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Abstract. Composition algebras of arbitrary dimension over a field and satisfying the iden-
tities x2x = xx2 and (x2)2 = (x2x)x are shown to be precisely the well-known unital

composition algebras, with the exception of three two dimensional algebras over the field of
two elements.

1. Introduction and main result

A nonassociative (i.e. not necessarily associative) algebra over &fislgdaid to
be acomposition algebra if it is equipped with a nondegenerate quadratic form (the
norm)

n:A— F

such that

n(xy) = n(x)n(y) @

for any x,y € A. The form being nondegenerate means that if the associated
bilinear form is given by

n(x,y) =nx +y) —nx) —n(y),

then{x € A : n(x) =n(x, A) =0} =0.

The norm is said to be strictly nondegeneratéif= {x € A : n(x, A) = 0} =
0. In case the characteristic 6fis not two,n(x) = %n(x, x) and both concepts
agree.
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Composition algebras with a unit element constitute a well known class of al-
gebras (see [K 53], [ZSSS 82, Chapter 2] and the references therein). Either their
norm is strictly nondegenerate, so that they are the classical Hurwitz algebras of
dimension 1, 2,4 or 8, or the characteristic isA2; = A andA is a purely insep-
arable field extension of exponent one of the ground fielavith x2 = n(x)1 for
anyx € A.

However, if the existence of a unit element is dropped, infinite dimensional
algebras may appear even in characteristic different from 2 (see [U-W 60] for
the first examples, [C 92,RP 92,E-P 97] for examples with one-sided unit, and
[E-M 93] for commutative examples).

On the other hand, non unital composition algebras satisfying some other con-
ditions have been studied recently. Among these, the associativity of the bilinear
form, that is,

n(xy, z) = n(x, yz) (2

for anyx, y, z, is particularly noteworthy. The composition algebras satisfying (2)
are calledsymmetric composition algebras (see [KMRT 98]) and were classified in
[E-M 93] over fields of characteristig 2, 3 (although the arguments there can be
extended to cover the characteigsti— see also [KMRT 98,M 94,0-0 81] -) and
in [E-P 96, E 97] over arbitrary fields. Identity (2) is equivalent to

(xy)x = x(yx) =n(x)y 3

for any x, y. In particular these algebras are flexib{e))x = x(yx)) and finite
dimensional, because for amye A with n(x) # 0the left and right multiplications
by x are bijections (see [K 53]).

Any finite dimensional flexible composition algebra over a field of characteristic
=+ 2 satisfies (2), as shown in [O 82], and the same happens, if the characteristic is
restricted to be 2, 3, if only the third power associativity€x = xx2)is required,
by [E-P 94], but the infinite dimensional commutative examples in [E-M 93], men-
tioned above, show that in general (3) does not follow from flexibility. Finally,
finite dimensional power associative (that is, the subalgebra generated by any ele-
ment is associative) composition algebras have been studied in [O 81,P 94,E-P 94].
The most general result known about these algebras is that the finite dimensional
composition algebras over fields of characteristi@ satisfying the conditions

x%x = xx? and  x%x? = (x%0)x, 4)

(and in particular the finite dimensional power associative composition algebras
over these fields) are Hurwitz algebras ([E-P 94, Theorem B]). It must be remarked
that the condition (4) implies the power associativity over fields of characteristic

zero ([A 48, Lemma 3]).

The purpose of this paper is to prove that the conditions given in (4) for a
composition algebra, are sufficient to force them to be unital (and hence Hurwitz
algebras if the norm is strictly nondegenerate), with only three exceptions over the
field of two elements. No assumption on the dimension and on the field will be



Power associative composition algebras 77

assumed. The proof does not rely on previous works mentioned above on compo-
sition algebras with some weak associativity conditions, and simplifies drastically
some of those works. Actually, with the exception of the fields of two and three
elements the proof is quite straightforward.

Over the real field, if the norm is substituted by a topological norm, the class
of absolute valued algebras is obtained. For these algebras it was already proved by
El-Mallah and Micali ([EM-M 80]) that the power associativity (which is equivalent
to (4) since the characteristic is zero) implies the existence of a unit element, and
this forces the algebra to be one of the Hurwitz division algebras.

In order to state the main result of the paper we need to consider new com-
position algebras built up from Hurwitz algebras. Given a Hurwitz algeb
dimension at least 2 with norm multiplication denoted by juxtaposition and stan-
dard conjugation — x = n(x, 1)1 — x, then new algebrasa, -) with x - y equal
either to

i) Xy, i) xy or i) xy,
are again composition algebras relative to the same quadratio:foFhe last one
is called the para-Hurwitz algebra associated td he algebra in i) (respectively
i) will be called theleft (respectivelyright) composition algebra associated4o

Recall also that over any fieldl and for any dimension 2, 4 or 8 there exists a
unique Hurwitz algebra whose form is isotropic. In dimension 2 this is the algebra
F & F with componentwise multiplication and norm giveniby, 8) = «f. The
Hurwitz algebras of dimension 2 ovét are either the split one or the quadratic
separable field extensions Bf In particular, over the field of two elemerits there
are exactly, up to isomorphism, two two-dimensional Hurwitz algelirasp Fo
(split) andF4 (the field of four elements, considered as an algebraByer

Now we can state the main result that will be proved in this paper:

Main Theorem. Let A be any composition algebra over a field F satisfying (4).
Then A is power-associative. Moreover, either A isunital or F = Fo and A is, up
to isomor phism, one of the following:

i) theleft or right composition algebra associated to o & [F».
i) the para-Hurwitz algebra associated to 4.

Notice thatife; = (1,0),e2 = (0,1) ande = e1 +e2 = (1, 1) inF2 @ F», then
e1 = ez, e2 = e1 and the multiplication of these elements in the left composition
algebra associated & & F» gives

e1-e1=exe1=0=¢p-e2 and e-e=e’=e,

so that this algebra is clearly power-associative and the same happens with the right
counterpart. Beside&,; = Fa[w] with »? = w + 1 and thus, in the para-Hurwitz
algebra associated &y, we have

11=1, v = 140)? = 1+ 20+0° = 0, and(l+w)-(1+o) = 0 = 1+o.

Hence all the elements are idempotents and this algebra is then trivially power-
associative.
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The fact that this latter algebra is the only power-associative symmetric compo-
sition algebra appears as an exercise in [KMRT 98, Chapter VIII], but this exercise
can be done (and should be done) more easily without appealing to the Theorem
above.

The paper is organized as follows. The next section will state a crucial iden-
tity satisfied by those composition algebras verifying (4), which implies that the
dimension of the subalgebra generated by any nonisotropic element is at most two.
Then it will be proved that any such composition algebra is unital, provided that
the ground field has at least four elements. Thus we will be left with the fields of
two and three element#, andF3. OverF3 the third section will show that no
other composition algebras, besides the unital ones, satisfy (4) and, finally, the last
section will be devoted to the more difficult case of the field of two elements.

2. Thecrucial identity and consequences

If A is a composition algebra over a fiektlwith normn, then the linearization of
(1) immediately gives

n(xy, xz) = nx)n(y, z) = n(yx, zx) (5)
and
n(xy, tz) +n(ty, xz) = n(x, H)n(y, z) (6)

foranyx, y,z,t € A.
These linearizations are all we need to prove the crucial identity:

Proposition 1. Let A be a composition algebra with norm » satisfying (4). Then
forany x € A:

n(x)x3 —n(x, xz)x2 + n(x)zx =0. ©)

Notice that, because of (4), it makes sense to wifte= x2x = xx?).

Proof. For anyx, y € A and because of (4), (5) and (6):

n (n(x)x3 —n(x, xz)x2 + n(x)zx, y)
= n(x>x, yx) — n(x, x)n(x%, y) + n(x>, yx?)
= n(x%x?, yx) — (n(xzx, yx2) 4+ n(x%x2, yx)) +n(x3, yx?)
=0
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and
n (n(x)x3 —n(x, )cz))c2 + n(x)zx)

= n(x)zn(xg) + n(x, xz)zn(xz) + n(x)4n(x)
—n(x)n(x, xz)n(xg, x2) + n(x)3n(x3, x) —n(x, xz)n(xz)n(xz, X)
= Zn(x)5 — n(x)zn(x, )62)2 + n(x)3n(x3, X)

= n(x)? (2n(x)3 —n(x, x2)% + n()n (S, x))
= n(x)2 (2n(x)3 — (n(x, (2, x) — n(x3x, xz)))
= n(x)? (2n(x)3 - (n(x, n? x) — n(x2, xz))>
= n(x)2 (2n(x)3 — n(xx?, xzx)) by (6)
= n(x)2 (2n(x)3 —n(x8, x3)) —0.
Since the quadratic form is nondegenerate, (7) followso
By applying the linear forne (x, —) to identity (7) we get:
n(x) (n(x3, x) + 2n(x)?) = n(x, x32. ®)

Now assume thatl is a composition algebra with normover a ground field
F which satisfies (4). IF is finite of characteristic two, then the restrictiop), . :

Al — Fis a one-to-one semilinear map relative to the Frobenius automorphism
F — F, a — «?. Hence the dimension of is at most one and ik is any
infinite field containingF, the extension of the normto K ® A verifies that

(K @r A+ (= K ®Fr A1) has dimension at most one ovEr so that: remains
nondegenerate.

Hence, ifwe assume also thatontains atleast four elements, the linearizations
of the identities in (4) are also valid ia and thus we may extend scalar<ifis
finite. Therefore, we may assume that the figld infinite and that the dimension
of A is at least 2 (otherwisa is trivially unital).

Then, in any finite dimensional subspaBeof A, of dimension at least two,
such that the restriction of to B is nondegenerate,(x) is given by a homoge-
neous polynomial of degree two, which by nondegeneracy is either irreducible or
the product of two different irreducible polynomials. In any case, (8) and unique
factorization of polynomials imply the existence of a linear map B — F such
that

n(x, xz) =ag(x)n(x)

foranyx € B.

But if B; andB> are two such finite dimensional subspaced @fith B1 C By,
since there are no zero divisors in the polynomial function8p(F is infinite), it
is clear thatr g, is the restriction taB; of ap,. As a consequence there is a unique
linear mapx : A — F with

n(x, x%) = a(x)n(x) 9)
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foranyx € A, and by linearization, for any, y € A:
n(x, x0y) +n(y, x%) = a(y)n(x) + a@)n(x, y), (10)

wherex oy = xy + yx.
Now, if e is a unitary idempotent od; that is,e? = ¢ andn(e) = 1, then (9)
givesa(e) = n(e, e) = 2, and by (10)

a(y) +2n(e,y) = n(e,eoy) +n(e, y)
= n(e?, ey) + n(e?, ye) +n(e, y)
=n(e, y) +nle,y) +nle, y) = 3nle, ),

where we have used (5). Therefaréy) = n(e, y) foranyy € A, that is, for any
x€eA

n(x, x%) = n(e, x)n(x). (112)

In casen is strictly nondegenerate, this implies that at most there is a unitary
idempotent inA.
But for anyx € A with n(x) # 0, (7) and (9) imply

X3 — ot(x)x2 +n(x)x =0,
SO
(ot(x)x — xz)x =nx)x = x(ot(x)x — xz),

and the element
1 2
e= ) (oz(x)x X )
verifiesex = xe = x, so thati(e) = 1, and als@x? = (ex)x = x2 = x2e by (4).
Since the subalgebra generatedibis the span of andx? by Proposition 1, it
follows thate is the identity of this subalgebra. In particular itis a unitary idempotent
of A.
Hence, ifn is strictly nondegenerate, there exists a unique unitary idempotent
ein A andex = xe = x foranyx € A with n(x) # 0. Since any element iA can
be written as a sum of elements with nonzero norm, it follows ¢hsithe identity
element ofA.
Otherwise the characteristic &fis two and there is a nonzero element AL

As aboveg = ;54 is a unitary idempotent witba = ae = a, S0

1 1 1
ne, A) = —n(a)n(e, A) = ——n(ae,aA) = —n(a,aA) =0,
n(a) n(a) n(a)
because € AL. Thuse € A* too and now (11) implies thait(x, x?) = 0 for any
x € A and that all the unitary idempotents4belong toA+. Again, for anyy € A
with n(y) #0, f = le)yz is a unitary idempotent of, hencef € A+ and

1 1
n(y, A) = Ty)n(y)n(ya A)=n <Fy)y2’ Ay) =n(f, Ay) =0,
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soy € Al foranyy e A with n(y) # 0. It follows thatA = AL. Hence as in
[K53]n: A — Fisaone-to-one ring homomorphism, so there is a uniqaed
with n(e) = 1 and sincei(ex) = n(xe) = n(x), it follows thatex = xe = x for
anyx andA is unital in this case too.

Therefore we have proved the next result:

Proposition 2. Let A be any composition algebra satisfying (4) over a field F
containing at least four elements. Then A isunital.

This proves our Theorem over any field other tlfarandF3. The next sections
will deal with these two possibilities.

3. Thefield of three elements

Throughout this sectioa will denote a composition algebra satisfying (4) over the
field F3 of three elements. We want to show that again in this casédsié unitary
idempotent (the existence of which is proved as in the previous section, replacing

a(x) by %) then (11) is verified. From this point on the same argument of the
previous section applies.

Lemma 1. Given two unitary idempotentse and £, thenn(e, f) = —1.

Proof. If e = f then there is nothing to prove, singée, ¢) = 2n(e) = 2 = —1,
so assume # f andletx = e + f. Then

n(x,x) =nle,e) +n(f, f) —nle, f) =1—nle, f),

nx,x%) =nle+ fie+ f+ef + fe)
=n(x,x) +nle ef) +nle, fe) +n(f,ef) +n(f, fe)
= 1—n(e,f)+4n(e, f) = 1a

sincen(e, ef) = n(e?, ef) = n(e)n(e, f) = n(e, f), and so on.

Because of (7)n(x) # 0, son(x,x) # 0. Hencen(e, f) is either—1 or
0. Assume thati(e, f) = 0. Thenn(x) = —1, which forcesx? to be linearly
independent with, and by (7) the subalgebra generatedibylg(x), equals the
span ofx andx?: span(x, x2). Besides

n(x,x) n(x, x2)
n(xz, X) n(xz, x2)

11
11

‘=1¢0

Hence, algx) is a composition algebra and it is unital with identity

(n(x, xz)x — n(x)xz)

. 1
- n(x)?

because of (7), which is therefore the only unitary idempotent itxalg
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Let us consider now the element= e — f (# 0), whose normig(e) +n(f)—
2n(e, f) =2 = —1.Then,

x2=e+f+eof=x+eof,
y2=e+f—eof=x—eof.

Hence,y? e alg(x) N alg(y). But then either algx) = alg(y), so thate and f
belong to algx) and by uniqueness= ¢, = f, a contradiction, or the subalgebra
alg(x) N alg(y) is the span of2. In the latter case, sineg(y) = —1,n(y%) = 1

and eithery? or —y? is a unitary idempotent, hence equakto Also n(y, y2) =
n(e—f,e+f—ef —fe) =n(e,e)—n(f, f) = 0(sincen(e, ef) = n(e?, ef) =

n(e, f) = 0 and so on), so alg) is also a two dimensional Hurwitz algebra and,
therefore, its identity element is its unique unitary idempotent. As a consequence,
e, is the identity element of both alg) and aldy). Thus,e,(e + f) = e+ f
ande,(e — f) = (e — f), SOere = ¢ = e ande, f = f = f2. But the right
multiplication bye and f are one-to-one since they have nonzero norm, so we
conclude that = ¢, = f, a contradiction. O

Lemma 2. Let e be a unitary idempotent of A. Then, for any x € A:

) n(x, xd)n(x, e) = —n(x)% 4+ n(x)n(e, x2),
i) ifn(x) #0,thenn(e, x2) = n(x) + n(x, €)?,
i) n(x, x2n(x, e) = n(x)n(x, e)°.

Proof. If n(x) = 0 then alsou(x, x2) = 0 by (7) and i) and iii) are trivial. Hence
assume that(x) # 0. Thene, = ﬁ(n(x,xz)x—n(x)xz) is the identity element
of the unital subalgebra alg). By Lemma 1

—1l=n(ex,e) = (n(x, xz)n(x, e) — n(x)n(xz, e)),

1
n(x)?2
which gives ).

Now substituter by x 4+ y and byx — y in i) and add the resulting equations
to obtain

n(y,e)(n(x, x o y) +n(y, x3) +n(x, e)(n(x, y3) +n(y, x o y))
= n(x)(n(y% e) — n(y)) +n(x, y)(n(x oy, e) — n(x, y))
+n(y)(n(x? e) — n(x))

which, fory = e gives
—(n(x, eox)+ n(e, x2)) =n(x, e)2 + n(xz, e).

But n(x, ex) = n(eyx, ex) = n(ey, e)n(x) = —n(x) by (5) and Lemma 1, and
alson(x, xe) = —n(x), son(x, e o x) = n(x). Hence we get

—(n(x) + n(e, xz)) =n(x, e)2 + n(xz, e),

which gives ii), and iii) follows immediately from i) and ii) #(x) #0. O



Power associative composition algebras 83

Corallary 1. Let e be a unitary idempotent of A. Then for any x € A
n(x, x2) =n(e, x)n(x).

Proof. If n(x) = 0, then alson(x,x2) = 0 by (7) and this is clear. Also, if
n(e,x) # 0, then the assertion follows from the previous Lemma. So assume
thatn(x) # 0 = n(e, x). Thenn(e,e +x) = =1 # 0, so

n(e+x,(e—|—x)2) =n(e,e+ x)n(e + x). (12)
But by our assumptions
n(e,e + x)n(e +x) =nle, e)(n(e) + n(x)) = —(1+ n(x)).

Also n(x, e o x) = n(x), as in the proof of Lemma 2, ande, ex) = n(e?, ex) =
n(e,x) = 0=n(e, xe). Hence
n(e+x,(e+x)2) :n(e+x,e+x2+eox)
=n(e,e) +n(e, x2) + n(x, x2) + n(x)
=—1+4nx) +n(x, x> +nx) (byLemma?2)
= —(1—|—n(x)) +n(x,x2).

Hence (12) implies(x, x2) = 0 and the assertion is also true in this casa.

As mentioned at the beginning of the section, the Corollary above and the
arguments of the previous section give:

Proposition 3. The only composition algebras over F3 satisfying (4) are the Hur-
witz algebras.

4. Thefield of two elements

We are left with the most tricky case. Throughout this sectidbrwill denote a
composition algebra satisfying (4) with nosrover the fieldF,.
Let us first have a look at the subalgebra generated by an elemeith

n(x) # 0. By (7),
x2+nx, xHx%2+x=0. (13)

3

Now, if n(x, x2) = 1, thene, = x3 = x + x2 verifiesn(e,) = 1 and

ex = +xHx=x’+x3=x, by(13)
exx?=(x+x9x2 =3 +x3% = (x +xD) + x =14,

soe, = x + x? is the identity element of alg) = span(x, x2) and algx) is
isomorphic toF4. Otherwisen (x, x2) = 0, sox® = x by (13), then eithex? = x
and algx) = span(x), or x? # x, alg(x) = spanx?, x + x2) andx?x? = x3x =
x2, x2(x —|—x2) =x+x2= (x +x2)x2 and(x +x2)2 =x24+x%2=x%24+x2=0.
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In this last case, alg) is isomorphic to the algebra of “dual numbe&1 + Foe,
with €2 = 0 andn(1) = 1, n(e) = n(1, €) = 0.

In any case, algx) is a unital algebra, whose identity element will be denoted
by e,. Besides, for any € A, n(x, xy) = n(xex, xy) = n(ey, y) = n(x, yx), SO
that for anyx, y € A withn(x) =1

n(x,xoy)=0. (14)

Assume first thatd+ # 0. Then, since the restriction ;. : A+ — F is
one-to-one and linear (becaus@rx) = a®x = ax for anya (= 0 or 1) inF»), it
follows thatAL = Foe for somee with n(e) = 1. From (13),3 = e, so for any
X €A, n(ez, x) = n(e)n(ez, xX) = n(e3, ex) =n(e,ex) =0 ande? € A+ = Foe.
Thereforeg? = e. Now, foranyx € Awithn(x) = 0,n(e+x) = n(e)+n(x) = 1,
so there exists a unitary idempotghfthe identity element of the algebra generated
by e + x) such thatf(e + x) = (e + x) f = e+ x and

n(x,ex) =n(e+x,ex) =n(f(e+ x), ex)
=n(e(e+x), fx) +n(f,e)n(e+x,x) by (6)
=n(e+ex, fx) =n(ex, fx) =n(e, f)n(x) =0.

Also, if n(x) = 1,themm(e+x) = 0, son(x, ex) = n(e+x, e(e+x)) = 0. Hence,
n(x,ex) = 0 for anyx € A. As a consequence, for anyy € A, n(x,ey) =
n(y,ex), so

n(y,ex) =n(e)n(y, ex) = n(ey, e(ex)) = n(y, e(e(ex))),

sothaf L3 — L.) (x) € ALt = Fpeforanyx € AandthenO= (L,—1)(L3-L,) =
L.(L, — 1)3, whereL, denotes the left multiplication byin A. But L, is one-to-
one, because(e) = 1 andn is nondegenerate, so we conclude ttiat— 1)% = 0,
so thatL, is a bijection.

In exactly the same way we conclude that the right multiplicakerby ¢ is a
bijection, and as in [K 53] that the the new algebra obtained dvetith the new
multiplication given by

is a unital composition algebra ovés with the same norm, whose identity element
is e. Since we are assuming that- # 0 andF is perfect, we conclude that the
dimension ofA is one in this case.

Therefore, from now on we will assume that the narion A is strictly nonde-
generate. Hence the dimensionfs either 2, 4, 8 or infinite.

The two dimensional case is settled in the next result:

Proposition 4. Let A be a two dimensional composition algebra over Fy with
strictly nondegenerate norm and satisfying (4). Then, up to isomorphism, A is
either:
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i) aHurwitzalgebra, henceit iseither Fo & IF or Fy,
ii) theleft or right composition algebra associated to Fo @ 2, or
i) the para-Hurwitz algebra associated to [F4.

Proof. Assume firstthatthereisanonzero elemeit® e A suchthak andx?are
linearly independent. TheA = Fox + Fox?, n(x, x2) = 1 by the nondegeneracy
of n(,) so, by (7)n(x) = 1 andA = alg(x) = F4, as above.

Otherwise, for any € A, x? equals either 0 ok, so for any 0# ¢ € A
with n(e) = 1, we havee? = ¢. Choose one suchand takez € A such that
A = TFoe + Foa, so thatn(e, a) = 1.

In casen(a) = 1, thenn(e + a) = 1 too and therefore? = a and(e + a)? =
e +a. Moreover, ifea = e = ¢2 thene(e +a) = 0 and this is a contradiction since
the left multiplication bye is a bijection. The same happensdf = a = a2. Hence
ea = ae = e + a and A is thus isomorphic to the para-Hurwitz algebra associated
to Fy4.

Finally, in case:(a) = O we are left with two subcases: eith@r= a ora? = 0.

In the first subcasei = a) n(ea, ¢) = n(ea, €?) = n(a, e) = 1 = n(ae, ¢), and
n(ea,a) = n(ea,a?) = n(a)n(e,a) = 0 = n(ae, a), which forceea = ae = a,
SO A is, up to isomorphism, the split Hurwitz algelifa @ F.

In the second subcase? = 0), it must be thate + a)2 = 0, otherwise
interchangez ande + a in the paragraph above to get thatis isomorphic to
F» @ [F,, which contradicts? = 0. Henceu? = 0 = (e + a)?, soe o a = e. But
n(ea, e) = 1, as above, and(ea) = 0, which gives either;

— ea = a,ae = ¢ +a and we are in case ii), or
— ea = e+a,ae = a (Opposite to the previous one), and we are in case ii) again.
O

The dimension four case is settled in a completely different way:

Proposition 5. Let A be a four dimensional composition algebra over F» with
strictly nondegenerate norm and satisfying (4). Then A isa Hurwitz algebra.

Proof. Take any idempotent & e = ¢ with n(e) = 1 (for instance the identity
element, of any algx) with n(x) = 1). Then the new multiplication given by

x-y = (R0 y),

(whereL, and R, denote the left and right multiplications Iy makesA a four
dimensional Hurwitz algebra with undt that is, a four dimensional central simple
associative algebra, which is necessarily isomorphic to the algebra[RMatof
2 x 2 matrices oveffy with the determinant function as norm, since there are no
central simple division algebras over finite fields by the well-known Wedderburn’s
Theorem.

But in Maty(F2), the set of invertible elements is

169)-(3)- (o) UG- () Go))
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that s, the invertible elements are the nonzero elements of the orthogonal subspaces

(89 () (3 (19)

ThusS; and S, are the only two dimensional subspaces without nonzero isotropic
elements. Therefore, with = S; suchthat € S;, A = S@® S+ (whereS' denotes
the orthogonal subspace §9 for a two dimensional subspadewith e € S, such
that the restrictions of the normto S and toS+ do not represent 0 and any element
x ¢ S U St verifiesn(x) = 0. Moreover,S and S+ are the only two dimensional
subspaces without nonzero isotropic elements.

Therefore, for any € A with n(x) = 1, eitherxS = S andxS+ = S+, or
xS = S+ andx St = §; and the same witx andS=x.

Sincee = ¢2 € S, it follows easily from this thas is a subalgebras(s < S)
and thats S+ 4 515 c S+ ands+s+ c s.

Forany 0# y € St, n(e+y) = 0, son(e + y, (¢ + y)?) = 0 by (7). Now
(14) and the above give

0=n(e+y, (e+y)?) =n(e, eoy)+n(y, eoy)+n(y, y*) +nle, y?) = n(e, y),

s0y2 = e sincen(x1, x2) = 1 for any 0# x1 # x2 # 0in S. As a consequence
e is the only nonzero idempotent i (otherwise the same argument would give
y2 = f # ¢) and hence for any nonzeno# e in S, S = alg(x) ande = e,.
Besidesey = y%y = y = ye by (13) for anyy e S+, so thate is the identity
element inA andA is a Hurwitz algebra, as requiredno

In order to finish the proof of the Theorem, it must be proved that i§ a
composition algebra with strictly nondegenerate norm of dimensidn(hence 8
or oo) overlF, and satisfies (4), theA is a Hurwitz algebra. Let us start with an
easy Lemma:

Lemma 3. Let V be a vector space over I, of dimension > 2 equipped with a
strictly nondegenerate quadratic formn, then:

a) For any x € V withn(x) = 1, thereexistsan y € V withn(y) = 1 = n(x, y).

b) V =span(x € V : n(x) = 0).

c) For any x € V withn(x) = 0, thereexists x’, x” € V withn(x’) = 1 = n(x")
andx = x" 4+ x”.

Proof. a) By nondegeneracy thereig& V withn(x, z) = 1. Ifn(z) = L we are
finished. Otherwise(z) = 0, V = span(x, z) @ span(x, z)= and we can take an
element; € span(x, z)* with n(z’) = 1 so that the element = z + 7’ verifies
n(y) =1=nx,y).

b) Forany € V withn(v) = 1,takev’ € V withn(v') =1 =n(v,v')asina)
and take” € span(v, v’)l with n(v”) = 1. Them (' +v") = 0=n(w+ v +v")
andv = (v +v") 4+ (v + v +v”) e spanix € V : n(x) = 0).

c) If n(x) = 0, takex’ € span(x)* with n(x’) = 1. Thenn(x + x’) = 1 and
x=x'+x+x). O
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Let us assume from now on thatis a composition algebra with strictly non-
degenerate norm of dimension> 4 overF; satisfying (4).

Proposition 6. For any x, y,z € A,n(x o y,z) = n(x, y o0 z).

Proof. If n(x) = 1 ande, denotes the identity element of &lg, then for any
y € A, n(x,xy) = n(xey,xy) = n(ex,y) = n(exx, yx) = n(x, yx), so that
n(x,x oy) = 0. Now, givenx, z € A with n(x) = n(z) = n(x,z) = 1 we have
foranyy € A

O=n(x+z,(x+z)oy)=n(x,zoy) +n(z,xo0y),

so

n(xoy,z) =n(x,yoz). (15)
Let us fixx € A with n(x) = 1. By the previous Lemma there is ah € A
with n(x") = 1 = n(x,x’). Then (15) is valid for any € span(x, x’), and if
vE spar(x, x’)L withn(v) = 0,n(x’ +v) = 1 = n(x, x’ +v) so (15) is valid with
z = x' + v and hence withh = v. From Lemma 3.b) it follows that (15) is valid
foranyx, y,z € A with n(x) = 1 and, finally, by Lemma 3.c), it is valid for any
xX,y,z€A. O

Corollary 2. Let V bea subspace of A such that n(x, x2) = Ofor any x € V, then
VoV CVt

Proof. For anyx,y € V,0 = n(x + y, (x + ¥)%) = n(x, y%) + n(x? y) by
Proposition 6. Hence(x?, y) = n(x, y?) foranyx, y € V. Now for anyx, y, z €
Vr

n((x +2)%y) =n(x?y) +n@2y) +n(x oz, y)

=n(x, Y +n@ ) +nxoz,y) =nx+z,y9) +nxozy),

n(x +z, y?)

sox oz € V1, as required. O
Proposition 7. Thereare elements x € A withn(x, x?) = 1.

Proof. Otherwise, by the Corollary abovd, o A = 0, so thatd is commutative.
Moreover, by (7)(x)(x3 + x) = 0 for anyx € A. Take 0% e = ¢2 € A with
n(e) = 1 and (Lemma 3.a)) afi € A withn(f) =1 =n(e, f). Then
et f=(+P=E+ e+ )
=etef+ fPet fP=e+ [+elf + [P
Hence f2 = f. Now, for anyv e span(e, f)* with n(v) = 0,y = f +v
also verifiesi(e, y) = 1 = n(y), soy? = y too and, thereforey? = v. From

Lemma 3.b) and the commutativity it follows thet = x for anyx € A. But for
x,y,z €A,

n(x)n(y, z) = n(xy, xz) = n(xy, zx)
= n(zy, x?) + n(x, 2)n(y, x)
= n(x, yz) +n(x, y)n(x, z).



88 J. A. Cuenca et al.

With y, z such thak(y, z) = 1 andx orthogonal toy, z andyz and withr(x) = 1,
we get a contradiction. O

Therefore, we may fix an elemeate A with n(a, a®) = 1. Because of (4)
n(a) = 1 and alda) is isomorphic tdF,4. Let e be the identity element of alg).
The proof of the Theorem will be finished if we show tleat= xe = x for any
x € A.

Proposition 8. For any x € alg(a)*, n(x, x?) = 0.

Proof. In casen(x) = 0, this follows from (7). Otherwise(x) = 1 and for any
0+# b e alg(a),n(b +x) =n() +n(x) =1+ 1= 0, so using Proposition 6 we
get

O=nb+x, b+ x)z) =n(b, bz) + n(b, xz) +n(x, x2).

Taking in turnb = e, a, a® and adding up the results, it follows that

0=n(x, xz) +n(e+a+ az, x2) + n(a, az) + n(az, (a2)2)
:n(x,x2)+n(0, x2)+1+1:n(x,x2). ]

And finally:
Proposition 9. A isa Hurwitz algebra.

Proof. Let V = alg(a)*, by the Corollary abov& o V C alg(a).
For anyx € V with n(x) = 1, as in the proof of the previous Proposition

ne,x%) =0 and  n(a,x% =n(a,a® =1,

SO
2

X" =e+ uy,
for someu, € V. But 1= n(x2) = n(e) + n(uy), Son(uy) = 0. Alson(x, uy) =
n(x, x2) = 0. Besides, since the multiplication bis an orthogonal transformation,
ex € V,S0ex +x = uyx € Vandalsacu, € V.Thusxou, e VN(VoV)C
V Nalg{a) = 0, and therefore o x = 0. By Lemma 3.ck oz = 0 foranyz € V,
soev = ve for anyv € A. Moreover, since:(x, x2) = 0, ¢, = x? is the identity
of alg(x) and
22 _

e+ux=x2=(x (e+ux)2=e+eoux+u§=e+uf.

Henceu, = u?.

By Lemma 3.a) there is an element V with n(y) = 1 = n(x, y), so that

X2 =e+u,, yzze—i—uy and (x+y)2:e+ux+y.

But(x +y)2 =x2+y2+xo0y = uy +uy+xoyandxoy € alg(a) by the

last Corollary. Thusy o y = e. Also, for anyv € V Nspan(x, y)* with n(v) = 0,

n(y+v) =1=n(x,y+v),s0xo(y—+v) =ecandx ov = 0. Because of
Lemma 3.b) we conclude thato u = n(x, u)e for anyx € V with n(x) = 1 and
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foranyu € V. A new application of Lemma 3 (this time its part c)) gives for any
u,vev:
uov=n(u,v)e.

This also implies that
n(uov) =n(n(u,v)e) = n(u, v)? = n(u, v) (16)

for anyu, v € V since we are dealing with the field of two elements. Also notice
that

n(uov) = n(uv, vu) + n(uv) + n(vu)
= n(uv, vu) + 2n(u)n(v) = n(uv, vu). a7)

Finally, for anyx € V with n(x) = 1 and for any; € V,

0=n(z+uy, (z+uy)? =n(z +uyx, 22+ u?) (by Propositions 6 and 8)
=n(z,uy) + n(zz, uy) =n(z, uy) + n(zz, u)zc) (sinceu, = ujzc)
= n(z, uy) + n(zity, uxz) + n(z, u)*  (by (6))
= n(zuy, uyz) =n(zouy) =n(z,uy) (by (17) and (16)).

Thereforen(z, u,) = 0 for anyz € V and, sincen is strictly nondegenerate, it
follows thatu, = 0, sox? = e andex = x%x = x = xe for anyx € V with
n(x) = 1. By Lemma 3.c) it then follows thatz = ze = z for anyz € V and
hence also for any € A, as desired. O
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