Proceedings of the Edinburgh Mathematical Society (1999) 42, 641-653 ©

COMPOSITION ALGEBRAS OF DEGREE TWO

by ALBERTO ELDUQUE* and JOSE M. PEREZ-IZQUIERDO*
(Received 2nd April 1998)

Composition algebras in which the subalgebra generated by any clement has dimension at most two are
classified over fields of characteristic # 2, 3. They include, besides the classical unital composition algebras,
some closely related algebras and all the composition algebras with invariant quadratic norm.

1991 Mathematics subject classification: 17A7S.

1. Introduction

An algebra A with product xy over a field F is called a composition algebra if there
exists a quadratic form n(): A — F such that for any x,y € 4

n(xy) = n(x)n(y), )

and the bilinear form n(x, y) = n(x + y) — n(x) — n(y) is nondegenerate. Since n(x, x) =
2n(x), over fields of characteristic not 2 we will consider the bilinear form (x, y) = 1n(x, y)
instead of n(, ), so n(x) = (x, x).

The first well known composition algebras were those with unit element [13, 14], also
termed Hurwitz algebras. The generalized Hurwitz’s Theorem [13, 26] establishes that
they are isomorphic to either the base field F (char F#2), F®F, a separable
quadratic extension of F, a generalized quaternion algebra or a Cayley-Dickson
algebra. In particular, the dimension of any Hurwitz algebra is 1, 2, 4 or 8.

Hurwitz algebras are the main source to construct finite dimensional composition
algebras without unit element [14). Given a Hurwitz algebra with product xoy,
quadratic form n( ) and ¢, ¥ two isometries of n( ), then the new product

xy = ¢(x) o Y(y) @

defines a new composition algebra with the same quadratic form n(). Contrary to the
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original algebra, this new algebra is, in general, non-unital. Conversely, given a finite
dimensional composition algebra A with product xy and quadratic form n(),
Kaplansky [14] proved that for any element a € A with n(a) # 0 the left and right
multiplication operators by u = a’/n(a) (denoted by L, and R,) are isometries of n().
So the new product

xoy=(R;'x)(L;'y) €)

gives a composition algebra with attached quadratic form n(), and the element u’
becomes the unit. As an immediate consequence, any finite dimensional composition
algebras has dimension 1, 2, 4 or 8.

In general, over algebraically closed fields, altering the product x oy of a Hurwitz
algebra (A, o) as in (2) leads to a new composition algebra with “fewer degrees of
symmetry” (i.e. a poorer derivation algebra) except for the following products:

MDxoy (Dxoy () xoy (IV)Xoy

where x — X denotes the standard involution of the Hurwitz algebra (4, o) [10]. The
new algebras we obtain in this way are called standard composition algebras (of type
I,...,IV respectively) associated to the original Hurwitz algebra (4, o). Standard
composition algebras of type IV are also referred as para-Hurwitz algebras [20, 21).
Although all standard composition algebras agree to be the base field F when the
dimension of A is one, standard composition algebras of different type are not
isomorphic in higher dimensions. With the exception of the two dimensional para-
Hurwitz algebras, the forms of standard composition algebras are again standard of
the same type [10].
The bilinear form of para-Hurwitz algebras satisfies the following equation:

(xy, 2) = (x, y=2), O]

i.e. the bilinear form is associative. For any algebra, the composition identity (1) and
the previous one are equivalent to the following:

(xy)x = (x, x)y = x(yx). )

Moreover, in that case the dimension is necessarily finite [20]. Such algebras are called
symmetric [15].

Motivated by work on the SU(3) particle physics, Okubo and Osborn proved that,
over algebraically closed fields of characteristic not 2, any symmetric composition
algebra is either a para-Hurwitz algebra or a pseudo-octonion algebra [20, 21]. Given
an algebraically closed field F (char F # 2, 3), the pseudo-octonion algebra Py(F) over
F is defined from the set of 3 by 3 trace zero matrices by changing the usual matrix
product xy by
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1
xxy=puxy+ (1 — pyx — 3 trace(xy)l,, 6)

where u is a root of the equation 3u(l — u) =1 and I; is the 3 by 3 identity matrix.
The quadratic form n(x) =§trace(x2) allows composition for the new product *. A
general definition of pseudo-octonions, valid over any field, can be found in [9]. Given
F the algebraic closure of F, the forms of Py(F) are called Okubo algebras. They have
been classified by Elduque and Myung in [6] and by Elduque in [3, 4].

In general, to classify all finite dimensional composition algebras is an open
problem. However, if we impose certain general identities on these algebras then such
a classification can be afforded. Symmetric composition algebras have been studied in
{20, 21]. In [19] Okubo shows that, over fields of characteristic not 2, any finite
dimensional composition algebra verifying the flexible identity (xy)x = x(yx) is either a
form of a Hurwitz algebra, a form of a para-Hurwitz algebra or an Okubo algebra.
In [7] Elduque and Myung find, over fields of characteristic not 2 or 3, an equivalence
between the category of finite dimensional flexible composition algebras without unit
element and the category of separable alternative algebras of degree 3. This approach
leads to the same results as in [19]. In [8] we study finite dimensional composition
algebras satisfying the identity xx? = x’x (third power associative law). After long
computations we conclude that these algebras do not contribute any new examples
because they become either Hurwitz algebras or symmetric algebras.

The study of infinite dimensional composition algebras is much more involved.
Although Kaplansky [14] thought those algebras could not exist, Urbanik and Wright
[25] gave a whole family of infinite dimensional absolute valued algebras. An absolute
valued algebra is an algebra over the real numbers with a norm || such that
|xyl = |x||ly| for any x and y. In case this norm arises from a scalar product (,), i.e.
|x| =+/(x, x), as it happens to be in the examples given by Urbanik and Wright, we
get infinite dimensional composition algebras.

The existence of one sided unity is not enough to force a composition algebra to be finite
dimensional[1, 11,23]. In fact, there are not many conditions under which we can claim that
a composition algebra is finite dimensional. An algebra A is called algebraic if the
subalgebra generated by any element x, alg(x), is finite dimensional. The degree of A4 is the
supremum of {dimalg(x)} | x € A. The first step in the study of this property for
absolute valued algebras has been carried out by Rodriguez Palacios in [24]:

Theorem 1. Any absolute valued algebra of degree 2 is finite dimensional and it is
isomorphic to a standard composition algebra or an Okubo algebra.

More recently, it has been proved, by means of topological arguments, that the
dimension of any algebraic absolute valued algebra is finite [12].

In this paper we are concerned with an analogue of Theorem 1 for arbitrary
composition algebras. The main result is the following:

Main Theorem. Let A be a composition algebra of degree 2 over a field with more
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than five elements and characteristic # 2,3. Then the dimension of A is finite and A is
isomorphic to one of the following algebras: a standard composition algebra, a form of a
two dimensional para- Hurwitz algebra or an Okubo algebra.

Using this result, we will give in Section 4 a drastically simpler proof of the
classification of third power associative composition algebras [8].

2. Composition algebras of degree two

The simpler composition algebras of degree 2 are those of dimension 2, which have
been classified by Petersson [22] (where the extra hypotheses of the characteristic of the
ground field to be # 2 is imposed, but the proof can be adapted to suppress this):

Proposition 1. Let A be a two-dimensional composition algebra with product denoted
by xy. There can be defined a new product o on A such that (A, o) becomes a Hurwitz
algebra and the product xy is given by one of the following formulae:

Dxoy (ADXoy (IID)xoy (IV)uoXxo}y,
where n(u) = 1 and x — X denotes the standard involution on (A, o).

Looking at the algebras in the previous proposition we can check that only those
of type I and IV are third power associative algebras [8]:

Proposition 2. Let A be a two-dimensional composition algebra over a field with at

least three elements. The following statements are equivalent:
(1) A is commutative.

(i) A is flexible.

(iii) A is third power associative.

(iv) The product of A is given by formulas (1) or (1V) in the previous proposition.

(v) A is either a Hurwitz algebra or a form of a para-Hurwitz algebra.

Proof. Only (iii) implies (iv) requires some care. Because of the assumptions on
the field, the scalars can be extended; so then assume that the ground field is

algebraically closed. Then it is straightforward to check that the unique algebra of type
II and the unique one of type III are not third power associative. O

The result above is not valid over the field of two elements [2].

Note that Proposition 1 together with part (iv) and (v) in the previous proposition
says that over algebraically closed fields any composition algebra of dimension 2 is
standard.
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Given two standard composition algebras of the same type, it is easy to check that
they are isomorphic if and only if their associated Hurwitz algebras are. Since over any
algebraically closed field F there exists, up to isomorphism, just one Hurwitz algebra
of dimension 2, namely F & F, we can conclude that over such fields there are, up to
isomorphism, only four composition algebras of dimension 2: the standard composition
algebras. A straightforward computation using the identity x> — n(x, 1)x + n(x)1 =0
valid in any Hurwitz algebra [26] shows that those algebras can be distinguished from
each other by the identities they verify:

[ Type T Identities 4]
I

x*x = xx2, (x%) = (x2x)x
1 x*x = n(x)x, (x?)* = n(x)x*
1 xx? = n(x)x, (x)* = n(x)x*
v xx? = n(x)x = x"x
Table 1
These pairs of identities will be referred to as identities of type I, ..., IV respectively.

The goal of this section is to prove that, in fact, any composition algebra of degree 2
satisfies one of the previous pairs of identities. In order to get this it will be useful to
work with the Zariski topology (over finite dimensional subspaces), so we will start by
extending scalars to an infinite field.

Lemma 1. Let A be an algebra of degree 2 over a field F with more than five
elements. For any field extension K/F we have that Ay .= K®; A is an algebra of
degree 2.

Proof. Denote by AA AA A the subspace of the Grassmann algebra over A4
spanned by the homogeneous elements of degree 3. Since F contains more than five
elements and A4 is an algebra of degree 2, then the identities x A X* A xx* =0 =
x A X2 A X% =x A XA (XY as well as their linearizations are satisfied. So they remain
valid on Ax A Ax A Ay, which says that Ay is also an algebra of degree 2. ad

From now on, the characteristic of the ground field will always be assumed to be
different from 2.

As we will see below, in any composition algebra of degree 2 the elements generating
composition subalgebras of dimension exactly 2 will play a special role. Since the
coordinate matrix of the bilinear form on span(x, x?) is

nx) (x,x%)
(x,x) nx? )

these elements can be characterized by the inequality (x, x?)? # n(x)’. In particular,
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the set of these elements lying in any finite dimensional subspace is open in the Zariski
topology of that subspace, provided it is nonempty. In [8] many involved computations
were necessary to prove that, in general, this set is not empty, that is, we do not have
the identity (x, x*)? = n(x)’. The point there was to derive many new identities from this
one and to analyze how they fit with the hypothesis of the algebra being third power
associative. However, now we can remove this case just by means of the following
general lemma;

Lemma 2. Let (,) be a symmetric bilinear form defined on an algebra of possibly
infinite dimension over a field of characteristic # 2. Consider B, a finite dimensional
subspace where the bilinear form is nondegenerate. If (x, x*)’ = n(x)’ for any x € B then
dimB < 1.

Proof. First let us suppose that the field contains more than six elements. Under
this assumption we can linearize the identity (x, x?)* = n(x)* and extend scalars to an
infinite field that we can think of as our underlying field. Over this field the algebra of
polynomial functions over B is isomorphic to the algebra of polynomials on
m = dim B indeterminates, which it is well known to be a U.F.D. So we can consider
how our polynomial n(x) = (x, x) factorizes. Since n(x) is homogeneous of degree 2
then it is either irreducible or it can be written as n(x) = p,(x)p,(x) or n(x) = p(x)
where p,(x), p,(x) and p(x) are irreducible linear polynomials. We can rule out the first
two possibilities just by comparing the factorizations that we obtain from the identity
(x, x*)* = n(x)’. So we are left with the case n(x) = p(x)’. Linearizing this expression we
get (x, y) = p(x)p(y), which says that the kernel of the linear form p(x) is contained in
the radical of the restriction of (,) to B. Since, by hypothesis, this radical is zero we
conclude that dim B < 1.

Now suppose the field only contains 3 or 5 elements. In the first case the identity
(x, x})? = n(x)’ ensures that (x,x) =0,1 for any x € B; in the latter, it gives (x, x) €
{0, £1) for any x € B. If the dimension of B were > 2 then, in both cases, we could find
orthogonal elements x, y € B such that (x,x)=1=(y,y) so (x+ y,x+ y) = 2, which
is not possible. d

In the following A will denote a composition algebra of degree 2 and dimension
> 1 over an algebraically closed field F. Fix S={x € 4| n(x)’ — (x, x?)* # 0} and B a
finite dimensional subspace of A where the bilinear form is nondegenerate and
dimB > 1. The previous lemma says that B ={xe B|n(x)’ —(x,x*)* #0} is
nonempty, so it is an open set in the Zariski topology of B. Because any element in B
generates a composition subalgebra of A of dimension two, such an element verifies
one type of the identities in Table 1. So, B’ can be decomposed as the disjoint union of
four closed sets B,, ..., B;, where B; = {x € B'| x satisfies the identities of type J}. In
fact, these sets are also open because any of them is the complement in the open set B’
of the union of the others. However, in the Zariski topology two nonempty open sets
intersect each other, so the only way to fit this situation is that B' = B} for some
J € {I, 11, I11,1V}, i.e., all elements in B’ verify the same identities. By density this remains
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true for B. Moreover, it is enough to observe that we can extend B to contain any
predetermined element of 4 to conclude that: all the elements in A4 satisfy the same type of
identities, and all the two dimensional composition subalgebras of 4 have exactly the same

type!!

3. Proof of the main theorem

Because of the previous section, in order to prove the main theorem we can assume
that A satisfies one type of the identities I, ..., IV.

The classification of composition algebras where xx* = x*x and (x*)’ = (x’x)x has
been tackled in [2, 18]:

Theorem 2. Any composition algebra verifying the identities xx* = x’x and
(x*) = (x*x)x is a Hurwitz algebra.

The following theorem deals with the identities of type II and III.

Theorem 3. Let A be a composition algebra of degree 2 and arbitrary dimension over
a field F of characteristic # 2 containing more than 3 elements. Then:

() If x*x = n(x)x and (x*)* = n(x)x* for any x € A, then A is a standard composition
algebra of type 1L

(i) If xx* = n(x)x and (x*)* = n(x)x* for any x € A, then A is a standard composition
algebra of type I11.

Proof. First of all we should note that it is enough to prove only one part of the
theorem because if we have a composition algebra 4 of degree two, then the opposite
algebra A® is also a composition algebra of degree two, and A is standard of type II
(resp. satisfies the identities of type II) if and only if A% is standard of type III (resp.
satisfies the identities of type III). Therefore, let us prove part i.

The restrictions on F allow us to linearize the identities in the statement:

X2y + (xy + yx)x = 2(x, y)x + n(x)y 0
(xy + yx)x* + x*(xy + yx) = n(x)(xy + yx) + 2(x, y)x*.

Now, take any idempotent e with n(e) = 1 (x?/n(x) where n(x) # 0 will serve). Choosing .
x = e and y orthogonal to e in equations (7) we obtain:

ey+(ey+yele=y
®)
(ey + ye)e + e(ey + ye) = ey + ye.

The second equation tells us that the operator L, + R, decomposes the orthogonal subspace
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to e in two subspaces associated to the eigenvalues 0 and 1, span(e)* = S(0) ® S(1).
For any x, € S(0), (8) gives:

exO = Xo = —x°e; (9)
hence, for any x, € S(1) we have:

(exo, ex)) = (xo, €xy)
(X0, X)) =
(x0e, x,€) = —(xo, x,€)

which gives (x,, x;) = (x,, ex, + x,e) = 0; that is, S(0) and S(1) are orthogonal. On the
other hand, from (7) with x = x, and y = e we obtain:

x,x2 4+ xix, = n(x,)x,.

Since, by hypothesis, xix, = n(x,)x, it follows that x,x} =0 and n(x,) =0 for any
x, € S(1). So, we conclude that S(1) is the orthogonal complement of S(0) in span{e)*
and that it is totally isotropic. By the nondegeneracy of (,) this means that S(1) =0
and A = span{e) ® S(0). In the light of this, (9) says that L, and R, are bijective and
that A with the new product

xoy=(R'x)YL'y) = (R:'x)y

is a Hurwitz algebra with unit element e¢ and standard involution x +— X = xe. In
particular, xy = X o y and A is standard of type II. O

Theorem 4. Let A be a composition algebra of any, possibly infinite, dimension over
a field of characteristic # 2,3. If xx* = n(x) = x*x for all x € A then A is symmetric (so,
in particular, it is finite dimensional).

Proof. Extending scalars, we can assume the field is infinite. For any x with
n(x) # 0 we have:

(3, %) = —:%(xy, x) = ﬁ(xy, xx%) = (5, %),

and, similarly,
(yx, x) = (xy, x) = (y, x°).
The set {x € B | n(x) # 0} is open in the Zariski topology of any not totally isotropic

finite dimensional subspace B, so the previous identities work not only for elements
with nonzero norm, but for any element of A. Linearizing these identities we get
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(xy —zx,y) = (x, zy — yz)
(xz + zx, y) = (x, zy) + (xy, 2).
Subtracting these equalities
2(zx, y) = (xy, 2) + (x, yz). (10)
We can make a cyclic permutation of x, y, z in the last equation to obtain
2xy, z) = (yz, x) + (¥, 2x).
Adding (10) to twice this equation we have
3(xy, 2) = 3(yz, x).

But, since the characteristic of the base field is not 3, we can divide by 3 and conclude
that 4 is a symmetric composition algebra. O

The main theorem is now the consequence of Lemma 1 and Theorems 2, 3 and 4.

4. Third power associative composition algebras

The classification of third power associative composition algebras has been carried
out in [8):

Theorem S. Let A be a finite dimensional composition algebra, over a field of
characteristic # 2 and 3, verifying the identity xx* = x*x. Then A is either Hurwitz or
symmetric.

As we mentioned in the introduction, the proof we presented in [8] was based on
many involved computations that did not throw enough light on what is going on for
these particular algebras. So, we would like to devote this section to give a more
understandable proof of Theorem 5 based on the previous classification of composition
algebras of degree 2. The point is to prove that any third power associative
composition algebra has degree at most 2 (Proposition 3). We will use some results
from [8] that we include for completeness.

Hereafter A will denote a finite dimensional composition algebra, over a field F of
characteristic not 2, satisfying the identity

xx? = x’x, an

which is equivalent to [x, x’] = 0, where [x, y] = xy — yx denotes the commutator of x
and y. The restriction on F allows a scalar extension, so we will assume that F is an
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infinite field. Our starting point is the following lemma [6] that we will apply to x
and x°.

Lemma 3. Let A be a finite dimensional composition algebra, and x, y two commuting
elements of A. Then

n(x)y* +n(y)x’ = 2x, y)xy (12)

This result also extends to three elements.

Lemma 4. In any finite dimensional composition algebra, any elements x,y,:z
commuting with each other satisfy

(7, X% 4 n(x)yz — (y, x)xz — (2, x)xy = 0.
If we set y = x? in (12) we obtain
n(x)x2x? + n(x)’x* = 2(x, x*)x*. (13)
The following lemma will be helpful:

Lemma 5. The set S = {x € A | n(x)(x, x))[n(x)> — (x, x*y’] # 0} is dense in the Zariski
topology.

Proof. The set {x € A |n(x) # 0} as well as {x € 4|n(x)’ — (x,x?) # 0} are open
and nonempty (Lemma 2), so they are dense. Since any two open sets in the Zariski
topology intersect each other, S, = {x € 4 | n(x)[n(x)’ — (x, x*)’] # 0} is nonempty, open
and dense. Therefore, in order to prove the lemma it is enough to show that
S, = {x € 4| (x,x?) # 0} is nonempty. If, on the contrary, (x, x*) =0 for any x then
take x € S,. By (13) the element e= —x?/n(x) is an idempotent of norm 1, so
(e, €*) = (e, €) = 1, which contradicts the assumption. O

Note. Any nonzero element of S generates a subalgebra of dimension = 2.
Otherwise x =ae for an idempotent e with norm 1 and a € F; but then
n(x)* — (x, x*)* = o — «®* = 0 which is not possible.

Lemma 6. For any x € S the subspace span(x, x*, X*) is commutative.

Proof. By (13) we have [x?, x’] = 0; the linearization of (11) gives [x, x’] = 0. O

Lemma 7. If alg(x) = span(x, x*, x*), ¥x € S, then A has degree 2.

Proof. We will proceed by contradiction. By density we can assume that there
exists x € § with alg(x) # span(x, x*). Then, by hypothesis and the previous note,
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dimalg{x) = 3. This means that alg(x) is not a composition algebra (recall the
possible dimensions of composition algebras are 1, 2, 4, 8 or oo). Thus, there must
exist 0 # z € alg(x) such that (z,alg(x))=0 and the set {x,n(x)x*— (x, x*)x, z}
becomes an orthogonal basis of alg(x). Since, by the previous lemma, alg(x} is
commutative, we can use Lemma 4 with y=n(x)x*—(x,x’)x to obtain that
n(x)yz = 0. But n(x) # 0, so yz =0 and the left multiplication fails to be bijective; that
is, n(y) = n(x)[n(x)* — (x, x*)?] = 0, which is a contradiction since x belongs to S. O

Now everything is ready for us to prove that A has degree 2. We will denote (x*x)x
by x*.

Proposition 3. Any third power associative composition algebra of finite dimension
over a field of characteristic # 2 has degree two.

Proof. Let us start by linearizing the identity (13),
20x, y)x*x* + n(x)(xy + y)x* + n(x)x’(xy + yx) + 4(x, y)n(x)x> + n(x)’(xy + yx) =
2(y, X)x* + 2(x, xy + yx)x* + 2(x, x)(yx* + x(xy + yx)).
Now, we substitute y = x’ in this equation and use Lemma 6 to obtain
(x, x)n(x)x? — (x, x*)x* = (x, x)x* — n(x)x*x>. (14)
On the other hand, equation (12) with y — x*, x — x and y = x*, x > x? gives
n(x)x*x> + n(x)’x? = 2(x, x*)x*
n(x)*x*x> + n(x)’x?x? = 2(x?, x*)x*x2.

If we multiply by n(x) the first of these equalities and then we subtract the second
one, we get

n(x)*x? — n(xy’x*x* = 2n(x)[(x, x*)x* — (x, x?)x?x].
This identity can be simplified by choosing x € §, dividing by 2n(x) and using (13):
n(x)’x? — n(x)(x, x))x* = (x, X*)x* — (x, x?)x?x’. (15)
As usual, by density this relation holds for any x € A.
Now, let us consider the set T = {x € S| (x, x*)’ — n(x)(x, x*) # 0}. If T were empty

then we would multiply (14) by (x, x?), (15) by n(x) and we would subtract to obtain

n(x)[(x, x*)? — n(x)’Ix* = (x, x)[(x, x*) — n(x)’]x* Vxe€S.
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Simplifying by x, we conclude that x and x’ are linearly dependent, which is not
possible as the note below Lemma 5 shows. Hence, T is a dense nonempty open subset.
Now, we can look at equations (14) and (15) just as a system of two equations where
the indeterminates are x’x> and x*, and we would like to solve it in terms of x* and x°.
This solution will exist if the determinant of the matrix of the coefficients is nonzero,
that is, n(x)(x, x*) — (x, x?)* # 0; but this is precisely what is verified by any element of
T, so for any x € T we obtain that x*, x’x* € span(x, x*, x’). Moreover, by (12) we
can ensure that x’x* and x’x* also lie in this subspace, so it is closed under products; in
other words, alg(x) = span(x, x?, x’) Vx e T. By density this holds for any x in A.
Now the proposition follows from Lemma 7. |

Theorem 5 follows from this proposition, Proposition 2, and Theorems 2 and 4.
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