .and J does not permute the copies of K. In this case, Aut A, J is the
˜Ž .symmetric group on three elements. Moreo¨er, Der A, J ( Der C. Again,

Ž .this implies that either Der A, J is the trï ial algebra if dim C s 2, aK
central simple Lie algebra of type A for dim C s 4, and a central simple Lie1 K
algebra of type G for dim C s 8.2 K

Ž . Ž .iii A is a cubic field extension of K, so J g Aut A. Then Der A, JF
Ž .s 0 and Aut A, J is either the cyclic group of order 3 in case ArF is a

cyclic extension, or trï ial otherwise.

Ž . ŽProof. For i notice that any automorphism or derivation of A as an
. =algebra over K is inner. Then, if w g Aut A, there is a b g A such that

Ž . y1 Ž . J y1 Ž J .w x s bxb for any x. But, if w g Aut A, J , then bx b s w x s
Ž . J Ž y1 . J Ž J .y1 J J Jw x s bxb s b x b for any x g A. Thus, b b is an element of

the center of A and fixed by J. Therefore b J b g F=. Also notice that the
Ž .inner derivation ad a, with T a s 0, commutes with J if and only if

aJ s ya.
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Now, if A s K [ C, with C a Hurwitz algebra of dimension G 2 and
C / K [ K, it is clear that K J s K and C J s C. But even in the case that
C s K [ K, so that A s K [ K [ K, since the order of J is 2, at least one
of the copies of K is fixed by J. Therefore, we can always assume that

J J Ž .A s K [ C with K s K and C s C. Case ii now follows easily.
Finally, assume that ArK is a field extension of degree 3, so that ArF

is a field extension of degree 6. Since J g Aut A, let L denote the fixedF
field by J, so that ArL is a quadratic field extension. Then A ( L m KF

Ž . Ž .and Aut A, J is isomorphic by restriction to Aut L. This latter group isF
the cyclic group of order 3 in case LrF is a Galois extension and trivial

Ž .otherwise. Besides, in case Aut A, J is the cyclic group of order 3, then
Ž .Aut A is generated by J and by Aut A, J , so that Aut A is the cyclicF F

group of order 6 and ArF is a cyclic extension. Conversely, if ArF is
Ž .cyclic, then Aut A, J is a normal subgroup of Aut A and L is a cyclicF

extension of F.

Ž .The exceptional case in part ii of the above theorem occurs in case
A s K [ K [ K and J does not permute the copies of K. If this is the

˜ J�Ž . 4case and C is the sum of the last two copies of K, C s a, a : a g K ,
which is isomorphic to K. The para-units of the para-Hurwitz algebra
associated to K are precisely the cube roots of 1 and, under the isomor-

Ž .phisms, Aut A, J is the symmetric group on these para-units.
Ž . �In case iii , notice that if Aut L is the trivial group, then s g Aut A:F F

4 � 4s J s Js s 1, J , so that Aut A is either the cyclic group of order 2F
generated by J or the symmetric group on three elements.

COROLLARY 4.5. Let A be a finite dimensional flexible composition
algebra o¨er F. Then the Lie algebra of derï ations Der A is either:

v trï ial if dim A F 2,
v a three-dimensional central simple Lie algebra if dim A s 4, that is, if

A is either a generalized quaternion algebra or its para-Hurwitz counterpart,
v a central simple Lie algebra of type A if A is an Okubo algebra, or2

v a central simple Lie algebra of type G if A is either a Cayley]Dickson2
algebra or its para-Hurwitz counterpart.

5. THE FOUR-DIMENSIONAL CASE

It is clear that the only one-dimensional composition algebra over the
field F is F itself if the characteristic is not 2 and its Lie algebra of
derivations is trivial. With the exception of fields of characteristic three,
this is also the case for two-dimensional composition algebras:
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THEOREM 5.1. Let A be a composition algebra o¨er F. If dim A F 2,
then Der A s 0, unless dim A s 2, F has characteristic three, and A is as in

Ž . Ž . Žpart iv of 4 that is, a form of the two-dimensional para-Hurwitz algebra
.o¨er the algebraic closure of F . In this case Der A s Fd, and d acts

semisimply and nonsingularly on A.

Proof. We can assume that dim A s 2 and, extending scalars, that F is
� 4 Ž . Ž .algebraically closed. Then, A has a basis u, ¨ with q u s q ¨ s 0 and

Ž . Ž . Ž .f u, ¨ s 1. If d g Der A, by Theorem 2.3, f du, u s 0 s f d¨ , ¨ s
Ž . Ž .f du, ¨ q f u, d¨ , so that du s a u, d¨ s b ¨ , and a s yb g F. Thus, if

Der A / 0, then Der A s Fd with du s u and d¨ s y¨ . In particular, d
is a bijection.

Ž . Ž . Ž .In this case, d u¨ s du ¨ q u d¨ s u¨ y u¨ s 0, so u¨ s 0. Analo-
Ž 2 .gously, ¨u s 0. Therefore, A is commutative. Moreover, d u s

Ž . 2 Ž 2 . Ž . 22u du s 2u and also d ¨ s 2¨ d¨ s y2¨ . This forces the charac-
teristic of F to be 3 and u2 s l¨ , ¨ 2 s hu. Now,

2q u q ¨ s q l¨ q hu s lh f u , ¨ s lh ,Ž . Ž . Ž .Ž .
and also,

2 2q u q ¨ s q u q ¨ s f u , ¨ s 1.Ž . Ž . Ž .Ž .

Thus, lh s 1. If m is a cube root of ly1 s h and we consider a s mu,
y1 2 2 Ž .b s m ¨ , then a s b, b s a, ab s ba s 0, and f a, b s 1. We check

Ž .that A is the two-dimensional para-Hurwitz algebra a q b is a para-unit .

From now on in this section the characteristic of the ground field F will be
assumed to be different from 2. This being the case, given a composition
algebra A with corresponding quadratic form q, for any x, y g A, we put

1Ž . Ž . Ž . Ž .x, y s f x, y , so that q x s x, x holds for any x g A.2

In order to study the four-dimensional case, first we will pay attention to
the nilpotent derivations:

LEMMA 5.2. Let A be a four-dimensional composition algebra o¨er the
field F and let 0 / d g Der A be a nilpotent derï ation. Then d2 / 0 s d3

Žand ker d is not totally isotropic that is, there are elements e g ker d with
Ž . .q e / 0 .

3 � 2 3 4Proof. If d were not 0, there would exist a basis ¨ , d¨ , d ¨ , d ¨
4 Ž .of A. But since d s 0, 8 implies

d3¨ , d3¨ s d3¨ , d2 ¨ s d3¨ , d¨ s 0,Ž . Ž . Ž .
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and also

d3¨ , ¨ s y d2 ¨ , d¨ s y d d¨ , d¨ s 0,Ž . Ž . Ž .Ž .

Ž 3 .so d ¨ , ¨ s 0 too, which is a contradiction with the nondegeneracy of
Ž . 3, . Therefore, d s 0.

2 � 4Assume that d s 0, then either there is a basis ¨ , d¨ , w, dw or
� 4 Ž .¨ , d¨ , x, y with dx s dy s 0. In the last case, by 8 , d¨ is contained in

Ž .the radical of , , a contradiction. In the former case, ker d s F y
² :span d¨ , dw is a subalgebra of A. Also, for any x, y g A

0 s d2 xy s d2 x y q 2 dx dy q x d2 y s 2 dx dy ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .

so the multiplication in ker d is trivial. But, given x g ker d and y g A,
Ž . Ž . Ž .2d xy s x dy g ker d s 0. Thus, xy, and also yx, belongs to ker d and

wker d is an ideal of A. This is a contradiction since A is simple P2,
xCorollary to Proposition 2 .

2 3 � 2 4Hence d / 0 s d and there is a basis ¨ , d¨ , d ¨ , w of A with
w g ker d. The associated matrix of d is

0 1 0 0
0 0 1 0 .
0 0 0 0� 0
0 0 0 0

Ž . Ž . Ž 2 . Ž . Ž 2 . Ž .By 8 , ¨ , d¨ s d¨ , d ¨ s d¨ , w s d ¨ , w s 0 and d¨ , d¨ s
2Ž . Ž .y ¨ , d ¨ . In particular, this forces q w / 0, as required.

LEMMA 5.3. Let A be a four-dimensional composition algebra o¨er F and
let 0 / N be a subalgebra of Der A consisting entirely of nilpotent derï a-
tions. Then the dimension of N is 1.

� 4Proof. Let us consider the subalgebra A s x g A: Nx s 0 , which is0
Ž .not zero by Engel’s Theorem. If there is an element a g A with q a / 0,0

Ž Ž .. 2 Ž .then with b s 1rq a a g A , we may form the Hurwitz algebra A, ?0
Ž .with multiplication as in 2 . Since Nb s 0, the elements in N commute

Ž .with L and R and hence become derivations of A, ? . But the deriva-b b
Ž .tion algebra of the four-dimensional Hurwitz algebra A, ? is a three-di-

mensional simple Lie algebra, and since N becomes a nilpotent subalge-
bra, the dimension is at most 1.

Let us see now that A cannot be totally isotropic. Otherwise, and if the0
dimension of A were 2, then for any 0 / d g N, dA would be orthogonal0

Ž . 2to A by the linearization of 8 and this implies dA : A and d s 0, a0 0
contradiction with Lemma 5.2. Finally, if A were totally isotropic and0
dim A s 1, by Lemma 5.2 the dimension of N would be G 2. Besides, A0 0
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would be contained in its orthogonal subspace AH relative to q and a0
� 4basis of isotropic vectors a, u, ¨ , z might be so chosen that A s Fa,0

H ² : Ž . Ž . Ž . Ž .A s F y span a, u, ¨ , a, z s 1 s u, ¨ , and u, z s ¨ , z s 0. By0
Ž . H8 , dA : A for every d g N and du is orthogonal to u and a. Since d is0
nilpotent there is an a g F such that du s a a, similarly d¨ s ba and dz
is orthogonal to z so dz s g u q d ¨ . Now,

0 s du, z q u , dz s a q d ,Ž . Ž .
0 s d¨ , z q ¨ , dz s b q g ,Ž . Ž .

so dim N s 2 and the linear map given by da s 0 s d¨ , du s a, and
dz s y¨ must belong to N. But d2 s 0, a contradiction with Lemma 5.2.

Now we turn our attention to the semisimple derivations:

LEMMA 5.4. Let A be a four-dimensional composition algebra o¨er an
algebraically closed field F and let H be a nonzero subalgebra of Der A of
diagonalizable derï ations. Then there is a diagonalizable d g H such that
H s Fd. Moreo¨er, dim ker d s 2 and ker d is a composition subalgebra
of A.

Proof. Let 0 / d g H. For any eigenvalue a of d, let A be thea

corresponding eigenspace. It is clear that A A : A for any a , b.a b aqb

Ž . Ž .From 8 it immediately follows that A , A s 0 if a q b / 0, so bya b

Ž .nondegeneracy of , , dim A s dim A for any eigenvalue a .a ya

Let a be a nonzero eigenvalue of d, then A s A [ A [ A#. Takea ya

Ž . Ž .0 / a g A with a , a / 0. Then q a q a / 0, so the left" a " a a ya a ya

Ž .multiplication L is a bijection and 0 / a q a A : A [ A ,a qa a ya a 2 a 0a ya

so either A / 0 or A / 0.0 2 a

Assume first that the characteristic of F is not 3. Then, if A / 0,2 a

A s A [ A [ A [ A . The same argument now shows that Aa ya 2 a y2 a 4a

Ž ./ 0, so necessarily the characteristic is 5. But, since 0 / a q a A :a ya a

A , it follows that a A : A s 0 and a2 / 0. In the same way, with2 a ya a 0 a

Ž . 2a g A such that a , a / 0, we obtain a / 0. Since" 2 a " 2 a 2 a y2 a y2 a

Ž 2 . Ž .Ž . Ž .2a a , a s a , a a , a s 0 and A s F a , it follows thata 2 a a a a 2 a a 2 a a

Ž 2 . Ža a s 0. Also, a a , a s 0 and a a s 0. But then a a qa 2 a a y2 a y2 a a y2 a a 2 a

. Ž .a s 0, and this is a contradiction since q a q a / 0. There-y2 a 2 a y2 a

fore, we conclude that A / 0, so necessarily A s A [ A [ A with0 0 a ya

w xdim A s 2 and dim A s 1. Now in Der A, ad d: d9 ¬ d, d9 is also0 " a

diagonalizable, so if dim H G 2, there is a d9 g H linearly independent
w xwith d and such that d, d9 s ld9. Then, we also have the decomposition

in eigenspaces relative to d9: A s AX [ AX [ AX , with dim AX s 2 and0 b yb 0
X w xŽ X . Ž X . X Xdim A s 1. But 0 s d, d9 A s d9 dA . Hence, dA : A and, by" b 0 0 0 0
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Theorem 5.1, since AX is a composition subalgebra of A, we conclude that0
dAX s 0, so AX s A . By orthogonality, A [ A s AX [ AX and it0 0 0 a ya b yb

follows easily that d and d9 are proportional. Hence, if the characteristic is
not 3 we are finished.

Assume now that the characteristic of F is 3. As above, A s A [a

A [ A#, where A# is a direct sum of eigenspaces relative to d. In caseya

A# s A [ A with a and b linearly independent over the primeb yb

Ž .field Z , then again with a g A with a , a / 0, we obtain 0 /3 " a " a a ya

Ž .a q a A : A [ A s 0, and this is a contradiction. There-a ya b aqb bya

fore, the only possibilities are either A s A [ A with dim A s 2 ora ya " a

A s A [ A [ A with dim A s 2 and dim A s 1. In the first case0 a ya 0 " a

A A s A A s 0, so for any 0 / x g A , an element x g Aa ya ya a a a ya ya

Ž . Ž .can be taken with q x q x s 2 x , x / 0 and, since the lefta ya a ya

Ž .multiplication by x q x is a bijection, A s A [ A s x q xa ya a ya a ya

Ž .A [ A s x A [ x A , so A s x A . With a similar argu-a ya ya ya a a ya a a

ment we conclude that for any 0 / x g A and 0 / y g A , x A sa a ya ya a a

A x s A and y A s A y s A . Let 0 / b g Aa a ya ya ya ya ya a " a " a

Ž . Ž 2 . Ž .Ž .with b , b s 0. Then, b x , b s 2 b , b x , b ya y a a a y a a y a a y a

Ž . Ž 2 .b b , b x s 0 for any x g A . In consequence A , b s 0,a ya ya a a a ya ya

b2 s 0 and, since the kernel of the restriction to A of the leftya ya

multiplication by b is 0, we get b s 0, a contradiction.ya ya

So we are left with the only possibility: A s A [ A [ A with0 a ya

dim A s 2 and dim A s 1. As in the characteristic not 3 situation, if0 " a

dim H ) 1, there is another derivation d9 linearly independent with d and
w xsuch that d, d9 s ld9 for some l g F. Moreover, with the same reason-

ing as above, if A s AX [ AX [ AX is the corresponding decomposition0 b yb

with respect to d9, we obtain that dAX : AX and, according to Theorem0 0
X < X5.1, either dA s 0, which leads to contradiction again, or d has twoA0 0

eigenvectors with opposite eigenvalues. In this situation, AX s A [ A ,0 a ya
X X Ž . Ž .but then A A q A A s A A q A q A q A A : A q0 0 0 0 0 a ya a ya 0 a

A s AX and AX is an ideal of A, a contradiction with the simplicity ofya 0 0
A.

Ž w x.Recall see for instance W, Corollary 2.4.14 that given a derivation d
of an algebra over a field F which splits or is separable over F, then the
semisimple and nilpotent parts d and d of d are again derivations.s n

THEOREM 5.5. Let A be a four-dimensional composition algebra and
Der A its Lie algebra of derï ations. Then the following conditions are
equï alent:

Ž .a A is a standard composition algebra.
Ž .b The dimension of Der A is G 2.
Ž .c Der A is a central simple three-dimensional Lie algebra.
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ŽProof. Let C be a four-dimensional Hurwitz algebra that is, a general-
. Ž .ized quaternion algebra with canonical involution x ¬ x, and let A, (

be a standard composition algebra associated to C, so that as vector spaces
A s C and the multiplication in A is given by one of the following:

i x( y s xy , ii x( y s xy ,Ž . Ž .
iii x( y s xy , or iv x( y s x yŽ . Ž .

Ž .as in 9 . In the first two cases, if e is the unit element of C, the left
multiplication in A by e, LT , is the identity mapping. Hence, for anye

w T x T Ž .d g Der A, 0 s d, L s L , and de s 0. We argue similarly for iiie de
T �with R . In the para-Hurwitz case Fe s x g A: x( y s y( x for anye

4y g A , so Fe is invariant under any d g Der A and again we arrive at
Ž .de s 0. Therefore, in the four cases Der A e s 0 and this forces any

derivation to commute with the canonical involution of C. As a conse-
quence, Der A s Der C, which is known to be a three-dimensional central

Ž . Ž .simple Lie algebra. Therefore condition a implies condition c . Obvi-
Ž . Ž .ously, condition c implies b .

So assume that dim Der A G 2 and since we can extend scalars, that F
is algebraically closed. By Lemmas 5.3 and 5.4 and the remark preceding
the theorem, in Der A there are both diagonalizable and nilpotent deriva-
tions. By Lemma 5.4 there is a diagonalizable derivation h such that

� 4 w xA s A [ A [ A with A s x g A: hx s m x . Since d ¬ h, d is0 1 y1 m

diagonalizable too in Der A, there is also a decomposition in eigenspaces
relative to the adjoint action of h: LL s Der A s [ LL , with LL slg L l l

� w x 4d g Der A: h, d s ld . Moreover, LL A : A for any l, m, so ll m lqm

is restricted to be 0, " 1, " 2. Since dim A s 1 and because of Theo-"1
rem 5.1 and Lemma 5.4 we get that LL s Fh.0

In case the characteristic of F is not 3, for any d g LL , dA : A and2 y1 1
Ž . Ž .dA , A s 0 by 8 . Therefore dA s 0 and d s 0. Hence LL s 0.y1 y1 y1 " 2
In case the characteristic is 3 then LL s LL and for any d g LL s LL" 2 .1 2 y1
again dA s 0, so d3 s 0 since dA : A and dA : A . Hence, in anyy1 1 0 0 y1

Ž .characteristic / 2 LL s Fh [ LL [ LL and dA s 0 for any d g LL ,1 y1 "1 "1
so d is nilpotent.

Without loss of generality, we can assume that there is a nonzero
Ž .derivation d g LL . Then by Lemma 5.2 and since A , A s 0, dA s 0,1 1 1 1

Ž .and dim ker d l A s 1, there is an element e g A with de s 0 and0 0
Ž . 2 2 2q e / 0. But de s 0 so e g Fe and we may assume that e s e and thus
Ž . 2q e s 1. But dA s 0 and d / 0 by Lemma 5.2, hence if 0 / a g A ,1 y1

2 Ž . Ž . � 4da / 0 / d a. Besides, e, da s y de, a s 0, so e, da is an orthogonal
basis of A , A s Fd2a, and the orthogonal subspace to Fe is F y0 1

² 2 :span a, da, d a . Now, ea g A so ea s ma for some m g F, thusy1

eda s d ea s d ma s mda and ed2a s d2 ea s md2a,Ž . Ž . Ž .
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but

0 / q da s q e q da s q eda s q mda s m2q da ,Ž . Ž . Ž . Ž . Ž . Ž .

so m s "1. Therefore the restriction of L to the orthogonal subspace toe
e is plus or minus the identity and the same for the restriction of the right

Ž y1 .Ž y1 .multiplication R . Then, with the new multiplication x ? y s R x L y ,e e e
Ž .A, ? is a Hurwitz algebra with unit element e, and, since xy s
Ž .Ž . Ž .R x L y , A is a standard composition algebra associated to A, ? .e e

From the previous results it is clear what the possibilities are for the Lie
algebra of derivations in the four-dimensional case:

THEOREM 5.6. Let A be a four-dimensional composition algebra. Then
either:

Ž .i Der A is a three-dimensional simple Lie algebra and this happens if
and only if A is a standard composition algebra, or

Ž .ii dim Der A s 1, Der A s Fd with semisimple action of d, and
dim ker d s 2, or

Ž . 2 3iii dim Der A s 1, Der A s Fd with d / 0 s d , and ker d is not
totally isotropic.

Ž .iv Der A s 0.

All the possibilities in Theorem 5.6 actually arise. The corresponding
composition algebras can be constructed starting from a Hurwitz algebra

Ž . Ž .with unit element 1 and considering the multiplication x) y s w x c y
for suitable orthogonal transformations w and c .

Remark that the largest possible derivation algebras are the three-di-
mensional simple Lie algebras, so the classification of the four-dimen-
sional composition algebras with the largest possible derivation algebra is
analogous to Petersson’s classification in dimension 2. Also notice that the

w xresults in this section strengthen M, Theorem 9.14 and 9.15 .

6. THE EIGHT-DIMENSIONAL CASE

Along this section, there will naturally appear some Z -gradations of the3
split Cayley]Dickson algebra, so we will start by considering what these
Z -gradations look like. This will permit us to clarify the relationship3
among flexible composition algebras which are not Hurwitz and certain

w xalgebras introduced in P1 , as was mentioned in the Introduction.
Let C be the split Cayley]Dickson algebra over F, thought of as Zorn’s

Ž w x. �vector matrix algebra see S1, Chap. III . There is a basis e , e , u ,1 2 1
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4u , u , ¨ , ¨ , ¨ of C in which the multiplication table is:2 3 1 2 3

e e u u u ¨ ¨ ¨1 2 1 2 3 1 2 3

e e 0 u u u 0 0 01 1 1 2 3
e 0 e 0 0 0 ¨ ¨ ¨2 2 1 2 3

u 0 u 0 ¨ y¨ ye 0 01 1 3 2 1
Ž .u 0 u y¨ 0 ¨ 0 ye 0 132 2 3 1 1

u 0 u ¨ y¨ 0 0 0 ye3 3 2 1 1

¨ ¨ 0 ye 0 0 0 u yu1 1 2 3 2
¨ ¨ 0 0 ye 0 yu 0 u2 2 2 3 1
¨ ¨ 0 0 0 ye u yu 03 3 2 2 1

Such a basis will be called a canonical basis of C. The elements e and e1 2
are orthogonal idempotents of C and the u ’s and ¨ ’s span the otheri i
Peirce subspaces.

Given a Cayley]Dickson algebra A, several nontrivial Z -gradations3
Ž .A s A [ A [ A A / 0 for any i, A A : A , indices modulo 3 will0 1 2 i i j iqj

appear in the sequel. Hence the next lemma will be very useful. It was
w xproved in EP2 with an additional hypothesis.

LEMMA 6.1. Let A be a Cayley]Dickson algebra and let A s A [ A [0 1
A be a nontrï ial Z -gradation of A. Then A is split, 1 g A , and there is a2 3 0
canonical basis of A such that either:

Ž . ² : ² :i A s F-span e , e , A s F y span u , u , u , and A s0 1 2 1 1 2 3 2
² :F y span ¨ , ¨ , ¨ , or1 2 3

Ž . ² : ² :ii A s F-span e , e , u , ¨ , A s F-span u , ¨ , and A s0 1 2 1 1 1 2 3 2
² :F-span u , ¨ .3 2

2 Ž . Ž .Proof. It is clear that 1 g A . Since x y f x, 1 x q q x 1 s 0 for any0
2 Ž . Ž .x g A, for x g A , i s 1, 2, one gets x s 0 s f x, 1 x s q x , hence x si

Ž .f x, 1 1 y x s yx g A , so A s A for any j s 0, 1, 2 and for x g A andi j j i
Ž . Ž .y g A we have f x, y s xy q yx g A l F1. Thus f A , A s 0 unlessj iqj i j

Ž . wi q j s 0 mod 3 . This is the additional hypothesis used in EP2, Proposi-
xtion 3.4 , whence the result follows.

Given a Hurwitz algebra C and an antiautomorphism w of C such that
w 3 equals the canonical involution of C, then Petersson constructed in
w xP1 a new algebra C on the same vector space C but with new multiplica-w

tion

x) y s w x wy1 y . 14Ž . Ž . Ž .
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Ž . Ž . Ž .Then x) y ) x s x) y) x s q x y, where q is the norm in C, so this
construction gives flexible composition algebras. In this situation, since w
is an antiautomorphism of C, it commutes with the canonical involution

Ž .x ¬ x of C and we get the automorphism c of C given by c x s
3Ž .w x s w x . Moreover, c s 1 and, conversely, given an automorphismŽ .

Ž . Ž .c of C of order 3, the antiautomorphism given by w x s c x s c xŽ .
verifies that w 3 is the canonical involution. The composition algebra with

y1 y1Ž . Ž . Ž . Ž . Ž .multiplication x) y s w x w y s c x c y as in 14 will also be
denoted by C .c

w xTHEOREM 6.2 EP2, Theorem 3.5 . Let C be a Hurwitz algebra o¨er
a field of characteristic / 3, let c g Aut C such that c 3 s 1, and let

� Ž . 4 ŽC s x g C: c x s x . Then, if c s 1 and this is always the case if0
.dim C F 2 , C is the para-Hurwitz algebra associated to C. Otherwise, withc

c / 1 either:

Ž .i dim C s 2 and C is a para-Hurwitz algebra, or0 c

Ž .ii dim C s 4, dim C s 8, and C is an Okubo algebra.0 c

It must be remarked here that not all the Okubo algebras over arbitrary
fields of characteristic / 2, 3 are constructed as C for suitable C and c ,c

w xsince all these algebras contain idempotents EP2, Theorem 2.5 and this is
w xno longer true for general Okubo algebras by EM4, Proposition 7.4 ,

w xwhich also shows that, under the restrictions considered in P1 about F
Žcontaining the cube roots of 1, only the split Okubo algebra the one

Ž . Ž ..obtained from sl 3, F by means of 11 appears in this construction.
We come back to the study of derivations.

LEMMA 6.3. Let A be an eight-dimensional composition algebra with a
nontrï ial Z -gradation A s A [ A [ A such that dim A s 2. Then, if3 0 1 2 0
the subalgebra A contains a one-sided unit element e such that the left and0
right multiplications in A by e commute, any derï ation of A annihilates e.

Proof. Nothing is lost if we extend scalars, so we will assume the
ground field to be algebraically closed. The Z -gradation in A induces a3

�Z -gradation in LL s Der A, so that LL s LL [ LL [ LL with LL s d g LL :3 0 1 2 i
4 Ž . Ž .dA : A indices modulo 3 . We consider the Hurwitz algebra A, ?j iqj
Ž y1 .Ž y1 . Ž . y1with x ? y s R x L y . Since q e s 1 and e g A , R A s A se e 0 e i i

y1 Ž .L A for any i and the Z -gradation in A is also a Z -gradation in A, ? ,e i 3 3
Ž .so that there is a canonical basis of A, ? with A s Fe q Fe , A s0 1 2 1

² : ² :F-span u , u , u , and A s F-span ¨ , ¨ , ¨ . But e is the unit element1 2 3 2 1 2 3
Ž . <of A, ? so e s e q e . For any d g LL , d g Der A s 0 by TheoremA1 2 0 00
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5.1 and so de s 0. Now take d g LL and three possibilities arise:1

Ž . 2i e is a two-sided unit of A : Then e s e and e e s 0 for i / j,0 i i i j
2 Ž . Ž . ŽŽ . . Ž .i, j s 1, 2. Hence, de s de s de e q e de s de e ? e q e ? ede .i i i i i i i i i i

Ž . Ž .For i s 1, since d g LL , we get de s ede , so de e s ede e. For i s 2,1 1 1 1 1
Ž . ŽŽ . . Ž . ŽŽ . .de s de e, so ede s e de e . Then 0 s d e e s de e ? e q e ?2 2 2 2 1 2 1 2 1

Ž Ž .. Ž . Ž . Ž Ž .. ŽŽ . . Ž .e de s de e q e de s e de e q e de e s e de e, since2 1 2 1 2
w xL , R s 0, and this forces de s 0.e e

Ž .ii e is a left unit of A , but not a right unit: Then, A is a standard0 0
Ž .Ž . 2composition algebra of type 9 ii , so e s 0, i s 1, 2, e e s e , andi 1 2 2

Ž . ŽŽ . . Ž . Ž . Ž .e e s e . Hence, de s d e e s de e ? ee q e e ? ede s2 1 1 1 2 1 2 1 2 1
ŽŽ . . Ž Ž .. Ž . Ž . ŽŽ . . Ž .de e ? e qe ? e de se de , and de sd e e s de e ? ee q2 1 1 1 1 2 1 2 1 2
Ž . Ž Ž .. Ž . 2 Ž . Ž . ŽŽ . . Ž .e e ? e de s de e. Now, 0 s de s e e ? ede q de e ? ee1 2 1 2 2 2 2 2

Ž . Ž . Ž . Ž . Ž . Ž . Ž .s e de q de e s e de e q de e s de e q de e s de e and de2 2 1 2 1 2
s 0 again.

Ž .iii If e is a right unit of A , but not a left unit, everything works0
the same.

Ž .Therefore LL e s 0 and similarly we prove LL e s 0, thus Der A e s 0,1 2
as required.

LEMMA 6.4. Let A be a finite dimensional composition algebra with
Ž .associated quadratic form permitting composition q and let e g A with q e s

Ž y1 .Ž y1 .1. Let ? be the Hurwitz product gï en by x ? y s R x L y defined on Ae e
with unit element e2. Then,

w x w x� 4d g Der A: de s 0 s d g Der A , ? : d, L s d , R s 0 ,� 4Ž . e e

where L and R are the left and right multiplications by e in A.e e

w x w xProof. For d g Der A with de s 0, d, L s L s 0 s R s d, R .e de de e
w y1 x w y1 x Ž .Hence, d, L s d, R s 0 and it is clear now that d g Der A, ? .e e

Ž . w x w xConversely, any d g Der A, ? with d, L s d, R s 0 is a derivatione e
Ž . Ž . 2of A since xy s R x ? L y for any x, y g A. Moreover, since e is thee e

Ž . 2 Ž . Ž . Ž .unit of A, ? , 0 s de s d L e s L de , but q e s 1, so L is a bijec-e e e
tion and de s 0.

From now on, we will assume that the characteristic of the ground field F
is / 2, 3.

Our first purpose is to show that under some restrictions, given an
eight-dimensional composition algebra, either it is an Okubo algebra or

Ž . Ž .there is an idempotent e with q e s 1 such that Der A e s 0. In the
first case the derivation algebra is known by Section 4. In the last case,
Lemma 6.4 tells us that Der A is a specific subalgebra of the derivation
algebra of a Hurwitz algebra, and this latter algebra is well known.
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Let A be an eight-dimensional composition algebra over F, which we
assume for a while to be algebraically closed. Let LL s Der A and let H
be a Cartan subalgebra of LL . Then A decomposes in a direct sum of
weight spaces,

A s A , 15Ž .[ a
agP

where P is a subset of mappings from H into F.
1Ž .By Theorem 2.3, if , s f is the bilinear symmetric form permitting2

Ž .composition, A , A / 0 if and only if b s ya , and by the nondegener-a b

Ž .acy of , this forces dim A s dim A . Also A A : A for anya ya a b aqb

a , b g P.

PROPOSITION 6.5. Let A be an eight-dimensional composition algebra o¨er
an algebraically closed field F, let LL be its Lie algebra of derï ations, and let

ŽH be a Cartan subalgebra of LL although it would suffice H to be a nilpotent
.subalgebra . Assume that there are two linearly independent weights in the

Ž .decomposition 15 . Then, there are two linearly independent weights a , b
Ž .such that 15 becomes

A s A [ A [ A [ A [ A [ A [ A , 16Ž .Ž . Ž .0 a b yŽaqb . ya yb aqb

where dim A s 2, dim A s 1 for any g / 0. Moreo¨er, A together with0 g 0
A s A [ A [ A and A s A [ A [ A forms a Z -1 a b yŽaqb . 2 ya yb aqb 3
gradation of A. Besides, H is a two-dimensional abelian subalgebra.

Ž .Proof. Let a and b be linearly independent weights in 15 . Then

A s A [ A [ A [ A [ A#,Ž . Ž .a ya b yb

where A# is the sum of the other weight spaces and it is also the
Ž . Ž .orthogonal complement to A [ A [ A [ A . In case A s 0,a ya b yb 0

as in Lemma 5.4 we conclude that "2a , " 2b g P, but then also 0 /
Ž .A [ A A , so a q b or ya q b g P and there is not enough rooma ya b

for so many weights. Hence, A / 0 and again either a q b or b y a g P.0
Ž .In case a y b g P, we change b by yb to get the decomposition 16 .

<The Z -gradation is clear and for any d g H, d is a derivation of aA3 0

<two-dimensional composition algebra. Hence d s 0 by Theorem 5.1, soA0

any d g H acts diagonally on A and the last assertion follows easily.

Therefore, the maximum number of linearly independent weights for the
action of the Cartan subalgebra H of LL s Der A on A is two. In case this
maximum is attained we will say that the toral rank of LL on A is two.
Notice also that the roots of H in LL are differences of weights.
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Now, with A, H, LL , and F as in Proposition 6.5, A is a two-dimen-0
Ž .sional composition algebra over the algebraically closed field F, so by 4

and the comments that follow it, A is a standard composition algebra. Let0
Ž .e be an idempotent of A with q e s 1. Hence, e is the unit element if0

Ž .Ž . Ž .A is Hurwitz, the one-sided unit element in cases 4 ii and iii or a0
para-unit in the para-Hurwitz case. Moreover, since dim A s 1 for anyg

g / 0 and A A q A A : A , the left and right multiplications by e, L ,0 g g 0 g e
and R , are diagonalizable. Consider the Hurwitz product on A: x ? y se
Ž y1 .Ž y1 .R x L y with unit element e. By Lemma 6.1 and its proof, there is ae e

� 4 Ž .canonical basis e , e , u , u , u , ¨ , ¨ , ¨ of A, ? with A s Fe q Fe ,1 2 1 2 3 1 2 3 0 1 2
e s e q e , A s Fu , A s Fu , A s Fu , A s F¨ , A s1 2 a 1 b 2 yŽaqb . 3 ya 1 yb

� 4F¨ , and A s F¨ . In the basis e, e y e , u , u , u , ¨ , ¨ , ¨ the2 aqb 3 1 2 1 2 3 1 2 3
matrices associated to L and R are diagonal and present the forme e

diag 1, " 1, e , e , e , ey1 , ey1 , ey1Ž .1 2 3 1 2 3

since both L and R are orthogonal transformations.e e

THEOREM 6.6. Let A be an eight-dimensional composition algebra o¨er F,
F the algebraic closure of F, and A s F m A. Assume that Der A has toralF
rank 2 on A. Then either:

Ž . Ž . Ži there is an element e g A with q e s 1 q being the quadratic form
. Ž .permitting composition such that Der A e s 0, or

Ž .ii A is an Okubo algebra.

�Proof. We can assume that F is algebraically closed since F m x g A:F
Ž . 4 � Ž . 4 Ž . Ž .Der A x s 0 s x g A: Der A x s 0 and if Der A x s 0 and q x /

Ž Ž .. 2 Ž . Ž .0, then with e s 1rq x x , q e s 1, and Der A e s 0.
Ž .We have then a decomposition 16 relative to certain Cartan subalgebra

H of LL s Der A and take e as in the paragraph preceding the theorem.
Then, since L and R are simultaneously diagonalizable, they commute.e e

Ž .So in case A is not para-Hurwitz, then Der A e s 0 by Lemma 6.3.0
Thus, assume A is para-Hurwitz and none of the three para-units of A0 0
is annihilated by LL . Let z be a para-unit of A ; without loss of generality0

Ž .there is a d g LL root space such that 0 / dz g A . Then, the composi-a a

tion subalgebra A s A [ A [ A has a nonzero nilpotent derivation,0 a ya

namely the restriction of d, and at least a nonzero semisimple derivation
Ž Ž . . Ž .the restriction of h g H with a h / 0 . By Theorem 5.5, A a s A [0
A [ A is a standard composition algebra. Then, the only element ina ya

Ž . Ž .A a , up to scalars, annihilated by Der A a is the distinguished element
Ž . Ž .of A a , in this case the unique para-unit of A a , which belongs to A ;0

let us denote it by e. Thus, LL e s 0, where LL is the corresponding root" a a

space relative to the Cartan subalgebra H in LL , and in particular, de s 0.
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Ž . Ž y1 .Ž y1 .Define now the Hurwitz algebra A, ? by x ? y s R x L y with unite e
element e and consider a canonical basis as in the paragraph preceding
the theorem.

Since dz / 0 s de, we have de s yde / 0 and can assume de s u1 2 1 1
Ž . Ž . Ž .recall that d g LL . Since de s 0, d g Der A, ? and du s d e ? u sa 2 1 2
Ž . Ž .de ? u q e ? du s u ? u s ¨ , since du g LL A : A s F¨ and1 2 1 2 1 2 3 2 a b aqb 3
e ? ¨ s 0. Let the matrices associated to L and R in the basis1 3 e e
� 4 Ž y1 y1e, e y e , u , u , u , ¨ , ¨ , ¨ be given by diag 1, y1, a , b , g , a , b ,1 2 1 2 3 1 2 3 l l l l l

y1 . Ž y1 y1 y1.g and diag 1, y1, a , b , g , a , b , g . Since e is the para-unit ofl r r r r r r
Ž . y1 Ž . Ž . Ž .A a , a s a s y1. Now, g ¨ s e du s d eu s b du s b ¨ ,l r l 3 2 2 l 2 l 3

so b s gy1 and also b s gy1. On the other hand, our hypothesis is thatl l r r
there are derivations which do not annihilate e and this can be taken in
root spaces of LL with respect to H. Without loss of generality, there is
d9 g LL such that d9e s u . Thenb 2

dXe s dXe2 s d9e e q e dXeŽ . Ž .2 1 1 1 1 1

s dXe e ? e q e ? e d9e s dXe eŽ . Ž . Ž .Ž . Ž .1 2 2 1 1

dXe s dXe2 s dXe e q e dXeŽ . Ž .1 2 2 2 2 2 17Ž .

s dXe e ? e q e ? e d9e s e dXeŽ . Ž . Ž .Ž . Ž .2 1 1 2 2

0 s dX e e s dXe e ? e q e ? e dXe s dXe e q e dXe .Ž . Ž . Ž . Ž . Ž .Ž . Ž .2 1 2 2 1 1 2 1

Ž X . Ž X . 3 Ž X . 2 ŽŽ X . .Hence, e d e s y d e e and L d e s y L d e e s1 2 e 1 e 2
ŽŽ Ž X .. . ŽŽ X . . Ž X . XyL e d e e s yL d e e s yL d e s yd e , where we havee 2 e 1 e 2 1

w x 3Ž X . X 3Ž X . Xused that L , R s 0. Similarly R d e s yd e , L d e s yd e , ande e e 1 1 e 2 2
3Ž X . X X XR d e s yd e . Since d e , d e g A s Fu , they are eigenvectors ofe 2 2 1 2 b 2

L and R which are not zero, we conclude that b and b are cube rootse e l r
Ž X X . X Ž X .of y1. If, for instance, b s y1 ed e s yd e , then d e s e ed e sl 1 1 1 1

Ž X . Ž X . X Ž . X XŽ .ye d e e s y d e e s yd e by 17 , but this forces d e s d e q e2 1 2 1 2
s 0, a contradiction. By the same token b / y1.r

Then, b s yv, where v is a cube root of 1, v / 1, so g s by1 s yv 2.l l l
X X 2 Ž . XOn the other hand, d e s d e s R q L d e, so b y v s 1. Since b ise e r r

also a primitive cube root of y1, we obtain b s yv 2 and g s by1 sr r r
yv. As a conclusion, the matrices associated to L and R in the basise e
� 4 Ž 2e, e y e , u , u , u , ¨ , ¨ , ¨ are respectively diag 1, y1, yv, yv , y1,1 2 1 2 3 1 2 3

2 . Ž 2 2 . Ž .yv , yv and diag 1, y1, y1, yv , yv, y1, yv, yv , so xy s xe ?
y1Ž . Ž . Ž . Ž .ye s c x c y , where c is the automorphism of A, ? such that

˜² : ² :c s 1 on A s F-span e , e , u , ¨ , c s v1, on A s F-span u , ¨ ,0 1 2 1 1 1 2 3
2 ˜ ² :and c s v 1 on A s F-span u , ¨ . From Theorem 6.2, we conclude2 3 2

that A is the Okubo algebra.
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Remark . The proof of Theorem 6.6 shows that if A is an eight-dimen-
sional composition algebra over an algebraically closed field, other than an
Okubo algebra, and H is a Cartan subalgebra of Der A with associated

Ž . Ž .weight decomposition as in 16 , then the element e in part i of the
Žpreceding theorem can be chosen to be a distinguished element unit,

.one-sided unit, or para-unit of the two-dimensional composition subalge-
bra A . In particular, it can be chosen to be an idempotent.0

With A as in the theorem, in case there is an element e g A with
Ž . Ž .q e s 1 and Der A e s 0, Lemma 6.4 proves that Der A is a subalgebra

Ž . Ž y1 .Ž y1 . Ž .of Der A, ? , where x ? y s R x L y , so that A, ? is a Hurwitze e
Ž .algebra. Then, Der A, ? is known to be a central simple Lie algebra of

type G . The largest possible derivation algebras in this situation appear2
Ž . Ž .when Der A s Der A, ? . As in the four-dimensional case Theorem 5.5 ,

we have:

THEOREM 6.7. Let A be an eight-dimensional composition algebra and
Der A its Lie algebra of derï ations. Then A is a standard composition algebra
if and only if Der A is a central simple Lie algebra of type G .2

Proof. By Section 3, we again can assume that F is algebraically closed.
If C is a Hurwitz algebra, the same argument as in the proof of Theorem
5.5 shows that the derivation algebra of any of the standard composition
algebras associated to C is the same derivation algebra of C. Now, assume
that A is an eight-dimensional composition algebra with Der A the central
simple Lie algebra of type G over F. Take H a Cartan subalgebra, since2

Žany root of H is a difference of weights the action of Der A on A is
.faithful it follows that the toral rank of Der A on A is two and by the

remark following Theorem 6.6, since the derivation algebra of any Okubo
algebra is not of type G , we conclude that there is an idempotent e g A2

Ž . Ž .such that q e s 1 and Der A e s 0. We pass to the Hurwitz algebra
Ž . Ž y1 .Ž y1 .A, ? with x ? y s R x L y and unit element e, so by our hypothe-e e

Ž . Ž .ses and Lemma 6.4, Der A s Der A, ? . But Der A, ? acts irreducibly on
Ž .HV s Fe , the orthogonal complement to Fe under q. By Schur’s Lemma,

< <L and R are scalars, and since they are orthogonal transformations,V Ve e
< <we get L s "1 and R s "1. That is, both L and R are either 1V Ve e e e

Ž . Ž . Ž .or the canonical involution of A, ? . Since xy s R x ? L y we obtaine e
Ž .that A is a standard composition algebra associated to A, ? .

Notice that, similarly to the situation in the four-dimensional case, the
composition algebras analogous to the ones in Petersson’s classification in
dimension 2 appear when we impose a central simple derivation algebra of
type G .2
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Assume for a while that the field F is algebraically closed, A is an
eight-dimensional composition algebra, LL s Der A its Lie algebra of
derivations, H a Cartan subalgebra of LL so that we have a weight space

Ž .decomposition as in 16 , and A is not an Okubo algebra. From the
Žremark after Theorem 6.6, there is a distinguished element in A unit,0

. Ž .one-sided unit, or para-unit with Der A e s 0. We use this e to define
Ž .the Hurwitz algebra A, ? as in the paragraph preceding Theorem 6.6.

� 4 ŽThen, the matrix of L in basis e, e y e , u , u , u , ¨ , ¨ , ¨ is diag 1,e 1 2 1 2 3 1 2 3
y1 y1 y1. Ž"1, e , e , e , e , e , e and similarly for R . The type of A see1 2 3 1 2 3 e

.Section 3 is determined by the signs in the second place of the diagonal of
these matrices. Therefore, it seems more natural to consider, instead of
Ž .A, ? , the associated standard composition algebra of the same type as A.

Ž .Hence, if x ¬ x is the canonical involution of A, ? , we consider the
Ž .standard algebra A, ( with x( y s x ? y, x ? y, x ? y or x ? y according to

Ž .the type of A. For instance, we choose x( y s x ? y in case e e y e s e1 2 1
Ž .y e and e y e e s e y e . The multiplication in A is then given by2 1 2 2 1

xy s w x (c y ,Ž . Ž .
Ž . Žwhere w x s xe or xe s xe since R commutes with the canonicale
. Ž . Ž .involution and c x s ex or ex s ex according to the type. From

Lemma 6.4 we conclude that

w x w xDer A s d g Der A , ? : d, L s d , R s 0� 4Ž . e e

w x w xs d g Der A , ( : d, w s d , c s 0 .� 4Ž .
Moreover, in the chosen basis of A, the matrices of w and c are

w l diag 1, 1, m , m , m , my1 , my1 , my1 ,Ž .1 2 3 1 2 3

c l diag 1, 1, n , n , n , ny1 , ny1 , ny1Ž .1 2 3 1 2 3

for suitable nonzero scalars m ’s and n ’s. A lengthy computation, which wei i
omit, gives:

PROPOSITION 6.8. With the hypotheses abo¨e:

Ž .i Der A is the central simple Lie algebra of type G if and only if2
Ž .w s c s 1, so that A s A, ( .

Ž . Ž . Žii Der A is isomorphic to sl 3, F the central simple Lie algebra of
.type A if and only if m s m s m , n s n s n , and at least one of m2 1 2 3 1 2 3 1

� Ž . 4and n are not equal to 1. In this case x g A: Der A x s 0 equals A in1 0
Ž .16 , so it is two-dimensional and the orthogonal complement of A relatï e to0
q splits into the direct sum of the two irreducible dual modules of Der A (
Ž .sl 3, F , namely the subspaces A and A in the Z -gradation considered in1 2 3

Proposition 6.5.
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Ž .iii Otherwise, dim Der A F 6 and Der A is either isomorphic to a
Ž . Ž .direct sum of two copies of sl 2, F , or to a direct sum of a copy of sl 2, F

and a one-dimensional center or it is a two-dimensional abelian Lie algebra.

Since we want to consider those composition algebras with derivation
algebras as large as the ones of the flexible composition algebras, we must
finally turn our attention to those composition algebras which, after

Ž .extension of scalars, become the algebras in Proposition 6.8 ii . For the
Ž .latter algebras, the last assertion in Proposition 6.8 ii tells us that the

centralizer CC of the action of Der A in the orthogonal complement
H Ž .W s A is two-dimensional. Moreover, since Der A A s 0, it follows0 0

that

< <L : x g A s CC s R : x g A .� 4 � 4W Wx 0 x 0

THEOREM 6.9. Let A be an eight-dimensional composition algebra such
that Der A is a central simple Lie algebra of type A and A is not an Okubo2
algebra. Then, there is a Cayley]Dickson algebra C, with multiplication
denoted by juxtaposition, a two-dimensional Hurwitz subalgebra K of C and
two orthogonal transformations w and c of C which are the identity on the

Ž < <orthogonal complement W of K so that w and c are orthogonalK K
. Ž .transformations of K such that A is isomorphic to C, ( , where

x( y s w x c y 18Ž . Ž . Ž .
for all x, y g C. Moreo¨er, under the isomorphism K corresponds to the

� Ž . 4subalgebra x g A: Der A x s 0 .
Ž .Con¨ersely, gï en C, K, W, w, c , and x( y as abo¨e, Der C, ( is a central

Ž .simple Lie algebra of type A with the only exceptions of w, c s2
Ž . Ž . Ž . Ž .1, 1 , yj, 1 , 1, yj , or yj, yj , where j is the canonical in¨olution of C.

Ž . Ž .For these four cases C, ( is a standard composition algebra and Der C, (
is a central simple Lie algebra of type G .2

Proof. Let A be an eight-dimensional composition algebra as in the
theorem. From Proposition 6.8 and the comments following it, if A s0
� Ž . 4x g A: Der A x s 0 , then A is two-dimensional, and if W is the ortho-0
gonal complement to A , the centralizer of the action of Der A on W0

� < 4 � < 4is L : x g A s R : x g A . Hence, there are elements u, ¨ gW Wx 0 x 0
< < Ž . Ž .A with R s 1 s L and this forces q u s q ¨ s 1. We considerW W0 u ¨

Ž .now the composition algebra C s A, ? with multiplication

x ? y s Ry1 x Ly1 yŽ . Ž .u ¨

for any x, y g A. C is a Hurwitz algebra with unit 1 s ¨u. Then, xy s
Ž . Ž . < <w x ? c y with w s R and c s L , which verify w s c s 1 andW Wu ¨

Ž .K s A , ? is a Hurwitz subalgebra of C.0



ELDUQUE AND PEREZ´400

For the converse, let C, K, W, w, and c be as in the theorem and let
Ž . � Ž . 4x( y be defined by 18 . Let Der C s d g Der C: d K s 0 , which is aK

Ž w x.central simple Lie algebra of type A see EM5, Theorem 4.11 . By the2
Ž .hypotheses on w and c , it is clear that Der C : Der C, ( . Now, byK

Ž . Ž .Proposition 6.8, either Der C, ( s Der C or C, ( is a standard compo-K
sition algebra. Thus, we must study under what conditions this last situa-
tion is verified.

Ž . Ž .If C, ( is a Hurwitz algebra with unit element e, then Der C, ( e s 0,
Ž . Ž .so Der C e s 0 and e g K. For any x g W with q x / 0, if 1 denotesK

Ž . Ž .the unit element of C, 1 x s x s e( x s w e x, so w e s 1 and, similarly,
Ž . Ž . Ž . Ž . Ž .c e s 1. Besides, for any x g K, x s e( x s w e c x s 1c x s c x ,

so c s 1, and also w s 1.
Ž . Ž .Ž .If C, ( is a standard composition algebra of type 9 ii and e is its left

Ž .unit, as above we conclude that w e s 1 and c s 1. Then, for any x g W,
Ž . Ž .yx s x( e s w x e s xe, so e s y1. Now, if x g K and t x s 0, yx s

Ž . Ž . Ž .x( e s w x e s yw x and w s yj. In the same way, if C, ( is standard
Ž .Ž .of type 9 iii , then w s 1 and c s yj.

Ž .Finally, if C, ( is para-Hurwitz with para-unit e, again e g K. For any
Ž . Ž . Ž . Ž .x g W with q x / 0, yx s e( x s w e x, so w e s y1, and also c e

Ž . Ž . Ž .s y1. Now, with x g K such that x, e s 0, yx s e( x s w e c x s
Ž . Ž . Ž . Ž .yc x , so c x s x s w x and since w and c are orthogonal, w e s

Ž . Ž ."e s c e , so that e s "1. Since w s c are not 1 otherwise C, ( would
.be Hurwitz , we arrive at e s 1 and w s c s yj.

w Ž .xThe next lemma extends EM5, Theorem 4.11, ii and will help us to set
the notation too:

LEMMA 6.10. Let C be a Cayley]Dickson algebra, K a two-dimensional
Hurwitz subalgebra of C, and let W be the orthogonal complement to K.
Define a multiplication in W by

x) y s projection of xy on W 19Ž .
Ž .for any x, y g W, and let Aut C, K be the group of automorphisms w of C

Ž . <such that w K s K. Then, the restriction map w ¬ w is an isomorphismW
Ž . Ž . Ž Ž ..between Aut C, K and Aut W, ) the group of automorphisms of W, ) .

w xProof. With the same notation as in EM5 , for a, b g W, we have
Ž .ab s a) b y s a, b , with s : W = W ª K a K-hermitian form. If w g

Ž . Ž . Ž Ž .. Ž . Ž .Aut C, K and a, b g W, w a) b s w ab q s a, b s w a w b q
Ž Ž .. Ž . Ž . Ž Ž Ž .. Ž Ž . Ž ...w s a, b s w a ) w b q w s a, b y s w a , w b , so that
Ž . Ž . Ž . Ž Ž .. Ž Ž . Ž ..w a) b s w a )w b and w s a, b s s w a , w b . In particular,
< Ž . Ž . ww g Aut W, ) . Conversely, given c g Aut W, ) , then by EM5, Theo-W

x Ž s. Žrem 2.5 , there exists s: K ª K x ¬ x automorphism so that s equals
. Ž Ž . Ž .. Ž . seither 1 or the conjugation such that s c a , c b s s a, b , and we

Ž . s Ž .can extend c to C by c a q a s a q c a for any a g K and a g W.
w Ž .x Ž .By EM5, 3.2 , this extension belongs to Aut C, K .
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w x Ž .From EM5, Theorem 2.5 it follows that for w g Aut C, K as in
< < ŽLemma 6.10, w s 1 if and only if w is K-linear W is a left K-moduleK W
. < <in a natural way and w is the conjugation in K if and only if w isK W

<s-semilinear, with s s w the nontrivial F-automorphism of K. More-K
w x Ž .over, EM5, Theorem 4.9 tells us that the group Aut C, K is the semidi-

Žrect product of Aut C the group of automorphisms of C fixing element-K
.wise K and a cycle group of order 2 generated by an element w g

Ž . <Aut C, K such that w is the nontrivial F-automorphism of K.K
Ž .The algebra W, ) in Lemma 6.10 is a ‘‘vector color algebra,’’ which

consists of the elements of trace zero of a form of the color algebra
w xintroduced in D-KD in connection with the Gell-Mann quark model and

w xwhich has been studied by several authors E, EM3, EM5, S2, S3 .
As to the problem of isomorphism between composition algebras in

Theorem 6.9, we have:

Ž . Ž .THEOREM 6.11. Let C , K and C , K be two pairs of Cayley]Dick-1 1 2 2
Ž .son algebras and Hurwitz subalgebras of dimension 2. Let w , c i s 1, 2 bei i

< <orthogonal transformations of C such that w W s c W s 1, where W is thei i i i i i
Ž .orthogonal complement to K i s 1, 2 . Define the new composition algebrasi

Ž . Ž .C , ( by means of 18 and let r : C ª C be a linear map. Then r is ani 1 2
Ž . Ž .isomorphism between C , ( and C , ( if and only if r is an isomorphism1 2

between the Cayley]Dickson algebras C and C and w s rw ry1 and1 2 2 1
c s rc ry1.2 1

Ž .Proof. In case the C , ( are standard, it is clear that any isomorphismi
Ž . Ž .between C , ( and C , ( is an isomorphism between C and C , so1 2 1 2

Ž .r j s j r, where j is the canonical involution of C i s 1, 2 and the1 2 i i
result follows in this case.

Ž . Ž .So assume that C , ( i s 1, 2 is not standard. If r is an isomorphismi
Ž . Ž . �between C , ( and C , ( then, since by Theorem 6.9, K s x g C :1 2 i i

Ž . 4 Ž . Ž .Der C , ( x s 0 i s 1, 2 , we get that r K s K and then alsoi 1 2
Ž . <r W s W . Therefore, r gives an isomorphism between the algebrasW1 2 1

Ž . Ž . Ž .W , ) and W , ) defined by 19 . The proof of Lemma 6.10 gives that1 2
there is a unique isomorphism r between the Cayley]Dickson algebras C˜ 1

< < Ž w x.and C such that r W s r W see also EM5, Theorem 3.1 . But for any˜2 1 1
Ž .a g K , there are a, b g W such that ab s a q a) b. Then, r a is the1 1

Ž . Ž . Ž . Ž . Ž . Ž .projection on K of r ab s r a( b s r a ( r b s r a ( r b s˜ ˜2
Ž . Ž . Ž . Ž .r a r b s r ab , which is r a . Hence, r s r is an isomorphism be-˜ ˜ ˜ ˜ ˜

tween C and C . Now, take a nonisotropic vector y g W , then for any1 2 1
Ž Ž .. Ž . Ž Ž .. Ž Ž .. Ž Ž . Ž .. Ž .x g C , r w x r y s r w x r c y s r w x c y s r x( y s1 1 1 1 1 1

Ž . Ž . Ž Ž Ž ..Ž Ž Ž .. Ž Ž .. Ž . Ž .r x ( r y s w r x c r y s w r x r y . Since r y is not2 2 2
isotropic, we conclude that rw s w r and, in the same way, rc s c r,1 2 1 2
as required. The converse is clear.
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Now, the problem of isomorphism is solved by:

THEOREM 6.12. Let C be a Cayley]Dickson algebra, K a two-dimensional
Hurwitz subalgebra of C, w , w , c , c orthogonal transformations of C with1 2 1 2

< < Ž .w s c s 1 i s 1, 2 , where W is the orthogonal complement to K.W Wi i
Ž .Define new multiplications as in 18 by

x( y s w x c y and xe y s w x c y .Ž . Ž . Ž . Ž .1 1 2 2

ˆ ˆ Ž .Denote by w , w , c , c the restrictions to K. Then, C, ( is isomorphic toˆ ˆ1 2 1 2
ˆ ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž .C, e if and only if either w , c s w , c or w , c s sw s, sc s ,ˆ ˆ ˆ ˆ1 1 2 2 1 1 2 2

Žwhere s is the nontrï ial F-automorphism of K the restriction of the canonical
.in¨olution of C .

ˆ ˆŽ . Ž .Proof. For the converse, if for instance, w , c s sw s, sc s , weˆ ˆ1 1 2 2
Ž . < Žtake an element r g Aut C, K such that r s s this is always possibleK

. y1 y1by the remarks after Lemma 6.10 . Then, w s rw r , c s rc r , and2 1 2 1
for any x, y g C,

r x( y s r w x c y s rw x rc yŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .1 1 1 1

s w r x c r y s r x er y .Ž . Ž . Ž . Ž .Ž . Ž .2 2

Ž . Ž . Ž .Now, if r : C, ( ª C, e is an isomorphism and C, ( is standard, then
Ž .so is C, e and of the same type. We necessarily have then by Theorem

ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž .6.9 that w , c s w , c , so w , c s w , c s sw s, sc s and weˆ ˆ ˆ1 1 2 2 1 1 2 2 2 2
Ž . Ž .are done. Otherwise, by the proof of Theorem 6.11, r K s K, r W s W,

y1 y1 < < Ž . <and w s rw r , c s rc r . Since w s c s 1 i s 1, 2 and rW W K2 1 2 1 i i
ˆ ˆŽ . Ž .is either 1 or s, by restricting to K we obtain either w , c s w , c orˆ ˆ1 1 2 2

ˆ ˆŽ . Ž .w , c s sw s, sc s .ˆ ˆ1 1 2 2

COROLLARY 6.13. Assume that F is algebraically closed and C is the
Cayley]Dickson algebra o¨er F. Let K s F [ F be a two-dimensional Hur-
witz subalgebra of C. Then, for each type I]IV, there are infinite classes of
isomorphism of composition algebras constructed as in Theorem 6.9 from the

Ž .pair C, K .

Proof. From Theorem 6.12, it is enough to notice that the special
� Ž y1 .orthogonal group of K is the group of diagonal matrices diag a , a :

40 / a g F , which is infinite.

w xIn P2 , it is proved that there are infinite classes of isomorphism of
composition algebras. The corollary above shows that this is indeed the
case even if we assume a large derivation algebra.

In conclusion, notice that we have proved that the class of eight-dimen-
sional composition algebras with derivation algebra as large as the deriva-
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tion algebra of the flexible composition algebras consists of the standard
composition algebras, the Okubo algebras, and some algebras constructed

Ž .from pairs C, K as in Theorem 6.9.
The number of possibilities for the derivation algebra of an eight-dimen-

sional composition algebra is very large and we have only touched upon
w xthe toral rank two case. Much more information is contained in Pe .´
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