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Abstract. Composition algebras of arbitrary dimension over a field and satisfying the iden-
tities x2x = xx2 and (x2)2 = (x2x)x are shown to be precisely the well-known unital
composition algebras, with the exception of three two dimensional algebras over the field of
two elements.

1. Introduction and main result

A nonassociative (i.e. not necessarily associative) algebra over a fieldF is said to
be acomposition algebra if it is equipped with a nondegenerate quadratic form (the
norm)

n : A −→ F

such that

n(xy) = n(x)n(y) (1)

for any x, y ∈ A. The form being nondegenerate means that if the associated
bilinear form is given by

n(x, y) = n(x + y) − n(x) − n(y),

then{x ∈ A : n(x) = n(x, A) = 0} = 0.
The norm is said to be strictly nondegenerate ifA⊥ = {x ∈ A : n(x, A) = 0} =

0. In case the characteristic ofF is not two,n(x) = 1
2n(x, x) and both concepts

agree.
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Composition algebras with a unit element constitute a well known class of al-
gebras (see [K 53], [ZSSS 82, Chapter 2] and the references therein). Either their
norm is strictly nondegenerate, so that they are the classical Hurwitz algebras of
dimension 1, 2, 4 or 8, or the characteristic is 2,A⊥ = A andA is a purely insep-
arable field extension of exponent one of the ground fieldF , with x2 = n(x)1 for
anyx ∈ A.

However, if the existence of a unit element is dropped, infinite dimensional
algebras may appear even in characteristic different from 2 (see [U-W 60] for
the first examples, [C 92,RP 92,E-P 97] for examples with one-sided unit, and
[E-M 93] for commutative examples).

On the other hand, non unital composition algebras satisfying some other con-
ditions have been studied recently. Among these, the associativity of the bilinear
form, that is,

n(xy, z) = n(x, yz) (2)

for anyx, y, z, is particularly noteworthy. The composition algebras satisfying (2)
are calledsymmetric composition algebras (see [KMRT 98]) and were classified in
[E-M 93] over fields of characteristic�= 2, 3 (although the arguments there can be
extended to cover the characteristic 2 – see also [KMRT 98,M 94,O-O 81] –) and
in [E-P 96,E 97] over arbitrary fields. Identity (2) is equivalent to

(xy)x = x(yx) = n(x)y (3)

for anyx, y. In particular these algebras are flexible ((xy)x = x(yx)) and finite
dimensional, because for anyx ∈ A with n(x) �= 0 the left and right multiplications
by x are bijections (see [K 53]).

Any finite dimensional flexible composition algebra over a field of characteristic
�= 2 satisfies (2), as shown in [O 82], and the same happens, if the characteristic is
restricted to be�= 2, 3, if only the third power associativity (x2x = xx2) is required,
by [E-P 94], but the infinite dimensional commutative examples in [E-M 93], men-
tioned above, show that in general (3) does not follow from flexibility. Finally,
finite dimensional power associative (that is, the subalgebra generated by any ele-
ment is associative) composition algebras have been studied in [O 81,P 94,E-P 94].
The most general result known about these algebras is that the finite dimensional
composition algebras over fields of characteristic�= 2 satisfying the conditions

x2x = xx2 and x2x2 = (x2x)x, (4)

(and in particular the finite dimensional power associative composition algebras
over these fields) are Hurwitz algebras ([E-P 94, Theorem B]). It must be remarked
that the condition (4) implies the power associativity over fields of characteristic
zero ([A 48, Lemma 3]).

The purpose of this paper is to prove that the conditions given in (4) for a
composition algebra, are sufficient to force them to be unital (and hence Hurwitz
algebras if the norm is strictly nondegenerate), with only three exceptions over the
field of two elements. No assumption on the dimension and on the field will be
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assumed. The proof does not rely on previous works mentioned above on compo-
sition algebras with some weak associativity conditions, and simplifies drastically
some of those works. Actually, with the exception of the fields of two and three
elements the proof is quite straightforward.

Over the real field, if the normn is substituted by a topological norm, the class
of absolute valued algebras is obtained. For these algebras it was already proved by
El-Mallah and Micali ([EM-M 80]) that the power associativity (which is equivalent
to (4) since the characteristic is zero) implies the existence of a unit element, and
this forces the algebra to be one of the Hurwitz division algebras.

In order to state the main result of the paper we need to consider new com-
position algebras built up from Hurwitz algebras. Given a Hurwitz algebraA of
dimension at least 2 with normn, multiplication denoted by juxtaposition and stan-
dard conjugationx 
→ x̄ = n(x, 1)1− x, then new algebras(A, ·) with x · y equal
either to

i) x̄y, ii) xȳ or iii) x̄ȳ,

are again composition algebras relative to the same quadratic formn. The last one
is called the para-Hurwitz algebra associated toA. The algebra in i) (respectively
ii)) will be called theleft (respectivelyright) composition algebra associated toA.

Recall also that over any fieldF and for any dimension 2, 4 or 8 there exists a
unique Hurwitz algebra whose form is isotropic. In dimension 2 this is the algebra
F ⊕ F with componentwise multiplication and norm given byn(α, β) = αβ. The
Hurwitz algebras of dimension 2 overF are either the split one or the quadratic
separable field extensions ofF . In particular, over the field of two elementsF2 there
are exactly, up to isomorphism, two two-dimensional Hurwitz algebras:F2 ⊕ F2
(split) andF4 (the field of four elements, considered as an algebra overF2).

Now we can state the main result that will be proved in this paper:

Main Theorem. Let A be any composition algebra over a field F satisfying (4).
Then A is power-associative. Moreover, either A is unital or F = F2 and A is, up
to isomorphism, one of the following:

i) the left or right composition algebra associated to F2 ⊕ F2.
ii) the para-Hurwitz algebra associated to F4.

Notice that ife1 = (1, 0), e2 = (0, 1) ande = e1+e2 = (1, 1) in F2⊕F2, then
ē1 = e2, ē2 = e1 and the multiplication of these elements in the left composition
algebra associated toF2 ⊕ F2 gives

e1 · e1 = e2e1 = 0 = e2 · e2 and e · e = e2 = e,

so that this algebra is clearly power-associative and the same happens with the right
counterpart. Besides,F4 = F2[ω] with ω2 = ω + 1 and thus, in the para-Hurwitz
algebra associated toF4, we have

1·1 = 1, ω·ω = (1+ω)2 = 1+2ω+ω2 = ω, and(1+ω)·(1+ω) = ω2 = 1+ω.

Hence all the elements are idempotents and this algebra is then trivially power-
associative.
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The fact that this latter algebra is the only power-associative symmetric compo-
sition algebra appears as an exercise in [KMRT 98, Chapter VIII], but this exercise
can be done (and should be done) more easily without appealing to the Theorem
above.

The paper is organized as follows. The next section will state a crucial iden-
tity satisfied by those composition algebras verifying (4), which implies that the
dimension of the subalgebra generated by any nonisotropic element is at most two.
Then it will be proved that any such composition algebra is unital, provided that
the ground field has at least four elements. Thus we will be left with the fields of
two and three elements:F2 andF3. OverF3 the third section will show that no
other composition algebras, besides the unital ones, satisfy (4) and, finally, the last
section will be devoted to the more difficult case of the field of two elements.

2. The crucial identity and consequences

If A is a composition algebra over a fieldF with normn, then the linearization of
(1) immediately gives

n(xy, xz) = n(x)n(y, z) = n(yx, zx) (5)

and

n(xy, tz) + n(ty, xz) = n(x, t)n(y, z) (6)

for anyx, y, z, t ∈ A.
These linearizations are all we need to prove the crucial identity:

Proposition 1. Let A be a composition algebra with norm n satisfying (4). Then
for any x ∈ A:

n(x)x3 − n(x, x2)x2 + n(x)2x = 0. (7)

Notice that, because of (4), it makes sense to writex3 (= x2x = xx2).

Proof. For anyx, y ∈ A and because of (4), (5) and (6):

n
(
n(x)x3 − n(x, x2)x2 + n(x)2x, y

)

= n(x3x, yx) − n(x, x2)n(x2, y) + n(x3, yx2)

= n(x2x2, yx) − (
n(x2x, yx2) + n(x2x2, yx)

) + n(x3, yx2)

= 0
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and

n
(
n(x)x3 − n(x, x2)x2 + n(x)2x

)

= n(x)2n(x3) + n(x, x2)2n(x2) + n(x)4n(x)

−n(x)n(x, x2)n(x3, x2) + n(x)3n(x3, x) − n(x, x2)n(x2)n(x2, x)

= 2n(x)5 − n(x)2n(x, x2)2 + n(x)3n(x3, x)

= n(x)2
(
2n(x)3 − n(x, x2)2 + n(x)n(x3, x)

)

= n(x)2
(
2n(x)3 −

(
n(x, x2)n(x2, x) − n(x3x, x2)

))

= n(x)2
(
2n(x)3 −

(
n(x, x2)n(x2, x) − n(x2x2, x2)

))

= n(x)2
(
2n(x)3 − n(xx2, x2x)

)
by (6)

= n(x)2
(
2n(x)3 − n(x3, x3)

)
= 0.

Since the quadratic formn is nondegenerate, (7) follows.��
By applying the linear formn(x, −) to identity (7) we get:

n(x)
(
n(x3, x) + 2n(x)2) = n(x, x2)2. (8)

Now assume thatA is a composition algebra with normn over a ground field
F which satisfies (4). IfF is finite of characteristic two, then the restrictionn|A⊥ :
A⊥ → F is a one-to-one semilinear map relative to the Frobenius automorphism
F → F, α 
→ α2. Hence the dimension ofA⊥ is at most one and ifK is any
infinite field containingF , the extension of the normn to K ⊗F A verifies that
(K ⊗F A)⊥ (= K ⊗F A⊥) has dimension at most one overK, so thatn remains
nondegenerate.

Hence, if we assume also thatF contains at least four elements, the linearizations
of the identities in (4) are also valid inA and thus we may extend scalars ifF is
finite. Therefore, we may assume that the fieldF is infinite and that the dimension
of A is at least 2 (otherwiseA is trivially unital).

Then, in any finite dimensional subspaceB of A, of dimension at least two,
such that the restriction ofn to B is nondegenerate,n(x) is given by a homoge-
neous polynomial of degree two, which by nondegeneracy is either irreducible or
the product of two different irreducible polynomials. In any case, (8) and unique
factorization of polynomials imply the existence of a linear mapαB : B → F such
that

n(x, x2) = αB(x)n(x)

for anyx ∈ B.
But if B1 andB2 are two such finite dimensional subspaces ofA with B1 ⊆ B2,

since there are no zero divisors in the polynomial functions onB1 (F is infinite), it
is clear thatαB1 is the restriction toB1 of αB2. As a consequence there is a unique
linear mapα : A → F with

n(x, x2) = α(x)n(x) (9)
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for anyx ∈ A, and by linearization, for anyx, y ∈ A:

n(x, x ◦ y) + n(y, x2) = α(y)n(x) + α(x)n(x, y), (10)

wherex ◦ y = xy + yx.
Now, if e is a unitary idempotent ofA; that is,e2 = e andn(e) = 1, then (9)

givesα(e) = n(e, e) = 2, and by (10)

α(y) + 2n(e, y) = n(e, e ◦ y) + n(e, y)

= n(e2, ey) + n(e2, ye) + n(e, y)

= n(e, y) + n(e, y) + n(e, y) = 3n(e, y),

where we have used (5). Thereforeα(y) = n(e, y) for anyy ∈ A, that is, for any
x ∈ A

n(x, x2) = n(e, x)n(x). (11)

In casen is strictly nondegenerate, this implies that at most there is a unitary
idempotent inA.

But for anyx ∈ A with n(x) �= 0, (7) and (9) imply

x3 − α(x)x2 + n(x)x = 0,

so (
α(x)x − x2)x = n(x)x = x

(
α(x)x − x2),

and the element

e = 1

n(x)

(
α(x)x − x2)

verifiesex = xe = x, so thatn(e) = 1, and alsoex2 = (ex)x = x2 = x2e by (4).
Since the subalgebra generated byx is the span ofx andx2 by Proposition 1, it
follows thate is the identity of this subalgebra. In particular it is a unitary idempotent
of A.

Hence, ifn is strictly nondegenerate, there exists a unique unitary idempotent
e in A andex = xe = x for anyx ∈ A with n(x) �= 0. Since any element inA can
be written as a sum of elements with nonzero norm, it follows thate is the identity
element ofA.

Otherwise the characteristic ofF is two and there is a nonzero elementa ∈ A⊥.
As above,e = 1

n(a)
a2 is a unitary idempotent withea = ae = a, so

n(e, A) = 1

n(a)
n(a)n(e, A) = 1

n(a)
n(ae, aA) = 1

n(a)
n(a, aA) = 0,

becausea ∈ A⊥. Thuse ∈ A⊥ too and now (11) implies thatn(x, x2) = 0 for any
x ∈ A and that all the unitary idempotents ofA belong toA⊥. Again, for anyy ∈ A

with n(y) �= 0, f = 1
n(y)

y2 is a unitary idempotent ofA, hencef ∈ A⊥ and

n(y, A) = 1

n(y)
n(y)n(y, A) = n

(
1

n(y)
y2, Ay

)
= n(f, Ay) = 0,
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soy ∈ A⊥ for anyy ∈ A with n(y) �= 0. It follows thatA = A⊥. Hence as in
[K 53] n : A → F is a one-to-one ring homomorphism, so there is a uniquee ∈ A

with n(e) = 1 and sincen(ex) = n(xe) = n(x), it follows thatex = xe = x for
anyx andA is unital in this case too.

Therefore we have proved the next result:

Proposition 2. Let A be any composition algebra satisfying (4) over a field F

containing at least four elements. Then A is unital.

This proves our Theorem over any field other thanF2 andF3. The next sections
will deal with these two possibilities.

3. The field of three elements

Throughout this sectionA will denote a composition algebra satisfying (4) over the
field F3 of three elements. We want to show that again in this case, ife is a unitary
idempotent (the existence of which is proved as in the previous section, replacing

α(x) by n(x,x2)
n(x)

) then (11) is verified. From this point on the same argument of the
previous section applies.

Lemma 1. Given two unitary idempotents e and f , then n(e, f ) = −1.

Proof. If e = f then there is nothing to prove, sincen(e, e) = 2n(e) = 2 = −1,
so assumee �= f and letx = e + f . Then

n(x, x) = n(e, e) + n(f, f ) − n(e, f ) = 1 − n(e, f ),

n(x, x2) = n(e + f, e + f + ef + f e)

= n(x, x) + n(e, ef ) + n(e, f e) + n(f, ef ) + n(f, f e)

= 1 − n(e, f ) + 4n(e, f ) = 1,

sincen(e, ef ) = n(e2, ef ) = n(e)n(e, f ) = n(e, f ), and so on.
Because of (7),n(x) �= 0, son(x, x) �= 0. Hencen(e, f ) is either−1 or

0. Assume thatn(e, f ) = 0. Thenn(x) = −1, which forcesx2 to be linearly
independent withx, and by (7) the subalgebra generated byx, alg〈x〉, equals the
span ofx andx2: span

〈
x, x2

〉
. Besides

∣∣∣∣ n(x, x) n(x, x2)

n(x2, x) n(x2, x2)

∣∣∣∣ =
∣∣∣∣1 1
1 −1

∣∣∣∣ = 1 �= 0.

Hence, alg〈x〉 is a composition algebra and it is unital with identity

ex = 1

n(x)2

(
n(x, x2)x − n(x)x2)

because of (7), which is therefore the only unitary idempotent in alg〈x〉.
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Let us consider now the elementy = e−f (�= 0), whose norm isn(e)+n(f )−
2n(e, f ) = 2 = −1. Then,

x2 = e + f + e ◦ f = x + e ◦ f,

y2 = e + f − e ◦ f = x − e ◦ f.

Hence,y2 ∈ alg〈x〉 ∩ alg〈y〉. But then either alg〈x〉 = alg〈y〉, so thate andf

belong to alg〈x〉 and by uniquenesse = ex = f , a contradiction, or the subalgebra
alg〈x〉 ∩ alg〈y〉 is the span ofy2. In the latter case, sincen(y) = −1, n(y2) = 1
and eithery2 or −y2 is a unitary idempotent, hence equal toex . Also n(y, y2) =
n(e−f, e+f − ef −f e) = n(e, e)−n(f, f ) = 0 (sincen(e, ef ) = n(e2, ef ) =
n(e, f ) = 0 and so on), so alg〈y〉 is also a two dimensional Hurwitz algebra and,
therefore, its identity element is its unique unitary idempotent. As a consequence,
ex is the identity element of both alg〈x〉 and alg〈y〉. Thus,ex(e + f ) = e + f

andex(e − f ) = (e − f ), soexe = e = e2 andexf = f = f 2. But the right
multiplication by e andf are one-to-one since they have nonzero norm, so we
conclude thate = ex = f , a contradiction. ��
Lemma 2. Let e be a unitary idempotent of A. Then, for any x ∈ A:

i) n(x, x2)n(x, e) = −n(x)2 + n(x)n(e, x2),
ii) if n(x) �= 0, then n(e, x2) = n(x) + n(x, e)2,
iii) n(x, x2)n(x, e) = n(x)n(x, e)2.

Proof. If n(x) = 0 then alson(x, x2) = 0 by (7) and i) and iii) are trivial. Hence
assume thatn(x) �= 0. Thenex = 1

n(x)2

(
n(x, x2)x−n(x)x2

)
is the identity element

of the unital subalgebra alg〈x〉. By Lemma 1

−1 = n(ex, e) = 1

n(x)2

(
n(x, x2)n(x, e) − n(x)n(x2, e)

)
,

which gives i).
Now substitutex by x + y and byx − y in i) and add the resulting equations

to obtain

n(y, e)
(
n(x, x ◦ y) + n(y, x2)

) + n(x, e)
(
n(x, y2) + n(y, x ◦ y)

)
= n(x)

(
n(y2, e) − n(y)

) + n(x, y)
(
n(x ◦ y, e) − n(x, y)

)
+ n(y)

(
n(x2, e) − n(x)

)
which, fory = e gives

−(
n(x, e ◦ x) + n(e, x2)

) = n(x, e)2 + n(x2, e).

But n(x, ex) = n(exx, ex) = n(ex, e)n(x) = −n(x) by (5) and Lemma 1, and
alson(x, xe) = −n(x), son(x, e ◦ x) = n(x). Hence we get

−(
n(x) + n(e, x2)

) = n(x, e)2 + n(x2, e),

which gives ii), and iii) follows immediately from i) and ii) ifn(x) �= 0. ��
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Corollary 1. Let e be a unitary idempotent of A. Then for any x ∈ A

n(x, x2) = n(e, x)n(x).

Proof. If n(x) = 0, then alson(x, x2) = 0 by (7) and this is clear. Also, if
n(e, x) �= 0, then the assertion follows from the previous Lemma. So assume
thatn(x) �= 0 = n(e, x). Thenn(e, e + x) = −1 �= 0, so

n(e + x, (e + x)2) = n(e, e + x)n(e + x). (12)

But by our assumptions

n(e, e + x)n(e + x) = n(e, e)
(
n(e) + n(x)

) = −(
1 + n(x)

)
.

Also n(x, e ◦ x) = n(x), as in the proof of Lemma 2, andn(e, ex) = n(e2, ex) =
n(e, x) = 0 = n(e, xe). Hence

n(e + x, (e + x)2) = n(e + x, e + x2 + e ◦ x)

= n(e, e) + n(e, x2) + n(x, x2) + n(x)

= −1 + n(x) + n(x, x2) + n(x) (by Lemma 2)

= −(
1 + n(x)

) + n(x, x2).

Hence (12) impliesn(x, x2) = 0 and the assertion is also true in this case.��
As mentioned at the beginning of the section, the Corollary above and the

arguments of the previous section give:

Proposition 3. The only composition algebras over F3 satisfying (4) are the Hur-
witz algebras.

4. The field of two elements

We are left with the most tricky case. Throughout this section,A will denote a
composition algebra satisfying (4) with normn over the fieldF2.

Let us first have a look at the subalgebra generated by an elementx with
n(x) �= 0. By (7),

x3 + n(x, x2)x2 + x = 0. (13)

Now, if n(x, x2) = 1, thenex = x3 = x + x2 verifiesn(ex) = 1 and

exx = (x + x2)x = x2 + x3 = x, by (13)

exx
2 = (x + x2)x2 = x3 + x3x = (x + x2) + x = x2,

so ex = x + x2 is the identity element of alg〈x〉 = span
〈
x, x2

〉
and alg〈x〉 is

isomorphic toF4. Otherwisen(x, x2) = 0, sox3 = x by (13), then eitherx2 = x

and alg〈x〉 = span〈x〉, or x2 �= x, alg〈x〉 = span
〈
x2, x + x2

〉
andx2x2 = x3x =

x2, x2(x +x2) = x +x2 = (x +x2)x2 and(x +x2)2 = x2+x2x2 = x2+x2 = 0.
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In this last case, alg〈x〉 is isomorphic to the algebra of “dual numbers”F21+ F2ε,
with ε2 = 0 andn(1) = 1, n(ε) = n(1, ε) = 0.

In any case, alg〈x〉 is a unital algebra, whose identity element will be denoted
by ex . Besides, for anyy ∈ A, n(x, xy) = n(xex, xy) = n(ex, y) = n(x, yx), so
that for anyx, y ∈ A with n(x) = 1

n(x, x ◦ y) = 0. (14)

Assume first thatA⊥ �= 0. Then, since the restrictionn|A⊥ : A⊥ → F is
one-to-one and linear (becausen(αx) = α2x = αx for anyα (= 0 or 1) inF2), it
follows thatA⊥ = F2e for somee with n(e) = 1. From (13),e3 = e, so for any
x ∈ A, n(e2, x) = n(e)n(e2, x) = n(e3, ex) = n(e, ex) = 0 ande2 ∈ A⊥ = F2e.
Therefore,e2 = e. Now, for anyx ∈ A with n(x) = 0,n(e+x) = n(e)+n(x) = 1,
so there exists a unitary idempotentf (the identity element of the algebra generated
by e + x) such thatf (e + x) = (e + x)f = e + x and

n(x, ex) = n(e + x, ex) = n(f (e + x), ex)

= n(e(e + x), f x) + n(f, e)n(e + x, x) by (6)

= n(e + ex, f x) = n(ex, f x) = n(e, f )n(x) = 0.

Also, if n(x) = 1, thenn(e+x) = 0, son(x, ex) = n(e+x, e(e+x)) = 0. Hence,
n(x, ex) = 0 for anyx ∈ A. As a consequence, for anyx, y ∈ A, n(x, ey) =
n(y, ex), so

n(y, ex) = n(e)n(y, ex) = n(ey, e(ex)) = n(y, e(e(ex))),

so that
(
L3

e − Le

)
(x) ∈ A⊥ = F2e for anyx ∈ Aand then 0= (Le−1)(L3

e−Le) =
Le(Le − 1)3, whereLe denotes the left multiplication bye in A. But Le is one-to-
one, becausen(e) = 1 andn is nondegenerate, so we conclude that(Le − 1)3 = 0,
so thatLe is a bijection.

In exactly the same way we conclude that the right multiplicationRe by e is a
bijection, and as in [K 53] that the the new algebra obtained overA with the new
multiplication given by

x · y =
(
R−1

e x
) (

L−1
e y

)

is a unital composition algebra overF2 with the same norm, whose identity element
is e. Since we are assuming thatA⊥ �= 0 andF2 is perfect, we conclude that the
dimension ofA is one in this case.

Therefore, from now on we will assume that the normn onA is strictly nonde-
generate. Hence the dimension ofA is either 2, 4, 8 or infinite.

The two dimensional case is settled in the next result:

Proposition 4. Let A be a two dimensional composition algebra over F2 with
strictly nondegenerate norm and satisfying (4). Then, up to isomorphism, A is
either:
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i) a Hurwitz algebra, hence it is either F2 ⊕ F2 or F4,
ii) the left or right composition algebra associated to F2 ⊕ F2, or
iii) the para-Hurwitz algebra associated to F4.

Proof. Assume first that there is a nonzero element 0�= x ∈ A such thatx andx2 are
linearly independent. ThenA = F2x + F2x

2, n(x, x2) = 1 by the nondegeneracy
of n( , ) so, by (7),n(x) = 1 andA = alg〈x〉 ∼= F4, as above.

Otherwise, for anyx ∈ A, x2 equals either 0 orx, so for any 0 �= e ∈ A

with n(e) = 1, we havee2 = e. Choose one suche and takea ∈ A such that
A = F2e + F2a, so thatn(e, a) = 1.

In casen(a) = 1, thenn(e + a) = 1 too and thereforea2 = a and(e + a)2 =
e + a. Moreover, ifea = e = e2 thene(e + a) = 0 and this is a contradiction since
the left multiplication bye is a bijection. The same happens ifea = a = a2. Hence
ea = ae = e + a andA is thus isomorphic to the para-Hurwitz algebra associated
to F4.

Finally, in casen(a) = 0 we are left with two subcases: eithera2 = a ora2 = 0.
In the first subcase (a2 = a) n(ea, e) = n(ea, e2) = n(a, e) = 1 = n(ae, e), and
n(ea, a) = n(ea, a2) = n(a)n(e, a) = 0 = n(ae, a), which forceea = ae = a,
soA is, up to isomorphism, the split Hurwitz algebraF2 ⊕ F2.

In the second subcase (a2 = 0), it must be that(e + a)2 = 0, otherwise
interchangea and e + a in the paragraph above to get thatA is isomorphic to
F2 ⊕ F2, which contradictsa2 = 0. Hencea2 = 0 = (e + a)2, soe ◦ a = e. But
n(ea, e) = 1, as above, andn(ea) = 0, which gives either:

– ea = a, ae = e + a and we are in case ii), or
– ea = e + a, ae = a (opposite to the previous one), and we are in case ii) again.

��
The dimension four case is settled in a completely different way:

Proposition 5. Let A be a four dimensional composition algebra over F2 with
strictly nondegenerate norm and satisfying (4). Then A is a Hurwitz algebra.

Proof. Take any idempotent 0�= e = e2 with n(e) = 1 (for instance the identity
elementex of any alg〈x〉 with n(x) = 1). Then the new multiplication given by

x · y = (R−1
e x)(L−1

e y),

(whereLe andRe denote the left and right multiplications bye) makesA a four
dimensional Hurwitz algebra with unite, that is, a four dimensional central simple
associative algebra, which is necessarily isomorphic to the algebra Mat2(F2) of
2 × 2 matrices overF2 with the determinant function as norm, since there are no
central simple division algebras over finite fields by the well-known Wedderburn’s
Theorem.

But in Mat2(F2), the set of invertible elements is
{(

1 0
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)} ⋃ {(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)}
,
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that is, the invertible elements are the nonzero elements of the orthogonal subspaces

S1 = span

〈(
1 0
0 1

)
,

(
0 1
1 1

)〉
and S2 = span

〈(
1 1
0 1

)
,

(
1 0
1 1

)〉
.

ThusS1 andS2 are the only two dimensional subspaces without nonzero isotropic
elements. Therefore, withS = Si such thate ∈ Si , A = S ⊕S⊥ (whereS⊥ denotes
the orthogonal subspace toS) for a two dimensional subspaceS with e ∈ S, such
that the restrictions of the normn toS and toS⊥ do not represent 0 and any element
x �∈ S ∪ S⊥ verifiesn(x) = 0. Moreover,S andS⊥ are the only two dimensional
subspaces without nonzero isotropic elements.

Therefore, for anyx ∈ A with n(x) = 1, eitherxS = S andxS⊥ = S⊥, or
xS = S⊥ andxS⊥ = S; and the same withSx andS⊥x.

Sincee = e2 ∈ S, it follows easily from this thatS is a subalgebra (SS ⊆ S)
and thatSS⊥ + S⊥S ⊆ S⊥ andS⊥S⊥ ⊆ S.

For any 0 �= y ∈ S⊥, n(e + y) = 0, son(e + y, (e + y)2) = 0 by (7). Now
(14) and the above give

0 = n(e+y, (e+y)2) = n(e, e◦y)+n(y, e◦y)+n(y, y2)+n(e, y2) = n(e, y2),

soy2 = e sincen(x1, x2) = 1 for any 0 �= x1 �= x2 �= 0 in S. As a consequence
e is the only nonzero idempotent inS (otherwise the same argument would give
y2 = f �= e) and hence for any nonzerox �= e in S, S = alg〈x〉 ande = ex .
Besidesey = y2y = y = ye by (13) for anyy ∈ S⊥, so thate is the identity
element inA andA is a Hurwitz algebra, as required.��

In order to finish the proof of the Theorem, it must be proved that ifA is a
composition algebra with strictly nondegenerate norm of dimension> 4 (hence 8
or ∞) overF2 and satisfies (4), thenA is a Hurwitz algebra. Let us start with an
easy Lemma:

Lemma 3. Let V be a vector space over F2 of dimension > 2 equipped with a
strictly nondegenerate quadratic form n, then:

a) For any x ∈ V with n(x) = 1, there exists an y ∈ V with n(y) = 1 = n(x, y).
b) V = span〈x ∈ V : n(x) = 0〉.
c) For any x ∈ V with n(x) = 0, there exists x′, x′′ ∈ V with n(x′) = 1 = n(x′′)

and x = x′ + x′′.

Proof. a) By nondegeneracy there is az ∈ V with n(x, z) = 1. If n(z) = 1 we are
finished. Otherwisen(z) = 0, V = span〈x, z〉 ⊕ span〈x, z〉⊥ and we can take an
elementz′ ∈ span〈x, z〉⊥ with n(z′) = 1 so that the elementy = z + z′ verifies
n(y) = 1 = n(x, y).

b) For anyv ∈ V with n(v) = 1, takev′ ∈ V with n(v′) = 1 = n(v, v′) as in a)
and takev′′ ∈ span

〈
v, v′〉⊥ with n(v′′) = 1. Thenn(v′ +v′′) = 0 = n(v +v′ +v′′)

andv = (v′ + v′′) + (v + v′ + v′′) ∈ span〈x ∈ V : n(x) = 0〉.
c) If n(x) = 0, takex′ ∈ span〈x〉⊥ with n(x′) = 1. Thenn(x + x′) = 1 and

x = x′ + (x + x′). ��
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Let us assume from now on thatA is a composition algebra with strictly non-
degenerate normn of dimension> 4 overF2 satisfying (4).

Proposition 6. For any x, y, z ∈ A, n(x ◦ y, z) = n(x, y ◦ z).

Proof. If n(x) = 1 andex denotes the identity element of alg〈x〉, then for any
y ∈ A, n(x, xy) = n(xex, xy) = n(ex, y) = n(exx, yx) = n(x, yx), so that
n(x, x ◦ y) = 0. Now, givenx, z ∈ A with n(x) = n(z) = n(x, z) = 1 we have
for anyy ∈ A

0 = n(x + z, (x + z) ◦ y) = n(x, z ◦ y) + n(z, x ◦ y),

so

n(x ◦ y, z) = n(x, y ◦ z). (15)

Let us fix x ∈ A with n(x) = 1. By the previous Lemma there is anx′ ∈ A

with n(x′) = 1 = n(x, x′). Then (15) is valid for anyz ∈ span
〈
x, x′〉, and if

v ∈ span
〈
x, x′〉⊥ with n(v) = 0,n(x′ +v) = 1 = n(x, x′ +v) so (15) is valid with

z = x′ + v and hence withz = v. From Lemma 3.b) it follows that (15) is valid
for anyx, y, z ∈ A with n(x) = 1 and, finally, by Lemma 3.c), it is valid for any
x, y, z ∈ A. ��
Corollary 2. Let V be a subspace of A such that n(x, x2) = 0 for any x ∈ V , then
V ◦ V ⊆ V ⊥.

Proof. For anyx, y ∈ V , 0 = n(x + y, (x + y)2) = n(x, y2) + n(x2, y) by
Proposition 6. Hencen(x2, y) = n(x, y2) for anyx, y ∈ V . Now for anyx, y, z ∈
V ,

n(x + z, y2) = n((x + z)2, y) = n(x2, y) + n(z2, y) + n(x ◦ z, y)

= n(x, y2) + n(z, y2) + n(x ◦ z, y) = n(x + z, y2) + n(x ◦ z, y),

sox ◦ z ∈ V ⊥, as required. ��
Proposition 7. There are elements x ∈ A with n(x, x2) = 1.

Proof. Otherwise, by the Corollary above,A ◦ A = 0, so thatA is commutative.
Moreover, by (7)n(x)(x3 + x) = 0 for anyx ∈ A. Take 0 �= e = e2 ∈ A with
n(e) = 1 and (Lemma 3.a)) anf ∈ A with n(f ) = 1 = n(e, f ). Then

e + f = (e + f )3 = (e2 + f 2)(e + f )

= e + ef + f 2e + f 3 = e + f + e(f + f 2).

Hencef 2 = f . Now, for anyv ∈ span〈e, f 〉⊥ with n(v) = 0, y = f + v

also verifiesn(e, y) = 1 = n(y), soy2 = y too and, therefore,v2 = v. From
Lemma 3.b) and the commutativity it follows thatx2 = x for anyx ∈ A. But for
x, y, z ∈ A,

n(x)n(y, z) = n(xy, xz) = n(xy, zx)

= n(zy, x2) + n(x, z)n(y, x)

= n(x, yz) + n(x, y)n(x, z).
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With y, z such thatn(y, z) = 1 andx orthogonal toy, z andyz and withn(x) = 1,
we get a contradiction. ��

Therefore, we may fix an elementa ∈ A with n(a, a2) = 1. Because of (4)
n(a) = 1 and alg〈a〉 is isomorphic toF4. Let e be the identity element of alg〈a〉.
The proof of the Theorem will be finished if we show thatex = xe = x for any
x ∈ A.

Proposition 8. For any x ∈ alg〈a〉⊥, n(x, x2) = 0.

Proof. In casen(x) = 0, this follows from (7). Otherwisen(x) = 1 and for any
0 �= b ∈ alg〈a〉, n(b + x) = n(b) + n(x) = 1 + 1 = 0, so using Proposition 6 we
get

0 = n(b + x, (b + x)2) = n(b, b2) + n(b, x2) + n(x, x2).

Taking in turnb = e, a, a2 and adding up the results, it follows that

0 = n(x, x2) + n(e + a + a2, x2) + n(a, a2) + n(a2, (a2)2)

= n(x, x2) + n(0, x2) + 1 + 1 = n(x, x2). ��
And finally:

Proposition 9. A is a Hurwitz algebra.

Proof. Let V = alg〈a〉⊥, by the Corollary aboveV ◦ V ⊆ alg〈a〉.
For anyx ∈ V with n(x) = 1, as in the proof of the previous Proposition

n(e, x2) = 0 and n(a, x2) = n(a, a2) = 1,

so
x2 = e + ux

for someux ∈ V . But 1= n(x2) = n(e) + n(ux), son(ux) = 0. Alson(x, ux) =
n(x, x2) = 0. Besides, since the multiplication bye is an orthogonal transformation,
ex ∈ V , soex + x = uxx ∈ V and alsoxux ∈ V . Thus,x ◦ ux ∈ V ∩ (V ◦ V ) ⊆
V ∩ alg〈a〉 = 0, and thereforee ◦ x = 0. By Lemma 3.c)e ◦ z = 0 for anyz ∈ V ,
soev = ve for anyv ∈ A. Moreover, sincen(x, x2) = 0, ex = x2 is the identity
of alg〈x〉 and

e + ux = x2 = (x2)2 = (e + ux)
2 = e + e ◦ ux + u2

x = e + u2
x.

Henceux = u2
x .

By Lemma 3.a) there is an elementy ∈ V with n(y) = 1 = n(x, y), so that

x2 = e + ux, y2 = e + uy and (x + y)2 = e + ux+y.

But (x + y)2 = x2 + y2 + x ◦ y = ux + uy + x ◦ y andx ◦ y ∈ alg〈a〉 by the
last Corollary. Thus,x ◦ y = e. Also, for anyv ∈ V ∩ span〈x, y〉⊥ with n(v) = 0,
n(y + v) = 1 = n(x, y + v), sox ◦ (y + v) = e andx ◦ v = 0. Because of
Lemma 3.b) we conclude thatx ◦ u = n(x, u)e for anyx ∈ V with n(x) = 1 and
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for anyu ∈ V . A new application of Lemma 3 (this time its part c)) gives for any
u, v ∈ V :

u ◦ v = n(u, v)e.

This also implies that

n(u ◦ v) = n
(
n(u, v)e

) = n(u, v)2 = n(u, v) (16)

for anyu, v ∈ V since we are dealing with the field of two elements. Also notice
that

n(u ◦ v) = n(uv, vu) + n(uv) + n(vu)

= n(uv, vu) + 2n(u)n(v) = n(uv, vu). (17)

Finally, for anyx ∈ V with n(x) = 1 and for anyz ∈ V ,

0 = n(z + ux, (z + ux)
2) = n(z + ux, z

2 + u2
x) (by Propositions 6 and 8)

= n(z, ux) + n(z2, ux) = n(z, ux) + n(z2, u2
x) (sinceux = u2

x)

= n(z, ux) + n(zux, uxz) + n(z, ux)
2 (by (6))

= n(zux, uxz) = n(z ◦ ux) = n(z, ux) (by (17) and (16)).

Thereforen(z, ux) = 0 for anyz ∈ V and, sincen is strictly nondegenerate, it
follows thatux = 0, sox2 = e andex = x2x = x = xe for any x ∈ V with
n(x) = 1. By Lemma 3.c) it then follows thatez = ze = z for any z ∈ V and
hence also for anyz ∈ A, as desired. ��
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