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ALTERNATIVE QUASIALGEBRAS

HELENA ALBUQUERQUE, ALBERTO ELDUQUE

AND JOSE MARIA PEREZ-IZQUIERDO

Alternative division quasialgebras which are not associative, are characterised.
Their grading groups are shown to be always Abelian and they are built from
some specific graded associative algebras by means of a graded Cayley-Dickson
process.

1. INTRODUCTION

Given a group G, a field k and a cocycle <f>: GxGxG -» kx (that is, <p(a, e, b) = 1
for any a:b £ G, where e denotes the neutral element, and

cj>{a, b, c)cj>{a, be, d)(f)(b, c, d) = cj)(ab, c, d)<f>(a, b, cd)

for any a, 6, c, d€ G), G-graded fc-algebras A = 0 Ag satisfying the "twisted" asso-
ciative law 9 6

(xaxb)xc = <f)(a,b,c)xa(xbxc)

for any homogeneous elements xo € Aa, xb € Ab, xc € Ac, were introduced in [2] and
called G-graded quasialgebras.

For some groups, these have been studied in [1, 3].

If the cocycle is trivial, a quasialgebra is nothing else but a graded associative
algebra. An interesting feature is that some noteworthy nonassociative algebras, such
as Cayley-Dickson algebras, are quasialgebras too, for suitable groups and cocycles.

Let, F : GxG —> kx be a 2-cochain (that is, a map satisfying F(e,a) = 1 = F(a, e)
for any a € G). Then the group algebra kG "twisted" by considering the new product
on it determined by

x-Fy = F(x,y)xy

for any x,y € G, is a G-graded quasialgebra, denoted by kpG, whose cocycle is dF.
Hence kpG is associative if and only if F is a 2-cocycle. (These algebras have been
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258 H. Albuquerque, A. Elduque and J.M. Perez-Izquierdo [2]

considered in [6].) Any Cayley-Dickson algebra over a field k of characteristic ^ 2 is a
quasialgebra kf G, where G = Z2 x Z2 x Z2, for a suitable cochain F (see [2]).

A quasialgebra A — ® Ag is said to be a division quasialgebra if Ag ^ 0 for any
fl£G

g € G and for any g,h £ G and 0 5̂  i s £ J4S, the linear maps

and
x 1-4 x s x x i-» xx9

are bijective. Associative division quasialgebras are just associative graded division al-
gebras, which are building blocks in the theory of graded associative rings (see [5]).
Quasialgebras, kpG and, in particular, Cayley-Dickson algebras over fields of charac-
teristic not equal to 2, are examples of division quasialgebras too.

The purpose of this paper is to characterise those division quasialgebras which are
alternative but not associative. It will be proven that if A — ® Ag is such a division

quasialgebra, then the grading group G must be Abelian and contain a subgroup N

with quotient G/N isomorphic to Z2xZ2><Z2. Moreover, the subalgebra AN = 0 Ag

is then a graded associative division algebra, of a very specific nature, and A is built
from AN by means of a "graded version" of the Cayley-Dickson doubling process.

Alternative Z" -graded algebras A = ® AQ over a field k of characteristic not

equal to 2 with dim*; Aa — 1 and AaAp = Aa+p for any a,/3 € Z", called alternative
tori, have been considered in [4] in connection with some extended affine Lie algebras. It
is clear that such algebras are twisted group algebras and hence they provide noteworthy
examples of alternative division quasialgebras. The characterisation of these algebras
given in [4, Theorem 1.25] is subsumed in our main result (Theorem 3.12).

2. PRELIMINARIES

Let A be an algebra over a field k and let [x,y] = xy - yx and (x,y,z) =
(xy)z — x(yz) be the commutator and associator of elements x,y,z £ A. The nucleus
N(A), commutative centre K{A) and centre Z{A) are defined by (see [8, p. 136]):

N(A) = {x e A : (x,A,A) = (A,x,A) - {A,A,x) = 0},

K(A)={xeA:[x,A} = 0},

Z{A) = N(A)r\K(A).

The sets A (̂̂ 4) and Z(A) are always subalgebras of A and, if the algebra A is alter-
native (that is, x2y — x(xy) and yx2 = (yx)x for any x,y e A), then K(A) is also a
subalgebra of A and, moreover, 3K(A) C Z(A).
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[3] Alternative quasialgebras 259

Given a quasialgebra A = 0 Ag, with associated cocycle <f>, the set
g€G

N(G,4>) = {9£G: 4>(g,G,G) = 4>(G,g,G) = 4>(G,G,g) = l }

will be called the nucleus of the pair (G, <j>).

LEMMA 2 . 1 . N(G,cj>) is a subgroup of G, and for any g £ N(G,<f>) and

a,b,c€ G:

0(a, b, c) = (j>(a, b, eg) = <j>{ga, b, c)

<j)(ag, b, c) = <p(a, gb, c) and <f>{a, bg, c) = <j){a, b, gc)

P R O O F : For g,h € N(G,<j>) and a,b € G

1 = (j>(g, h, a)<f>(g, ha, b)cj>(h, a, b)

= <f>(gh, a, b)<j>(g, h, ab) = <f>(gh, a, b),

so <f>(gh,G,G) = 1 and, similarly, <j>{G,gh,G) = cj>(G,G,gh) = 1 and gh 6 N(G,<f>).

On the other hand, since 0(e, G, G) — 1,

= <j)(e, a, b)cj>(g, g~*, ab) = 1,

so (/•(ff'^G, G) = 1 and, in the same way, 4>(G, G,g~l) = 1. Also

1 = <f)(a,g,g-1)(j)(a,e,b)(t>(g,g~1,b)

= 4>{ag,g~1,b)4>(a,glg~lb) = <f>(ag,g~l,b),

so <f>(G,g-\G) = <j>{Gg,g-\G) = 1 too and fT1 €

Now, simple computations using the cocycle condition give the result. Q

For division quasialgebras A = 0 Ag, the nuclei N(G, <j>) and N(A) are closely
related: geG

LEMMA 2 . 2 . Let >1 = 0^4 S be a division quasialgebra with cocycle <j>, then
N(A)= 0 Ag.

 G

PROOF: It is clear from the definitions that N(A) is a graded subalgebra of A and
that 0 Ag C AT(A). Also, if 0 / xs € Ag n N(A), then by the division property,

N(G)

Ag = > i e i 9 C N(A), since A^(^4) is a subalgebra. For any a,b e G and 0 ^ xa e Aa,

OjtXbeAb:

0 = {xg,xa, xb) = {xgxa)xb - xg(xaxb) = (4>{g, a, b) - l)xg(xaxb),
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260 H. Albuquerque, A. Elduque and J.M. Perez-Izquierdo [4]

so that cj)(g,G,G) = 1 since xg(xaXb) # 0. In the same way <p(G,g,G) — 1 =

<f>(G,G,g). Therefore, g <E N(G, <t>) and N(A) C 0 Ag. D
)

Notice that if A is an alternative algebra, then the associator is a skew-symmetric

map on its arguments, hence N(A) — {x e A : (x, A, A) = 0 } . Then, if A = 0 Ag
g€G

is an alternative division quasialgebra and g € G, (j>(g,G,G) = 1 if and only

if (Ag,A,A) = 0, and this last condition is equivalent to (A,Ag,A) = 0 and

(A,A,Ag)=0. Thus, the conditions 4>{g, G, G) = 1, <j>(G,g, G) = 1 and <p{G, G,g) = l

are equivalent.

In what follows, alternative algebras which are not associative will be said to be

strictly alternative.

3. ALTERNATIVE DIVISION QUASIALGEBRAS

The first thing to do, in order to characterise the strictly alternative division
quasialgebras, is to show that the grading group has to be Abelian.

LEMMA 3 . 1 . Let A = 0 Ag be a strictly alternative division quasialgebra.
g€G

Then, for any elements a,b,c € G and xa 6 Aa, i(, £ At,:

(4>{c,a,b) - l)xaxb= -(<f>{c,b,a)- l)xbxa.

PROOF: Take 0 ^ xc € Ac. By the skew-symmetry of the associator, (xc,xa,Xb) =
-(xc,xb,xa) and, since (xc,xa,xb) — ((j>(c,a,b) - l)xc(xaxb),

(cp(c,a,b) - l)xc(xaxb) = -(4>{c,b,a) - l)xc{xbxa).

The division property implies the result. D

THEOREM 3 . 2 . Let A — 0 Ag be a strictly alternative division quasialgebra.
geG

Then G is Abelian and N(A) = Z{A).

PROOF: By [8, Exercise 6, p. 144], (A,A,z)[z,N{A)] = 0 for any z e A, and
hence, by linearisation, {A,A,'z)[N(A),N{A)] = 0, so {A,A,A)[N{A),N{A)] = 0.
Since A is a strictly alternative division quasialgebra, this forces [N(A),N(A)] = 0
and also [Aa,N(A)] = 0 for any a £ N{G,<p). Therefore [A,N(A)] = 0 and N(A) =
Z{A). Thus, for any g e N(G, cj>), o € G and 0 jt xg € Ag, 0 ^ xa € Aa,

ctg ' ' -

and hence ga = ag and N(G,<j>) C Z(G).
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[5] Alternative quasialgebras 261

Moreover, if a, b € G satisfy 4>{G, a,b) ^ 1, then by Lemma 3.1, for any 0 ^ xa G

Aa and 0 ^ Xb € At,,

0 7̂  ZaZfc € /lab 1*1

and hence ab = 6a. On the other hand, if 4>(G,a,b) = 1, then (J4, j4a,Af,) = 0 and,
by [8, Lemma 3, p. 134], [Aa,/lb] C N(A), which implies, since N(A) is a graded
subalgebra, that either ab = ba or ab, ba e TV(G, </>) C Z(G). In the latter case,
ba = 6(a6)6~1 = {ab)bb~x — ab since ab € Z(G). Therefore G is Abelian, and the
proof is complete. D

COROLLARY 3 . 3 . Let A = ® Ag be a strictly alternative division quasialge-
G

bra. Then K = Ae is a Geld and A is a unital K -algebra (1 6 Ae).

P R O O F : By Theorem 3.2, K = Ae \$, an associative and commutative division
algebra, so it is a field, and it is contained in the centre of A. Moreover, if 1 denotes
the unit element of K, the division property and the conditions (Ae,Ae,A) = 0 =
(A,Ae,Ae) imply that 1 is the unit element of A. D

Lemma 2.1 and the commutativity of G immediately imply the following conse-
quence, where N(G, <f>) is denoted by TV for short:

COROLLARY 3 . 4 . Let A — © Ag be a strictly alternative division quasialge-

bra. Then cj> induces a cocycle <f>: G/N x G/N x G/N -> k* defined by

<j>(aN, bN, cN) = <f>(a, b, c).

In the next propositions, it will always be assumed that A = ® Ag is a strictly
gEG

alternative division quasialgebra, with associated cocycle <j> and, as before, N(G, <j>)
will be denoted simply by TV.

P R O P O S I T I O N 3 . 5 . For any g eG, g2 e N.

PROOF: If g e TV, g2 € TV is clear since TV is a subgroup by Lemma 2.1.

If g $. TV and [J4S,J4] ^ 0, then there exists an element h € G with [>49,Ah]
^ 0. Let xg € Ag and Xh € Ah be such that [xg,Xh] ^ 0. Then by [8, Corollary 2,
p. 148] there are homogeneous elements p,q,r € N(A) with p = [xg,xh]

4 such that
px2 - qxg + r l = 0. Multiplying by p~l we obtain x2 - qxg + f 1 = 0 {x2 ^ 0) with
q and F homogeneous elements in N(A). Considering the homogeneous component in
Ag2, we have (since g £ TV) that x2

g + r l = 0, with 0 ^ F 6 Ag2 n N(A), and g2 e TV.

If g $ TV but [^3,.<4] = 0, then necessarily the characteristic of k is 3 by
[8, Corollary 1, p. 136] and there are two possibilities: either A is commutative, and
then by [8, Lemma 8, p. 142] (A, A, A)2 — 0, which by the division property implies
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262 H. Albuquerque, A. Elduque and J.M. Perez-Izquierdo [6]

(A, A, A) = 0, a contradiction to A being not associative; or A is not commutative,

so there exist elements a,6 e G, xa € Aa, zj, € Ab with [za,Z6] ^ 0, which im-

plies that a2 € N by the argument above. In this case, by [8, Equation (7) p. 136],

[xgxa,xb] = xg[xa,xb] ± 0 and (5a)2 G N. Thus, g2 = ( ^ a ) 2 ^ 2 ) " 1 G N (G is

Abelian). D

PROPOSITION 3 . 6 . For any elements g,heG and xg € Ag, xhe Ah:

(i) If g e N or h € N or gh e N, then [xg, xh] - 0.

(ii) If [Ag,Ah] / 0, then xgxh +xhxg = 0.

PROOF: For (i), if g € N, xg € N(A) = Z(A) (Theorem 3.2), so [xg, A] = 0. The
same happens if h € N. Now, if gh € N and zs ^ 0, since g2 e N, there exists an
element n e N with h = gn. Then there is i n € An such that z/, = z s z n , which
implies that [xg,Xh] — [xg,xgxn] and because the algebra generated by xg and xn is
associative, the last expression is equal to xg[xg,xn] = 0 and so [zg,z/i] = 0.

For (ii), it can be assumed that i 9 / 0 / i), and that h ^ g because gh $. N.
If [-AS,.A/,] / 0 (which implies that g £ N and h £ N), since Ag = Aexg and
Ae C iV(.A), then [z^Ah] / 0, and with the same argument [xg,Xh] ^ 0. But then
0 7̂  [xg +Xh,xii\ — [xg,Xh] e Agh and again, by [8, Corollary 2, p. 148], there are
elements p,q,r € N(A) with 0 ^ p — [xg + x^,Xh]4 € Ag4h4 such that p(xg + z/,)2 -
q(xg + Xh.) + rl = 0 . The homogeneous component in A, ...5 is

p{xgXh + XhXg) - q(gh)igXh ~ 1(gh)*HX9 + T(gh)51 = ° '

Qfgh)4
g
 1S *^e homogeneous component of q in A, .^ and similarly for

and r ( p / l ) 5 . But (p/i)4 € N by Proposition 3.5 and h £ N, which implies {gh)4h $ N

and qrgh)4h = 0- Analogously (gh^g $ N, (gh)5 £ N and we can conclude that

XgXh + XhXg —0. D

COROLLARY 3 . 7 . There are no strictly alternative division quasialgebras over
fields of characteristic 2.

PROOF: By Proposition 3.6, if the characteristic is equal to 2, then [A, A] =
0, so A — 3A C N(A) by [8, Corollary 1, p. 136], a contradiction to A not being
associative. D

Therefore, in what follows, the characteristic will be assumed to be not equal to 2.

P R O P O S I T I O N 3 . 8 . The commutative centre of A equals the nucleus ((A) =

N(A) = Z(A)) and for any g,h € G\N with gh <£ N and xg e Ag, xh e Ah,

xgxh + xhxg = 0 .

PROOF: By extending scalars if necessary, the ground field k may be assumed to

be infinite.
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[7] Alternative quasialgebras 263

If the characteristic is not equal to 3, then K(A) = Z(A)(= N(A)) by [8, Corollary
1, p. 136]. Then, since g € G \ N there is an element a € G and xa € Aa such
that [ip.Xa] # 0 and hence there is a 0 / a 6 k such that [xg + axh,xa]

4 ^ 0.
Using an already familiar argument, there are elements p, q, r € N(A), with 0 ^ p =
[xg + axh, xh}

4, such that

p(xg + axh)
2 - q{xg + axh) + r\ = 0.

Let c e J V such that pc ^ 0 (pc is the component of p in Ac), then, by considering in
the last equation only the component in Acgh, we have

apc(xgxh + XhXg) - qchXg - aqcgXh + rcghl = 0.

But, since gh £ N, cgh £ N and rcgh = 0. Since g £ N, eg £ N and qcg = 0 , and

since h £ N, ch £ N and qch = 0. So the last equation shows that xgXh + XhXg — 0,

as required.

If the characteristic is equal to 3 and [xg, A] ^ 0 or [x/,, A] ^ 0, then the argument

above is valid, thus obtaining xgXh + XhXg = 0. Otherwise, we may assume that

[xs,A] = [z/,,-4] = 0 and xg ^ 0 ^ x^,- A is not commutative (by the argument

in the proof of Proposition 3.5), so there are homogeneous elements xa e Aa, z6 6

Ab with [zoi£6] 7̂  0, which implies (again as in the proof of Proposition 3.5) that

[xgxa,Xb] 7̂  0 and [xhXa,Xb] ^ 0. Then there is a nonzero scalar a e k such that

[{xg + axh)xa,Xb] 7̂  0 and, as before, there are elements p ^ 0,q,r e N(A) such

that p({xg + axh)xa) - q(xg + axh)xa + r l = 0. But the algebra generated by the

elements xg + ax^ and xa is associative and commutative, so ((xg + axh)xa) =

((xg +axh)2xa)xa. Let c e N with pc ^ 0. Then

apc((xgxh + xhxg)xa)xa - qCahXgxa - aqcagxhxa + rCa2
s/il = 0.

Since gh & N, a2 € N and c G N, ca2gh £ N and so rca2gh\ = 0. But ah & N

because \xh.xa,Xb] ^ 0, which implies that cah $ N and qcah = 0. In the same way,
qcag =z 0. Hence xgXh + XhXg = 0 and 0 = [xg,Xh] = 2xgxh, a contradiction.

It remains to check that, in characteristic 3, K(A) — N(A). If this were not
the case, there would exist an element g € G \ N with [Ag, A] = 0. If there were
another element h € G\N with gh # N, we would arrive again at the contradiction
XgXh + XhXg = 0 and 0 = [a;9,x/i] = 2xgXh / 0. Therefore, G — NuNg. But
[.A9,.<4] = 0 implies that [Aa/lg.yl] = 0 for any a e N and A would be commutative,
a contradiction again. D

Corollary 3.4 shows how <j> induces a cocycle <f>: G/N x G/N x G/N -» k* , denned

by 4>(aN,bN,cN) = <f>(a,b,c). By the Generalised Theorem of Artin [8, Exercise 1,
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p. 40], if the associator of three elements in an alternative algebra vanishes, then the
subalgebra generated by these elements is associative. In our situation, this implies that
if (xa,Xb,xc) = 0 for nonzero homogeneous elements xa £ Aa, Xb € Ab and xc 6 Ac,

then 4>(H,H,H) = 1 for H the subgroup generated by a,b,c.

Denote by G the quotient group G/N and by a the coset aN of an element a 6 G.

Given a subset 5 of a group, (S) denotes the subgroup generated by S.

PROPOSITION 3 . 9 . For any elements a,b,c € G and xa 6 Aa, xb € Ab:

(i) <f>(a, b, c) = 1 if and only if the subgroup (a, b, c) of G generated by a, b, c

has order at most 4. In the other case, that is, if the order of the subgroup

generated by a, b, c is 8, then <f>(a, b,c) = — 1.
(ii) xaXb = XbXa if |(a, b)| < 2. For the remaining cases, xaxb = -XbXa.

P R O O F : If |(a, b, c)\ < 4, then either at least two of the elements a,b,c are equal

or at least one of the elements a,b,c is in N or none is in TV but c = ab = ab. In

the first two cases it is clear that 4>{a, b,c) — 1 and in the third case there exists an

element g S N with c = abg and then by Lemma 2.1 and Artin's Theorem: <p(a, b, c) =

(f>(a, b, (ab)g) = <f>(a, b, ab) = 1.

If |(a,6,c)| = 8 and 0 ^ xa € Aa, 0 ^ xb € Ab and 0 ^ xc € Ac, then by
Proposition 3.8,

xc{xaxb) = -(xaxb)xc = -<j>{a,b,c)xa(xbxc)

= <p(a,b,c)xa(xcxb) = -4>(a,b,c)xc(xaxb)

(because xa(xcXb)+xc(xaXb) — (xaxc +xcxa)xb = 0 by the alternative law). Therefore
4>{a, b, c) = — 1, and this completes the proof of part (i).

If |(a, b)\ = 4, part (ii) follows from Proposition 3.8; while if \(a, b)\ —2 the result

follows from Proposition 3.6.(i). D

We are ready to prove the structure of the quotient group G/N.

THEOREM 3 . 1 0 . Let A = 0 Ag be a strictly alternative division quasialgebra.

Then G/N SZ 2 xZ 2 xZ 2 . 9€G

PROOF: By Proposition 3.5, any nontrivial element of G/N has order 2. Besides, if
\G/N\ < 4, by Proposition 3.9.(i) 4> is trivial and hence A is associative, a contradiction.
But if \G/N\ > 8, then there are elements a i ,a2 ,03,a4 € G such that | (a i ,a 2 ,a3 ,a 4 ) |
= 16. Take nonzero elements xai € Aai, i = 1,2,3,4. Several applications of Proposi-
tion 3.9.(i) give:

(xa iXa 2)(xa 3a;a 4) = —Xai[xa2(Xa3Xa4)) = X^^X^X^JXa^J ,

but also
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[9] Alternative quasialgebras 265

so that (the characteristic is not 2) ( i a i x a 2 ) ( x a 3 x a 4 ) = 0, a contradiction. Therefore

G/N has order 8 and the result follows. D

In order to describe the strictly alternative division quasialgebras, a sort of "graded
Cayley-Dickson doubling process" has to be used. Let us recall the classical Cayley-
Dickson doubling process (see [8, Chapter 2]) in a way suitable for our purposes.

Let R be a unital associative and commutative ring and let A be a unital algebra
over R, with unit element 1, endowed with an involution x i-t x satisfying x + x e Rl

and xx(= xx) e Rl. Then we can double A in the following way: Let a be an invertible
element of R and (A, a) — A®Au, (direct sum of two copies of A) with multiplication
given by the multiplication in A (so that A becomes a subalgebra of (A,a)) and by

a(bu) — (ba)u

(au)b = (ab)u

(au)(bu) — aba

for any a,b 6 A. The involution in A is extended to an involution of (A,a) by means
of au = -au, for any a € A. As in [7, p. 46], it follows that (A,a) is associative if
and only if A is associative and commutative, and (A, a) is alternative if and only if
A is associative.

Therefore, if the characteristic is not equal to 2 and we start with Ao = R and
the involution equal to the identity, given three invertible elements 01,02,0:3 € R, we
can form the new algebras Ai = (^0,01) = R[x]/{x2 - 01), which is commutative
and associative, A2 — (.Ai, 0:2)1 which is associative but not commutative and A3 =
(A2,Q3), which is strictly alternative.

In our situation, A = ® Ag, G/N = Z2 x Z2 x Z2 . Let 51,52,53 € G with
g€G

G/N = (51,52,53) and consider the subalgebra Ao = N(A) = © Ag. Consider
g€N

the following subgroups and subalgebras: Â i = (N,gi) and Ax = 0 Ag, N2 —

(N,gi,g2) = (Nltg2) and A2 = © Ag, and N3 = G and A3 = A. Let 0 ^ x9i e Ag
geN2

(i = 1,2,3). With R = Ao, the element at - x2
g. is an invertible element in A2

g. C R

Under these conditions:

PROPOSITION 3 . 1 1 . A1^(A0,ai), A2 = (A1,a2) and A = A3^(A2,a3).

PROOF: Let us check, for instance, the last assertion. First, A = A2®A2xg3 since
G = (N2,g3). Now, for any a,b€ N2 and xa € A o , xb e Ab:

^ (XaXb)Xg3
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because, by Proposition 3.9, if \{a,b)\ = 4, then <f>(a,b,g3) = - 1 and xaxb — -xbxa,

while if | (a ,6) |< 2, then <f>(a,b,g3) — 1 and xaxb = XbXa. Also,

with xc = xc if c € N and xc — —xc if c 0 TV, because xax93 commutes with xb if

b € N and anticommutes if b £ N by Proposition 3.9. Finally,

(xax93)(xbx93) = Hag^bg3) {(xax93)xb)x93

= 4>{atg3,b)({xaxb)xg3)xg3

= (4>(a.,g3,b)xaxb)(x93f

= (xbxa)a3 . D

Let us denote by K the field Ae, then dimx A9 = 1 for any g £ G and hence the
quasialgebra A may be identified with KpG for a suitable 2-cochain F : GxG ^ Kx .

If Fo denotes the restriction of F to NxN, since //(A) = yto = © A9 is commutative,

Fo : N x N —> Kx is symmetric (-F0(a,6) = F0(b,a) for any a,b e N) and since iV(/4)

is associative, Fo is a 2-cocycle.

The Cayley-Dickson process can be reinterpreted in this situation, thus extending

[2, Proposition 4.1]:

DEFINITION: Let K be a field, G an Abelian group and N < S <T < G a chain
of subgroups with [T : 5] = 2 and T = S U Sg with g2 € JV. Let /? : G ^ K be the
map given by (3{g) = 1 if g € N and /3(p) = - 1 if g £ N. Let F : 5 x S -> Kx be a
2-cochain such that

for any s i , S2 € 5 and let 0 ^ a e K.

Then the 2-cochain F = F( T > P i Q ) : T x T -> ^ x defined by

F(xg,yg) = p(y)F(y,x)a

for any x,y € 5 , is said to be the 2-cochain extending F by means of (T,g,a).

It is easy to check that the new 2-cochain F above still satisfies

HUM) _
F(t2,ti) '
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for any ti,t2 € T.

The next result summarises most of the work done in this section and provides the

characterisation of strictly alternative division quasialgebras.

THEOREM 3 . 1 2 . Let k be a Reid of characteristic not equal to 2 and let K/k

be a Reid extension. Let G be an Abelian group, N a subgroup of G such that

G/N = Z2 x Z2 x Z2 and Ni and N2 subgroups of G such that N < Ni < N2 <G.

Let 0 : G t-t K* be the map given by @(x) = 1 for x G N and f3(x) = - 1 for

x 0 TV, and FQ : TV x N »->• K* a symmetric 2-cocycle. Let gi,g2,g3 € G with

N\ = (N,gi), N2 — (N\,g2) and G = (N2,g3), and let ai,a2,a3 be nonzero elements

in K. Consider the extended 2-cochains Fx = (-Po)(jvligiiQl), F2 = (^)(N2<g2,a2)
 an(^

F3 = (F2),G „ a y Then Kp3G is a strictly alternative division quasialgebra over k.

Conversely, if k is a Reid and A is a strictly alternative division quasialgebra over

k then the characteristic of k is not equal to 2 and there are K,G,N,Fo,cti,ot2,a3

satisfying the preceding conditions such that A S Kp3G.

In particular, this result shows that any strictly alternative division quasialgebra is
obtained as a "twisting" KpG of a group algebra (over a field extension of the ground
field) of an Abelian group.

In case A = ® Ag is a strictly alternative division quasialgebra over the field
geG

k and there is a subgroup ~N of G such that G = N x~N, then JV = Z2 x Z2 x Z2

and it can be immediately concluded that A is the tensor product (over K — Ae)
of the commutative and associative division quasialgebra N(A) = AN = 0 Ag and

g£N
the strictly alternative division quasialgebra AJJ — ® Ag which is a Cayley-Dickson

algebra over K (it is obtained by applying the Cayley-Dickson doubling process three
times over K).
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