# On the Tensor Product of Composition Algebras 

Patrick J. Morandi<br>Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003<br>E-mail: pmorandi@nmsu.edu<br>José M. Pérez-Izquierdo ${ }^{1}$<br>Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain<br>E-mail: jm.perez@dmc.unirioja.es<br>and<br>S. Pumplün<br>Facultat für Mathematik, Universität Regensburg, Universitatstrasse 31, D-93040 Regensburg, Germany<br>E-mail: susanne.pumpluen@mathematik.uni-regensburg.de<br>Communicated by Georgia Benkart<br>Received December 10, 1999<br>DEDICATED TO H. P. PETERSSON ON THE OCCASION<br>OF HIS 60TH BIRTHDAY

## 1. INTRODUCTION

Let $C_{1} \otimes_{F} C_{2}$ be the tensor product of two composition algebras over a field $F$ with $\operatorname{char}(F) \neq 2$. Brauer [8] and Albert [1-3] seemed to be the first mathematicians who investigated the tensor product of two quaternion algebras. Later their results were generalized to this more general

[^0]situation by Allison [4-6] and to biquaternion algebras over rings by Knus [20].
In Section 2 we give some new results on the Albert form of these algebras. We also investigate the $F$-quadric defined by this Albert form, generalizing a result of Knus [21].

Since Allison regarded the involution $\sigma=\gamma_{1} \otimes \gamma_{2}$ as an essential part of the algebra $C=C_{1} \otimes_{F} C_{2}$, he only studied automorphisms of $C$ which are compatible with $\sigma$. In Section 3 we determine, if $\operatorname{char}(F) \neq 2$, the automorphism group of a tensor product of octonion algebras. We also show that any automorphism of such a tensor product is compatible with the canonical tensor product involution. As a consequence, we determine the forms of a tensor product of octonion algebras. Furthermore, we show that any such algebra does not satisfy the Skolem-Noether Theorem.

Our results of Section 3 arise from a study of the generalized alternative nucleus of an algebra, since a tensor product of octonion algebras is generated by its generalized alternative nucleus. In Section 4, using Lie algebra-theoretic techniques, we classify finite dimensional simple unital algebras over an algebraically closed field of characteristic 0 which are generated by their generalized alternative nucleus, proving that such an algebra is the tensor product of a simple associative algebra and a symmetric tensor product of octonion algebras. This result is used in Section 5 to sketch a variation of the Allison-Smirnov proof of the classification of finite dimensional central simple structurable algebras over a field of characteristic 0 .
Finally, in Section 6, we prove that if $A$ is generated by its generalized alternative nucleus, then the associated bilinear form $(x, y)=\operatorname{trace}\left(L_{x} L_{y}\right)$ is associative.

Let $F$ be a field and $C$ a unital, nonassociative $F$-algebra. Then $S$ is a composition algebra if there exists a nondegenerate quadratic form $n: C \rightarrow$ $F$ such that $n(x \cdot y)=n(x) n(y)$ for all $x, y \in C$. The form $n$ is uniquely determined by these conditions and is called the norm of $C$. We will write $n=n_{C}$. Composition algebras only exist in rank $1,2,4$, or 8 (see [17]). Those of rank 4 are called quaternion algebras and those of rank 8 octonion algebras. A composition algebra $C$ has a canonical involution $\gamma$ given by $\gamma(x)=t(x) 1_{C}-x$, where the trace map $t: C \rightarrow F$ is given by $t(x)=$ $n(1, x)$.

An example of an eight-dimensional composition algebra is Zorn's algebra of vector matrices $\operatorname{Zor}(F)$ (see [22, p. 507] for the definition). The norm form of $\operatorname{Zor}(F)$ is given by the determinant and is a hyperbolic form.

Composition algebras are quadratic. That is, they satisfy the identities

$$
\begin{aligned}
x^{2}-t(x) x+n(x) 1_{C} & =0 \quad \text { for all } x \in C, \\
n\left(1_{C}\right) & =1
\end{aligned}
$$

and are alternative algebras; i.e., $x y^{2}=(x y) y$ and $x^{2} y=x(x y)$ for all $x, y \in C$. In particular, $n(x)=\gamma(x) x=x \gamma(x)$ and $t(x) 1_{C}=\gamma(x)+x$.

For any composition algebra $D$ over $F$ with $\operatorname{dim}_{F}(D) \leq 4$ and any $\mu \in F^{\times}$, the $F$-vector space $D \oplus D$ becomes a composition algebra via the multiplication

$$
(u, v)\left(u^{\prime}, v^{\prime}\right)=\left(u u^{\prime}+\mu \gamma\left(v^{\prime}\right) v, v^{\prime} u+v \gamma\left(u^{\prime}\right)\right)
$$

for all $u, v, u^{\prime}, v^{\prime} \in D$, with norm

$$
n((u, v))=n_{D}(u)-\mu n_{D}(v) .
$$

This algebra is denoted by $\operatorname{Cay}(D, \mu)$. Note that the embedding of $D$ into the first summand of $\operatorname{Cay}(D, \mu)$ is an algebra monomorphism. The norm form of $\operatorname{Cay}(D, \mu)$ is obviously isometric to $\langle 1,-\mu\rangle \otimes n_{D}$. Since two composition algebras are isomorphic if and only if their norm forms are isometric, we see that if $C$ is a composition algebra whose norm form satisfies $n_{C} \cong\langle 1,-\mu\rangle \otimes n_{D}$ for some $D$ then $C \cong \operatorname{Cay}(D, \mu)$. In particu$\operatorname{lar}, \operatorname{Zor}(F) \cong \operatorname{Cay}(D, 1)$ for any quaternion algebra $D$ since $\langle 1,-1\rangle \otimes n_{D}$ is hyperbolic. A composition algebra is split if it contains an isomorphic copy of $F \oplus F$ as a composition subalgebra, which is the case if and only if it contains zero divisors. Over algebraically closed fields any composition algebra of dimension $\geq 2$ is split.

## 2. ALBERT FORMS

From now on we consider only the fields $F$ with $\operatorname{char}(F) \neq 2$ unless stated otherwise. It is well known that any norm of a composition algebra is a 3 -fold Pfister form, and conversely any 3 -fold Pfister form is the norm of some composition algebra.

Let $C$ be a composition algebra. Define $C^{\prime}=\langle F 1\rangle^{\perp}=\{x \in C: t(x)=$ $n(x, 1)=0\}$. Then $n^{\prime}=\left.n\right|_{C^{\prime}}$ is the pure norm of $C$. Note that

$$
\begin{aligned}
C^{\prime} & =\left\{x \in C: x=0 \text { or } x \notin F 1_{C} \text { and } x^{2} \in F 1_{C}\right\} \\
& =\{x \in C: \gamma(x)=-x\} .
\end{aligned}
$$

Moreover, $C$ is split if and only if its norm $n$ is hyperbolic, two composition algebras are isomorphic if and only if their norms are isometric, and $C$ is a division algebra if and only if $n$ is anisotropic.

We first investigate tensor products of two composition algebras. Following Albert, we associate to the tensor product $C=C_{1} \otimes_{F} C_{2}$ of two composition algebras with $\operatorname{dim}\left(C_{i}\right)=r_{i}$ and $n_{C_{i}}=n_{i}$ the $\left(r_{1}+r_{2}-2\right)$ dimensional form $n_{1}^{\prime} \perp\langle-1\rangle n_{2}^{\prime}$ of determinant -1 . This definition, for
$C_{1}$ or $C_{2}$ an octonion algebra, was first given by Allison in [5]. In the Witt ring $W(F)$, obviously this form is equivalent to $n_{1}-n_{2}$. Like the norm form of a composition algebra, this Albert form contains crucial information about the tensor product algebra $C$. For biquaternion algebras, this is well-known [1, Theorem 3; 19, Theorem 3.12]. We introduce some notation and terminology. If $q$ is a quadratic form and if $\mathbb{H}=\langle 1,-1\rangle$ is the hyperbolic plane, then $q=q_{0} \perp i \mathbb{H}$ for some anisotropic form $q_{0}$ and integer $i$. The integer $i$ is called the Witt index of $q$ and is denoted by $i_{W}(q)$. In the proof of the following proposition, we use the notion of linkage of Pfister forms (see [12, Section 4]). Recall that two $n$-fold Pfister forms $q_{1}$ and $q_{2}$ are $r$-linked if there is an $r$-fold Pfister form $h$ with $q_{1}=h \otimes q_{i}^{\prime}$ for some Pfister forms $q_{i}^{\prime}$. Finally, we call a two-dimensional commutative $F$-algebra that is separable over $F$ a quadratic étale algebra. Note that any quadratic étale algebra either is a quadratic field extension of $F$ or is isomorphic to $F \oplus F$. Part of the following result has been proved in [15, Theorem 5.1].

Proposition 2.1. Let $C_{1}$ and $C_{2}$ be octonion algebras over $F$ with norms $n_{1}$ and $n_{2}$, and let $i=i_{W}(N)$ be the Witt index of the Albert form $N=n_{1}^{\prime} \perp$ $\langle-1\rangle n_{2}^{\prime}$.
(i) $i=0 \Leftrightarrow C_{1}$ and $C_{2}$ do not contain isomorphic quadratic étale subalgebras.
(ii) $i=1 \Leftrightarrow C_{1}$ and $C_{2}$ contain isomorphic quadratic étale subalgebras, but no isomorphic quaternion subalgebras.
(iii) $i=3 \Leftrightarrow C_{1}$ and $C_{2}$ contain isomorphic quaternion subalgebras, but $C_{1}$ and $C_{2}$ are not isomorphic.

$$
\text { (iv) } \quad i=7 \Leftrightarrow C_{1} \cong C_{2} \text {. }
$$

Proof. By [12, Propositions 4.4 and 4.5], the Witt index of $n_{1} \perp\langle-1\rangle n_{2}$ is $2^{r}$, where $r$ is the linkage number of $n_{1} \perp\langle-1\rangle n_{2}$. Note that the Witt index of $N$ is one less than the Witt index of $n_{1} \perp\langle-1\rangle n_{2}$ since $n_{1} \perp\langle-1\rangle n_{2}=\mathbb{H} \perp N$. If $C_{1} \cong C_{2}$, then $n_{1} \cong n_{2}$, so $i=7$. Conversely, if $i=7$, then $n_{1} \perp\langle-1\rangle n_{2}$ is hyperbolic, so $n_{1} \cong n_{2}$, which forces $C_{1} \cong C_{2}$. If $C_{1}$ and $C_{2}$ are not isomorphic but contain a common quaternion algebra $Q$, then $C_{i}=\operatorname{Cay}\left(Q, \mu_{i}\right)$ for some $i$. Therefore, $n_{1}=n_{Q} \otimes$ $\left\langle 1,-\mu_{1}\right\rangle$ and $n_{2}=n_{Q} \otimes\left\langle 1, \mu_{2}\right\rangle$. These descriptions show that $n_{1}$ and $n_{2}$ are 2 -linked, so $i=3$. Conversely, if $i=3$, then $n_{1}$ and $n_{2}$ are 2 -linked but not isometric. If $\langle\langle a, b\rangle\rangle$ is a factor of both $n_{1}$ and $n_{2}$, then $n_{1}=\langle\langle a, b, c\rangle\rangle$ and $n_{2}=\langle\langle a, b, d\rangle\rangle$ for some $c, d \in F^{\times}$. If $Q=$ $(-a,-b)$, we get $C_{1}=\operatorname{Cay}(Q,-c)$ and $\operatorname{Cay}(Q,-d)$, so $C_{1}$ and $C_{2}$ contain a common quaternion algebra. If $C_{1}$ and $C_{2}$ contain a common quadratic étale algebra $F[t] /\left(t^{2}-a\right)$ but no common quaternion algebra,
then $\langle 1,-a\rangle$ is a factor of $n_{1}$ and $n_{2}$, which means they are 1 -linked. If $n_{1}$ and $n_{2}$ are 2-linked, then the previous step shows that $C_{1}$ and $C_{2}$ have a common quaternion subalgebra, which is false. Conversely, if $n_{1}$ and $n_{2}$ are 1 -linked but not 2 -linked, then $C_{1}$ and $C_{2}$ do not have a common quaternion subalgebra, and if $\langle\langle a\rangle\rangle$ is a common factor to $n_{1}$ and $n_{2}$, then $C_{1}$ and $C_{2}$ both contain the étale algebra $F[t] /\left(t^{2}-a\right)$.

Proposition 2.2. Let $C_{1}$ be an octonion algebra over $F$ and $C_{2}$ be a quaternion algebra over $F$, with norms $n_{1}$ and $n_{2}$. Again consider the Witt index $i$ of the Albert form $N=n_{1}^{\prime} \perp\langle-1\rangle n_{2}^{\prime}$.
(i) $i=0 \Leftrightarrow C_{1}$ and $C_{2}$ do not contain isomorphic quadratic étale subalgebras.
(ii) $i=1 \Leftrightarrow C_{1}$ and $C_{2}$ contain isomorphic quadratic étale subalgebras, but $C_{2}$ is not a quaternion subalgebra of $C_{1}$.
(iii) $i=3 \Leftrightarrow C_{1} \cong \operatorname{Cay}\left(C_{2}, \mu\right)$ for a suitable $\mu \in F^{\times}$and $C_{2}$ is a division algebra.
(iv) $i=5 \Leftrightarrow C_{1} \cong \operatorname{Zor}(F)$ and $C_{2} \cong M_{2}(F)$.

Proof. In the case that both algebras $C_{1}$ and $C_{2}$ are division algebras, this is an immediate consequence of [15, Lemma 3.2]. If both $C_{1}$ and $C_{2}$ are split, then clearly $N$ has Witt index 5 . If $C_{2}$ is a division algebra and $C_{1}=\operatorname{Cay}\left(C_{2}, \mu\right)$ for some $\mu$, then $n_{2}$ is anisotropic and $N \perp \mathbb{H}=n_{2} \otimes$ $\langle 1,-\mu\rangle \perp\langle-1\rangle n_{2}=4 \mathbb{H} \perp\langle-\mu\rangle n_{2}$, so $N$ has Witt index 3. Note that the converse is easy, since if $i=3$ then $n_{2}$ is isomorphic to a subform of $n_{1}$, which forces $n_{2}$ to be a factor of $n_{1}$. If $n_{1}=\langle 1, a\rangle \otimes n_{2}$, then $C_{1} \cong \operatorname{Cay}\left(C_{2},-a\right)$, so $C_{2}$ is a subalgebra of $C_{1}$. If $C_{1}$ and $C_{2}$ contain a common quadratic étale algebra $F[t] /\left(t^{2}-a\right)$ but $C_{2}$ is not a quaternion subalgebra of $C_{1}$, then $n_{1}$ and $n_{2}$ have $\langle\langle a\rangle\rangle$ as a common factor, so $i=1$. Finally, if $N$ is isotropic, there are $x_{i} \in C_{i}$, both skew, with $n_{1}\left(x_{1}\right)=$ $n_{2}\left(x_{2}\right)$. Then, as $t_{1}\left(x_{1}\right)=0=t_{2}\left(x_{2}\right)$, the algebras $F\left[x_{1}\right]$ and $F\left[x_{2}\right]$ are isomorphic, so $C_{1}$ and $C_{2}$ share a common quadratic étale subalgebra. This finishes the proof.

If $C$ is a biquaternion algebra (i.e., $C \cong C_{1} \otimes_{F} C_{2}$ for two quaternion algebras $C_{1}$ and $C_{2}$ ), then the Albert form $n_{1}^{\prime} \perp\langle-1\rangle n_{2}^{\prime}$ is determined up to similarity by the isomorphism class of the algebra $C$ [19, Theorem 3.12]. Allison generalizes this result [5, Theorem 5.4] to tensor products of arbitrary composition algebras. However, he always considers the involution $\sigma=\gamma_{1} \otimes \gamma_{2}$ as a crucial part of the algebra $C=C_{1} \otimes_{F} C_{2}$. Allison proves that $\left(C_{1} \otimes_{F} C_{2}, \gamma_{1} \otimes \gamma_{2}\right)$ and ( $\left.C_{3} \otimes_{F} C_{4}, \gamma_{3} \otimes \gamma_{4}\right)$ are isotropic algebras if and only if they have similar Albert forms, for the cases that $C_{1}, C_{3}$ are octonion and $C_{2}, C_{4}$ are quaternion or octonion algebras.

The fact that any $F$-algebra isomorphism $\varphi:\left(C_{1} \otimes_{F} C_{2}, \gamma_{1} \otimes \gamma_{2}\right) \rightarrow\left(C_{3}\right.$ $\otimes_{F} C_{4}, \gamma_{3} \otimes \gamma_{4}$ ) between arbitrary products of composition algebras yields an isometry $n_{1}^{\prime} \perp\langle-1\rangle n_{2}^{\prime} \cong \mu\left(n_{3}^{\prime} \perp\langle-1\rangle n_{4}^{\prime}\right)$ for a suitable $\mu \in F^{\times}$is easy to see. Also, since for $C=C_{1} \otimes_{F} C_{2}$ the map $\langle\rangle:, C \times C \rightarrow F$ given by $\left\langle x_{1} \otimes x_{2}, y_{1} \otimes y_{2}\right\rangle=n_{1}\left(x_{1}, y_{1}\right) \otimes n_{2}\left(x_{2}, y_{2}\right)$ is a nondegenerate symmetric bilinear form on $C$ such that $\langle\sigma(x), \sigma(y)\rangle=\langle x, y\rangle$, the equation $\langle z x, y\rangle=\langle x, \sigma(z) y\rangle$ holds (that is, $\langle$,$\rangle is an invariant form; cf. [6,$ p. 144] or Section 6 below) and $\tau: C \times C \rightarrow k, \tau(x, y)=\langle x, \sigma(y)\rangle$ is an associative nondegenerate symmetric bilinear form which is proper, it follows easily that $n_{1} \otimes n_{2} \cong n_{3} \otimes n_{4}$.

Suppose that we have two algebras that each are a tensor product of an octonion algebra and a quaternion algebra. We obtain a necessary and sufficient condition for when their Albert forms are similar. We use the notation $D(q)$ to denote the elements of $F^{\times}$represented by a quadratic form $q$.

Theorem 2.3. Let $C_{1}, C_{2}$ be octonion algebras and $Q_{1}, Q_{2}$ quaternion algebras over $F$. Let $N_{1}$ and $N_{2}$ be the Albert forms of $C_{1} \otimes_{F} Q_{1}$ and $C_{2} \otimes_{F} Q_{2}$, respectively. If $N_{1} \cong \mu N_{2}$ for some $\mu \in F^{\times}$, then $Q_{1} \cong Q_{2}$. Moreover, there is a quaternion algebra $Q$ and elements $c, d \in F^{\times}$such that $C_{1} \cong \operatorname{Cay}(Q, c), C_{2} \cong \operatorname{Cay}(Q, d), \operatorname{Cay}\left(Q_{1}, \mu\right) \cong \operatorname{Cay}(Q, c d)$, and $-\mu c \in$ $D\left(n_{C_{2}}\right)$. Conversely, if there is a quaternion algebra $Q$ and elements $c, d, \mu \in$ $F^{\times}$such that $C_{1}, Q_{1}=Q_{2}$, and $C_{2}$ satisfy the conditions of the previous sentence, then $N_{1} \cong \mu N_{2}$.

Proof. Suppose that $N_{1} \cong \mu N_{2}$ for some $\mu \in F^{\times}$. If $c: W(F) \rightarrow \operatorname{Br}(F)$ is the Clifford invariant, then $c\left(N_{1}\right)=c\left(\mu N_{2}\right)=c\left(N_{2}\right)$. Since $c$ is trivial on $I^{3}(F)$, we have $c\left(N_{1}\right)=c\left(-n_{Q_{1}}\right)$ and $c\left(N_{2}\right)=c\left(-n_{Q_{2}}\right)$ (see [23, Chap. 5.3]). Therefore, $c\left(n_{Q_{1}}\right)=c\left(n_{Q_{2}}\right)$. However, the Clifford invariant of the norm form of a quaternion algebra is the class of the quaternion algebra, by [23, Corollary V.3.3]. This implies that $c\left(N_{1}\right)=\left[Q_{1}\right]$ and $c\left(\mu N_{2}\right)=\left[Q_{2}\right]$. Since $\left[Q_{1}\right]=\left[Q_{2}\right]$, we get $Q_{1} \cong Q_{2}$. As a consequence of this, $n_{Q_{1}} \cong n_{Q_{2}}$. Thus,

$$
\begin{aligned}
n_{C_{1}} & \cong-\langle 1,-\mu\rangle \otimes n_{Q_{1}} \cong n_{C_{1}} \perp\left(-n_{Q_{1}} \perp \mu n_{Q_{1}}\right) \\
& \cong \mu\left(n_{C_{2}} \perp-n_{Q_{2}}\right) \perp \mu n_{Q_{1}} \cong \mu n_{C_{2}} \perp\left(\mu n_{Q_{1}} \perp-\mu n_{Q_{2}}\right) \\
& \cong \mu n_{C_{2}} \perp 4 \mathbb{H} .
\end{aligned}
$$

The forms $n_{C_{1}}$ and $\langle 1,-\mu\rangle \otimes n_{Q_{1}}$ are Pfister forms. The line above shows that these Pfister forms are 2-linked, in the terminology of [12]. Therefore, there is a 2 -fold Pfister form $\langle\langle-a,-b\rangle\rangle$ with $n_{C_{1}} \cong\langle\langle-a,-b,-c\rangle\rangle$ and $\langle 1,-\mu\rangle \otimes n_{Q_{1}} \cong\langle\langle-a,-b,-e\rangle\rangle$ for some $c, e \in F^{\times}$. An elemen-
tary calculation shows that

$$
\begin{aligned}
\langle\langle-a,-b,-c\rangle\rangle & \perp-\langle\langle-a,-b,-e\rangle\rangle \\
& \cong 4 \mathbb{H} \perp\langle-c, e\rangle \otimes\langle\langle-a,-b\rangle\rangle .
\end{aligned}
$$

Therefore, $\mu n_{C_{2}} \cong\langle-c, e\rangle \otimes\langle\langle-a,-b\rangle\rangle$. Thus, $n_{C_{2}} \cong-\mu c\langle\langle-$ $a,-b,-c e\rangle\rangle$. Since $n_{C_{2}}$ and $\langle\langle-a,-b,-c e\rangle\rangle$ are Pfister forms, we get $n_{C_{2}} \cong\langle\langle-a,-b,-c e\rangle\rangle$. If we set $d=c e$ and let $Q$ be the quaternion algebra $(a, b)_{F}$, then the isomorphisms $n_{C_{1}} \cong\langle\langle-a,-b,-c\rangle\rangle$ and $n_{C_{2}} \cong$ $\langle\langle-a,-b,-d\rangle\rangle$ give $C_{1} \cong \operatorname{Cay}(Q, c)$ and $C_{2} \cong \operatorname{Cay}(Q, d)$. Moreover, $n_{C_{2}} \cong-\mu c n_{C_{2}}$, so $-\mu c \in D\left(n_{C_{2}}\right)$. Finally, the isomorphism $\langle 1,-\mu\rangle \otimes$ $n_{Q_{2}} \cong\langle\langle-a,-b,-e\rangle\rangle$ gives $\operatorname{Cay}\left(Q_{1}, \mu\right) \cong \operatorname{Cay}(Q, e) \cong \operatorname{Cay}(Q, c d)$.

It is a short calculation to show that if $C_{1}=\operatorname{Cay}(Q, c), C_{2}=\operatorname{Cay}(Q, d)$, and $Q_{1}=Q_{2}$ is a quaternion algebra with $\operatorname{Cay}\left(Q_{1}, \mu\right) \cong \operatorname{Cay}(Q,-d c)$, then $n_{C_{1}}^{\prime} \perp\langle-1\rangle n_{Q_{1}}^{\prime} \cong \mu\left(n_{C_{2}}^{\prime} \perp\langle-1\rangle n_{Q_{2}}^{\prime}\right)$.

The argument of the previous theorem does not work for a tensor product of two octonion algebras since the Albert form is an element of $I^{3}(F)$, whose Clifford invariant is trivial.

Corollary 2.4. With the notation in the previous theorem, suppose that $N_{1} \cong \mu N_{2}$ for some $\mu \in F^{\times}$. If one of $C_{1}$ and $C_{2}$ is split, then the other algebra is isomorphic to $\operatorname{Cay}\left(Q_{1}, \mu\right)$.

Proof. We saw in the proof of the previous proposition that

$$
n_{C_{1}} \perp-\langle 1,-\mu\rangle \otimes n_{Q_{1}} \cong \mu n_{C_{2}} \perp 4 \mathbb{H} .
$$

Suppose that $C_{2}$ is split. Then $n_{C_{1}} \perp-\langle 1,-\mu\rangle \otimes n_{Q_{1}}$ is hyperbolic, so $n_{C_{1}} \cong\langle 1,-\mu\rangle \otimes n_{Q_{2}}$. Therefore, $C_{1} \cong \operatorname{Cay}\left(Q_{1}, \mu\right)$. On the other hand, if $C_{1}$ is split, then $n_{C_{1}} \cong 4 \mathbb{H}$, so by Witt cancellation $-\mu n_{C_{2}} \cong\langle 1,-\mu\rangle \otimes$ $n_{Q_{1}}$. Since $n_{C_{2}}$ and $\langle 1,-\mu\rangle \otimes n_{Q_{1}}$ are both Pfister forms, this implies that $n_{C_{2}} \cong\langle 1,-\mu\rangle \otimes n_{Q_{1}}$, and so $C_{2} \cong \operatorname{Cay}\left(Q_{1}, \mu\right)$.

In Theorem 2.3 above, it is possible for $N_{1} \cong \mu N_{2}$ without $C_{1} \cong C_{2}$. Moreover, the quaternion algebra $Q$ of the proposition need not be isomorphic to $Q_{1}$. We verify both of these claims in the following example.

Example 2.5. In this example we produce nonisomorphic octonion algebras $C_{1}$ and $C_{2}$ and a quaternion algebra $Q_{1}$ that is not isomorphic to a subalgebra of either $C_{1}$ or $C_{2}$ and is such that the Albert forms of $C_{1} \otimes_{F} Q_{1}$ and $C_{2} \otimes_{F} Q_{1}$ are similar. To do this we produce nonisometric Pfister forms $\langle\langle x, y, z\rangle\rangle$ and $\langle\langle x, y, w\rangle\rangle$ and elements $u, v, \mu$ with $\langle\langle x, y, z w\rangle\rangle \cong\langle\langle u, v, \mu\rangle\rangle$ such that the Witt indexes of $\langle\langle x, y, z\rangle\rangle \perp$ $-\langle\langle u, v, \mu\rangle\rangle$ and $\langle\langle x, y, w\rangle\rangle \perp-\langle\langle u, v, \mu\rangle\rangle$ are both 2 and $\mu z \in$ $D(\langle\langle x, y, w\rangle\rangle)$. We then set $Q=(-x,-y), C_{1}=\operatorname{Cay}(Q,-z), C_{2}=$
$\operatorname{Cay}(Q,-w)$, and $Q_{1}=(-u,-v)$. From Theorem 2.3, we have $N_{1} \cong \mu N_{2}$. However, Proposition 2.2 shows that $Q_{1}$ is not isomorphic to a subalgebra of either $C_{1}$ or $C_{2}$. Moreover, $C_{1}$ and $C_{2}$ are not isomorphic since their norm forms are not isometric. Note that $Q$ and $C_{2}$ are not isomorphic since $Q_{1}$ is not a subalgebra of $C_{1}$.

Let $k$ be a field of characteristic not 2 , and let $F=k(x, y, z, w)$ be the rational function field in four variables over $k$. Set $\mu=x y z w, n_{1}=$ $\langle\langle x, y, z\rangle\rangle$, and $n_{2}=\langle\langle x, y, w\rangle\rangle$. By embedding $F$ in the Laurent series field $k(x, y, z)((w))$, we see that $n_{1}$ and $n_{2}=\langle\langle x, y\rangle\rangle \perp w\langle\langle x, y\rangle\rangle$ are not isomorphic over this field by Springer's theorem [23, Proposition VI.1.9], so $n_{1}$ and $n_{2}$ are not isomorphic over $F$. Also, $\mu z=z^{2}(x y w)$, which is clearly represented by $n_{2}$. Set $Q_{1}=(-z w,-x z w)$. A short calculation shows that $\langle\langle x, y, z w\rangle\rangle=\langle\langle z w, x z w, \mu\rangle\rangle$. Finally, for the Witt indices, we have

$$
\begin{aligned}
n_{1} & \perp-n_{Q_{1}}=\langle 1, x, y, x y, z, x z, y z, x y z\rangle \perp-\langle 1, z w, x z w, x\rangle \\
& =2 \mathbb{H} \perp\langle y, x y, z, x z, y z, x y z,-z w,-x z w\rangle \\
& =2 \mathbb{H} \perp\langle y, x y, z, x z, y z, x y z\rangle \perp w\langle-z,-x z\rangle .
\end{aligned}
$$

The Springer theorem shows that this form has Witt index 2. Similarly,

$$
\begin{aligned}
n_{2} & \perp-n_{Q_{1}}=\langle 1, x, y, x y, w, x w, y w, x y w\rangle \perp-\langle 1, z w, x z w, x\rangle \\
& =2 \mathbb{H} \perp\langle y, x y, w, x w, y w, x y w,-z w,-x z w\rangle \\
& =2 \mathbb{H} \perp\langle y, x y\rangle \perp w\langle 1, x, y, x y,-z,-x z\rangle
\end{aligned}
$$

has Witt index 2.
For the remainder of this section we will also consider the case that $\operatorname{char}(F)=2$. Let $C_{1}$ and $C_{2}$ be composition algebras over $F$ of $\operatorname{dim}_{F}\left(C_{i}\right)$ $=r_{i} \geq 2$, and let $n_{i}$ be the norm form of $C_{i}$. Using the notation of [21], the subspace $Q\left(C_{1}, C_{2}\right)=\left\{u=x_{1} \otimes 1-1 \otimes x_{2}: t_{1}\left(x_{1}\right)=t_{2}\left(x_{2}\right)\right\}$ has dimension $r_{1}+r_{2}-2$, and $Q\left(C_{1}, C_{2}\right)=\left\{z-\left(\gamma_{1} \otimes \gamma_{2}\right)(z): z \in C_{1} \otimes_{F} C_{2}\right\}$ is the set of alternating elements of $C_{1} \otimes_{F} C_{2}$ with respect to $\gamma_{1} \otimes \gamma_{2}$. The nondegenerate quadratic form $N: Q\left(C_{1}, C_{2}\right) \rightarrow F$ given by $N\left(x_{1} \otimes 1-1\right.$ $\left.\otimes x_{2}\right)=n_{1}\left(x_{1}\right)-n_{2}\left(x_{2}\right)$ is isometric to the Albert form $n_{1}^{\prime} \perp\langle-1\rangle n_{2}^{\prime}$ of $C_{1} \otimes_{F} C_{2}$.

Let $V_{N} \subset \mathbb{P}^{r_{1}+r_{2}-3}$ be the $F$-quadric defined via $N$. In the case that $\operatorname{char}(F) \neq 2, V_{N}$ coincides with the open subvariety $U_{N}$ of closed points $x_{1} \otimes 1-1 \otimes x_{2}$ with $x_{1} \notin F 1$ and $x_{2} \notin F 1$. We now generalize [21, Proposition] in the following two propositions. We will make use of the following fact that comes from Galois theory: Let $F\left[z_{i}\right]$ be the commutative $F$-subalgebra of dimension two of $C_{i}$ generated by $z_{i} \in C_{i}$ for $i=1,2$.

Then there exists an isomorphism $\alpha: F\left[z_{1}\right] \stackrel{\sim}{\rightarrow} F\left[z_{2}\right\}$ such that $\alpha\left(z_{1}\right)=z_{2}$ if and only if $n_{1}\left(z_{1}\right)=n_{2}\left(z_{2}\right)$ and $t_{1}\left(z_{1}\right)=t_{2}\left(z_{2}\right)$.

Proposition 2.6. There exists a bijection $\Phi$ between the set of F-rational points of $U_{N}$ and the set of triples ( $K_{1}, K_{2}, \alpha$ ), where $K_{i}$ is a two-dimensional commutative subalgebra of $C_{i}$ and where $\alpha: K_{1} \xrightarrow{\sim} K_{2}$ is an $F$-algebra isomorphism,
$\Phi:\left\{P \in U_{N}: P\right.$ an $F$-rational point $\} \xrightarrow{\sim}\left\{\left(K_{1}, K_{2}, \alpha\right): K_{1}, K_{2}, \alpha\right.$ as above $\}$

$$
P=z_{1} \otimes 1-1 \otimes z_{2} \mapsto\binom{F\left[z_{1}\right], F\left[z_{2}\right], \alpha: F\left[z_{1}\right] \stackrel{\sim}{\rightarrow} F\left[z_{2}\right]}{z_{1} \stackrel{z_{2}}{ }} .
$$

Proof. Any $F$-rational point $P \in U_{N}$ corresponds with an element $x_{1} \otimes 1-1 \otimes x_{2} \in Q\left(C_{1}, C_{2}\right)$ with $t_{1}\left(x_{1}\right)=t_{2}\left(x_{2}\right)$ and $n_{1}\left(x_{1}\right)=n_{2}\left(x_{2}\right)$. Then there exists an $F$-algebra isomorphism $\alpha: F\left[x_{1}\right] \stackrel{\sim}{\rightarrow} F\left[x_{2}\right]$ with $x_{1} \mapsto$ $x_{2}$. For $x_{1} \otimes 1-1 \otimes x_{2}=z_{1} \otimes 1-1 \otimes z_{2}$ it can easily be verified that

$$
\begin{aligned}
& \binom{F\left[x_{1}\right], F\left[x_{2}\right], \alpha: F\left[x_{1}\right] \underset{\rightarrow}{\sim} F\left[x_{2}\right]}{x_{1} \mapsto x_{2}} \\
& \quad=\binom{F\left[z_{1}\right], F\left[z_{2}\right], \beta: F\left[z_{1}\right] \stackrel{\sim}{\rightarrow} F\left[z_{2}\right]}{z_{1} \mapsto z_{2}} .
\end{aligned}
$$

Therefore, the mapping $\Phi$ is well defined.
Given a triple ( $K_{1}, K_{2}, \alpha$ ), there are elements $z_{i} \in C_{i}^{\prime}$ such that $K_{i}=$ $F\left[z_{i}\right]$ and $\alpha: F\left[z_{1}\right] \stackrel{\sim}{\rightarrow} F\left[z_{2}\right]$ with $z_{1} \mapsto z_{2}$. By the remark before the proposition, we have $n_{1}\left(z_{1}\right)=n_{2}\left(z_{2}\right)$ and $t_{1}\left(z_{1}\right)=t_{2}\left(z_{2}\right)$; thus $N\left(z_{1} \otimes 1-\right.$ $\left.1 \otimes z_{2}\right)=0$ and the triple defines the $F$-rational point $P \in U_{N}$ corresponding to $z_{1} \otimes 1-1 \otimes z_{2}$. So $\Phi$ is surjective.

To prove injectivity, suppose that $\Phi\left(x_{1} \otimes 1-1 \otimes x_{2}\right)=\Phi\left(z_{1} \otimes 1-1\right.$ $\otimes z_{2}$ ). Then $F\left[x_{1}\right]=F\left[z_{1}\right], F\left[x_{2}\right]=F\left[z_{2}\right]$, and the maps $\alpha: F\left[x_{1}\right] \stackrel{\sim}{\rightarrow}$ $F\left[x_{2}\right], x_{1} \mapsto x_{2}$, and $\beta: F\left[z_{1}\right] \underset{\rightarrow}{\sim} F\left[z_{2}\right], z \mapsto z_{2}$, are equal. Since $F\left[x_{i}\right]=$ $F\left[z_{i}\right]$, we write $x_{1}=a+b z_{1}$ and $x_{2}=c+d z_{2}$ with $a, b, c, d \in F$. We have $a=c$ since $t_{1}\left(x_{1}\right)=t_{2}\left(x_{2}\right)$. Therefore, we may replace $x_{1}$ with $b z_{1}$ and $x_{2}$ with $d z_{2}$ without changing $x_{1} \otimes 1-1 \otimes x_{2}$. Thus, $x_{1} \otimes 1-1 \otimes$ $x_{2}=b z_{1} \otimes 1-1 \otimes d z_{2}$, and $n_{1}\left(x_{1}\right)=n_{2}\left(x_{2}\right), n_{1}\left(z_{1}\right)=n_{2}\left(z_{2}\right)$ imply that $n_{1}\left(x_{1}\right)=b^{2} n_{1}\left(z_{1}\right)$ and $n_{2}\left(x_{2}\right)=d^{2} n_{2}\left(z_{2}\right)$. Therefore, $b^{2}=d^{2}$, so $b= \pm d$. Now $x_{2}=\alpha\left(x_{1}\right)=\alpha\left(b z_{1}\right)=b z_{2}$ yields $b=d$, and we get $x_{1} \otimes 1-1 \otimes$ $x_{2}=b\left(z_{1} \otimes 1-1 \otimes z_{2}\right)$ which shows that $\Phi$ is injective.

In the case that $\operatorname{char}(F)=2$, the set $U_{N}=\left\{x_{1} \otimes 1-1 \otimes x_{2}: x_{1} \notin F 1\right.$, $\left.x_{2} \notin F 1\right\}$ is a proper open subvariety of $V_{N}$. The proof of the previous proposition shows that $\Phi$ again is a bijection between the $F$-rational points
of $U_{N}$ and the triples $\left(K_{1}, K_{2}, \alpha\right)$, where $K_{i}$ is a two-dimensional commutative $F$-subalgebra of $C_{i}$ and $\alpha: K \xrightarrow{\sim} L$ is an $F$-algebra isomorphism. We can say more in this situation.

Proposition 2.7. Let $\operatorname{char}(F)=2$. There exists an $F$-rational point in $V_{N}$ if and only if there exists a triple $\left(K_{1}, K_{2}, \alpha\right)$ such that $K_{i}$ is a quadratic étale subalgebra of $C_{i}$ and $\alpha: K_{1} \xrightarrow{\sim} K_{2}$ is an $F$-algebra isomorphism. In addition, there exists an $F$-rational point in $V_{N} \cap\left\{t_{1}\left(x_{1}\right)=0\right\}$ if and only if there exists a triple $\left(K_{1}, K_{2}, \alpha\right)$ such that $K_{1}$ and $K_{2}$ are purely inseparable quadratic extensions and $\alpha: K_{1} \xrightarrow{\sim} K_{2}$ is an $F$-algebra isomorphism.

Proof. As pointed out before the proposition, there is a bijection between $F$-rational points in $U_{N}$ and triples $\left(K_{1}, K_{2}, \alpha\right)$ with $K_{i} \subseteq C_{i}$ commutative subalgebras of dimension 2 over $F$. To prove the first statement, only one half needs further argument. Suppose $V_{N}$ has an $F$-rational point. Since $V_{N}$ is a quadric hypersurface, $V_{N}$ is then birationally equivalent to $\mathbb{P}^{r_{1}+r_{2}-3}$. The $F$-rational points of projective space are dense, so there is an $F$-rational point in $U_{N}$. Therefore, we get a triple ( $K_{1}, K_{2}, \alpha$ ) with $K_{i}$ a quadratic étale subalgebra of $C_{i}$.

For the second statement, an $F$-rational point in $V_{N} \cap\left\{t_{1}\left(x_{1}\right)=0\right\}$ corresponds with an element $x_{1} \otimes 1-1 \otimes x_{2}$ such that $n_{1}\left(x_{1}\right)=n_{2}\left(x_{2}\right)$ and $t_{1}\left(x_{1}\right)=t_{2}\left(x_{2}\right)=0$, so $F\left[x_{i}\right]$ is a purely inseparable extension. There exists an isomorphism $\alpha: F\left[x_{1}\right] \xrightarrow{\sim} F\left[x_{2}\right]$ with $\alpha\left(x_{1}\right)=x_{2}$ and thus a triple $\left(F\left[x_{1}\right], F\left[x_{2}\right], \alpha\right)$. Conversely, if there is a triple $\left(K_{1}, K_{2}, \alpha\right)$ with $K_{i}$ purely inseparable, there are $x_{i} \in C_{i}$ with $t_{i}\left(x_{i}\right)=0$ such that $K=F\left[x_{1}\right]$, $L=F\left[x_{2}\right]$, and $\alpha: F\left[x_{1}\right] \xrightarrow{\sim} F\left[x_{2}\right], x_{1} \mapsto x_{2}$, so $n_{1}\left(x_{1}\right)=n_{2}\left(x_{2}\right)$ and $x_{1} \otimes$ $1-1 \otimes x_{2}$ defines an $F$-rational point in $V_{N} \cap\left\{t_{1}\left(x_{1}\right)=0\right\}$.

## 3. THE AUTOMORPHISM GROUP OF A TENSOR PRODUCT OF OCTONION ALGEBRAS

In this section we compute the automorphism group, the derivation algebra, and the forms of a tensor product of a finite number of octonion algebras over a field $F$ with $\operatorname{char}(F) \neq 2$. Let $C=C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$ be the tensor product of octonion algebras. As we will see, the subspace $C_{1} \otimes_{F} F$ $\otimes_{F} \cdots \otimes_{F} F+\cdots+F \otimes_{F} \cdots \otimes_{F} F \otimes_{F} C_{n}$ is responsible for many properties of $C$, so our first goal is to characterize it.

Recall that the associative nucleus of an algebra $A$ is $\mathrm{N}(A)=\{a \in$ $A:(a, A, A)=(A, a, A)=(A, A, a)=0\}$, where $(x, y, z)=(x y) z-$ $x(y z)$ denotes the usual associator. The commutative nucleus of $A$ is the set $\mathrm{K}(A)=\{a \in A:[(a, A]=0\}$.

Definition 3.1. The subspace

$$
\mathrm{N}_{\mathrm{alt}}(A):=\{a \in A:(a, x, y)=-(x, a, y)=(x, y, a) \forall x, y \in A\}
$$

will be called the generalized alternative nucleus of $A$.
Remark 3.2. The alternative nucleus was introduced by Thedy [35] as
$\{a \in A:(x, a, x)=0$ and $(a, x, y)=(x, y, a)=(y, a, x)$ for all $x, y \in A\}$
and is a subalgebra of $A$. The generalized alternative nucleus differs from this nucleus and, in general, it may not be closed under products, although it possesses an interesting algebraic structure (see Proposition 4.6).

Proposition 3.3. Let $A_{1}, A_{2}$ be unital algebras with $\mathrm{N}\left(A_{1}\right)=F=$ $\mathrm{K}\left(A_{2}\right)$ or $\mathrm{N}\left(A_{2}\right)=F=\mathrm{K}\left(A_{1}\right)$. Then $\mathrm{Nalt}\left(A_{1} \otimes_{F} A_{2}\right)=\mathrm{N}_{\mathrm{alt}}\left(A_{1}\right) \otimes_{F} F+$ $F \otimes_{F} \mathrm{~N}_{\mathrm{alt}}\left(A_{2}\right)$.

Proof. By symmetry we can assume that $\mathrm{N}\left(A_{1}\right)=F=\mathrm{K}\left(A_{2}\right)$. Let $a=\sum a_{i} \otimes a_{i}^{\prime} \in \mathrm{N}_{\mathrm{alt}}\left(A_{1} \otimes_{F} A_{2}\right)$ with $a_{i}^{\prime}$ linearly independent. The identities defining the generalized alternative nucleus with $x$ replaced with $x \otimes 1$ and $y$ with $y=y \otimes 1$ show that $a_{i} \in \mathrm{~N}_{\text {alt }}\left(A_{1}\right)$. A similar argument with $a_{i}$ linearly independent (in $\mathrm{N}_{\text {alt }}\left(A_{1}\right)$ ) shows that $\mathrm{N}_{\text {alt }}\left(A_{1} \otimes_{F} A_{2}\right) \subseteq$ $\mathrm{N}_{\mathrm{alt}}\left(A_{1}\right) \otimes_{F} \mathrm{~N}_{\mathrm{alt}}\left(A_{2}\right)$. Now the identity $(a, x, y)=-(x, a, y)$ with $x$ replaced with $x \otimes x^{\prime}$ and $y$ with $y \otimes 1$ leads to $\Sigma\left(a_{i}, x, y\right) \otimes a_{i}^{\prime} x^{\prime}=$ $-\Sigma\left(x, a_{i}, y\right) \otimes x^{\prime} a_{i}^{\prime}$. Since $a_{i} \in \mathrm{~N}_{\mathrm{alt}}\left(A_{1}\right)$, this implies that $\left[\Sigma\left(a_{i}, x, y\right) \otimes\right.$ $\left.a_{i}^{\prime}, 1 \otimes x^{\prime}\right]=0$. But, by hypothesis, the centralizer of $A_{2}$ in $A_{1} \otimes_{F} A_{2}$ is $A_{1} \otimes_{F} F$, hence $\sum\left(a_{i}, x, y\right) \otimes a_{i}^{\prime} \in A_{1} \otimes_{F} F$. By choosing $a_{1}^{\prime}=1$ and $a_{i}^{\prime}$ linearly independent, we get that $\left(a_{i}, x, y\right)=0$ if $i \geq 2$, and since $a_{i} \in$ $\mathrm{N}_{\mathrm{alt}}\left(A_{1}\right)$, it follows that $\left(x, a_{i}, y\right)=0=\left(x, y, a_{i}\right)$, too. Therefore, $a_{i} \in$ $\mathrm{N}\left(A_{1}\right)=F$ if $i \geq 2$ and $\mathrm{N}_{\text {alt }}\left(A_{1} \otimes_{F} A_{2}\right) \subset \mathrm{N}_{\mathrm{alt}}\left(A_{1}\right) \otimes_{F} F+F \otimes_{F} \mathrm{~N}_{\mathrm{alt}}\left(A_{2}\right)$. The other inclusion is obvious.

In general, in a tensor product of algebras $A_{1} \otimes_{F} \cdots \otimes_{F} A_{n}$ we will identify the factors $A_{i}$ with the subalgebra $F \otimes_{F} \cdots \otimes_{F} A_{i} \otimes_{F} \cdots \otimes_{F} F$ without mention; thus, for instance, we will write $A_{1} \otimes_{F} \cdots \otimes_{F} A_{n}=$ $\Pi_{i} A_{i}$.

Corollary 3.4. $\mathrm{N}_{\mathrm{alt}}\left(C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}\right)=C_{1}+\cdots+C_{n}$.
Proof. It is well known [37, p. 41] that $\mathrm{N}\left(C_{i}\right)=F=\mathrm{K}\left(C_{i}\right)$ and that $\mathrm{N}\left(A_{1} \otimes_{F} A_{2}\right)=\mathrm{N}\left(A_{1}\right) \otimes_{F} \mathrm{~N}\left(A_{2}\right)$ and $\mathrm{K}\left(A_{1} \otimes_{F} A_{2}\right)=\mathrm{K}\left(A_{1}\right) \otimes_{F} \mathrm{~K}\left(A_{2}\right)$.

Recall that in any algebra with product denoted by [, ] the element $J(x, y, z)=[[x, y], z]+[[y, z], x]+[[z, x], y]$ is called the Jacobian of $x$, $y, z$. The algebra is called a Malcev algebra if it is anticommutative and $J(x, y,[x, z])=[J(x, y, z), x]$. One important example of a simple Malcev algebra is the algebra of elements of zero trace in an octonion algebra with the product given by the commutator $[24,26,29,30]$. Therefore $\mathrm{N}_{\mathrm{alt}}(C)$ is a Malcev algebra, and $\mathrm{N}_{\mathrm{alt}}(C)=F 1 \oplus C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$ with $C_{i}^{\prime}$ minimal ideals that are simple Malcev algebras and F1 the center. The derived algebra of $\mathrm{N}_{\mathrm{alt}}(C)$ is

$$
\mathrm{N}_{\mathrm{alt}}^{\prime}(C)=\left[\mathrm{N}_{\mathrm{alt}}(C), \mathrm{N}_{\mathrm{alt}}(C)\right]=C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime} .
$$

Remark 3.5. Let $\varphi_{0}: C_{1}^{\prime} \rightarrow C_{2}^{\prime}$ be an isomorphism of Malcev algebras. Since $[a,[a, b]]=-4 n_{1}(a) b+2 n_{1}(a, b) a$, we have $n_{2}\left(\varphi_{0}(a), \varphi_{0}(b)\right)=$ $n_{1}(a, b)$, so we can define $\varphi: C_{1} \rightarrow C_{2}$ by $\alpha 1+a \mapsto \alpha 1+\varphi_{0}(a)$, which is an isomorphism because of the identity $2 a b=[a, b]-n_{1}(a, b)$. That is, any isomorphism from $C_{1}^{\prime}$ onto $C_{2}^{\prime}$ is the restriction of an isomorphism between $C_{1}$ and $C_{2}$. Moreover, given an automorphism $\sigma \in \operatorname{Aut}(F)$ then any $\sigma$-semilinear isomorphism $\varphi_{0}$ between $C_{1}^{\prime}$ and $C_{2}^{\prime}$ is induced by a $\sigma$-semilinear isomorphism $\varphi$ : $\alpha 1+a \mapsto \sigma(\alpha) 1+\varphi_{0}(a)$ between $C_{1}$ and $C_{2}$. In the same way, any derivation of $C_{1}^{\prime}$ is the restriction of a derivation of $C_{1}$. Something similar holds for $C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$. Let $\varphi_{0}$ be an automorphism of $C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$. Since $C_{i}^{\prime}$ are the minimal ideals there exists a permutation $\pi \in \sum_{n}$ such that $\varphi_{0}\left(C_{i}^{\prime}\right)=C_{\pi(i)}^{\prime}$. Therefore, by the previous, $\varphi_{0} \mid C_{i}^{\prime}$ is the restriction of an isomorphism $\varphi_{i}: C_{i} \rightarrow C_{\pi(i)}$ and we can define an automorphism $\varphi$ of $C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$ such that the restriction to $C_{i}$ is $\varphi_{i}$. Hence, any automorphism of $C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$ is the restriction of an automorphism of $C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$. The same is true for $\sigma$-semilinear automorphisms.

Proposition 3.6. The restriction map gives the isomorphisms

$$
\begin{aligned}
& \operatorname{Aut}(C) \cong \operatorname{Aut}\left(\mathrm{N}_{\mathrm{alt}}^{\prime}(C)\right) \\
& \operatorname{Der}(C) \cong \operatorname{Der}\left(\mathrm{N}_{\mathrm{alt}}^{\prime}(C)\right) \cong \operatorname{Der}\left(C_{1}\right) \oplus \cdots \oplus \operatorname{Der}\left(C_{n}\right)
\end{aligned}
$$

Proof. Any automorphism (resp. derivation) of $C$ leaves $\mathrm{N}_{\text {alt }}^{\prime}(C)$ invariant, so it induces an automorphism (resp. derivation) of $\mathrm{N}_{\text {alt }}^{\prime}(C)$. Since $\mathrm{N}_{\mathrm{alt}}^{\prime}(C)$ generates $C$ as an algebra, the restriction map induces monomorphisms $\operatorname{Aut}(C) \rightarrow \operatorname{Aut}\left(\mathrm{N}_{\mathrm{alt}}^{\prime}(C)\right)$ and $\operatorname{Der}(C) \rightarrow \operatorname{Der}\left(\mathrm{N}_{\mathrm{alt}}^{\prime}(C)\right)$. In the case of
$\operatorname{Aut}(C)$ this monomorphism is also an epimorphism by Remark 3.5. In the case of $\operatorname{Der}(C)$, given $d \in \operatorname{Der}\left(\mathrm{~N}_{\mathrm{alt}}^{\prime}(C)\right)$ we have

$$
d\left(C_{i}^{\prime}\right)=d\left(\left[C_{i}^{\prime}, C_{i}^{\prime}\right]\right) \subseteq\left[d\left(C_{i}^{\prime}\right), C_{i}^{\prime}\right]+\left[C_{i}^{\prime}, d\left(C_{i}^{\prime}\right)\right] \subseteq C_{i}^{\prime}
$$

so $\operatorname{Der}\left(\mathrm{N}_{\text {alt }}^{\prime}(C)\right)=\operatorname{Der}\left(C_{1}^{\prime}\right) \oplus \cdots \oplus \operatorname{Der}\left(C_{n}^{\prime}\right)$. Since any derivation $d_{i}$ of $C_{i}^{\prime}$ is induced by a derivation $d_{i}$ of $C_{i}$, and $d_{i} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}+\cdots+\mathrm{id}$ $\otimes \cdots \otimes \mathrm{id} \otimes d_{n}$ is a derivation of $C$, it follows that $\operatorname{Der}\left(C_{1}^{\prime}\right) \oplus \cdots \oplus$ $\operatorname{Der}\left(C_{n}^{\prime}\right)=\operatorname{Der}(C)$.

Let $\sigma$ be the tensor product of the canonical involutions of the $C_{i}$ and $\operatorname{Aut}(C, \sigma)$ the automorphisms of $C$ that commute with $\sigma$.

## Corollary 3.7. With the previous notation, $\operatorname{Aut}(c)=\operatorname{Aut}(C, \sigma)$.

Remark 3.8. We can write $C \cong C_{1}^{\otimes n_{1}} \otimes_{F} \cdots \otimes_{F} C_{m}^{\otimes n_{m}}$ with $C_{i}^{\otimes n_{i}}$ the tensor product of $n_{i}$ copies of $C_{i}$ and $C_{i} \not \equiv C_{j}$ if $i \neq j$ and $n_{1}+\cdots+n_{m}=$ $n$. Thus, $\mathrm{N}_{\mathrm{alt}}^{\prime}(C) \cong n_{1} C_{1}^{\prime} \oplus \cdots \oplus n_{m} C_{m}^{\prime}$ with $n_{i} C_{i}^{\prime}$ isomorphic to the direct sum of $n_{i}$ copies of $C_{i}^{\prime}$, and $C_{i}^{\prime} \neq C_{j}^{\prime}$ if $i \neq j$. Since $\operatorname{Aut}\left(n_{i} C_{i}^{\prime}\right)$ is the wreath product of $\operatorname{Aut}\left(C_{i}^{\prime}\right)$ and the symmetric group $\Sigma_{n_{i}}$, we obtain that $\operatorname{Aut}\left(C^{\otimes n_{i}}\right)$ $\cong \operatorname{Aut}\left(C_{i}\right)_{n_{i}}$, the wreath product of $\operatorname{Aut}\left(C_{i}\right)$ and $\Sigma_{n_{i}}$, and thus $\operatorname{Aut}(C) \cong$ $\operatorname{Aut}\left(C_{1}\right)_{n_{1}} \times \cdots \times \operatorname{Aut}\left(C_{m}\right)_{n_{m}}$.

The uniqueness of the decomposition $\mathrm{N}_{\mathrm{alt}}^{\prime}(C) \cong C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$ gives the following uniqueness of the factorization of $C$.

Proposition 3.9. Let $A_{1}, A_{2}$ be unital algebras such that $C_{1} \otimes_{F} \cdots \otimes_{F}$ $C_{n} \cong A_{1} \otimes_{F} A_{2}$. Then there exists a partition $\{1, \ldots, n\}=\Lambda_{1} \cup \Lambda_{2}$ such that $A_{1} \cong \otimes_{i \in \Lambda_{1}} C_{i}$ and $A_{2} \cong \otimes_{j \in \Lambda_{2}} C_{j}$. In particular, the factors $\left\{C_{1}, \ldots, C_{n}\right\}$ in $C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$ are uniquely determined up to order and isomorphism.

Proof. Since the associative and commutative nuclei of $C=C_{1} \otimes_{F}$ $\cdots \otimes_{F} C_{n}$ are each the base field, $\mathrm{N}\left(A_{i}\right)=F=\mathrm{K}\left(A_{i}\right)$ for $i=1,2$. By Proposition 3.3,

$$
\mathrm{N}_{\mathrm{alt}}\left(A_{1}\right) \otimes_{F}+F \otimes_{F} \mathrm{~N}_{\mathrm{alt}}\left(A_{2}\right) \cong C_{1}+\cdots+C_{n}=F 1 \oplus C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime} .
$$

The $C_{i}^{\prime}$ are minimal ideals; therefore, there exists a partition $\{1, \ldots, n\}=$ $\Lambda_{1} \cup \Lambda_{2}$ such that $\mathrm{N}_{\text {alt }}\left(A_{i}\right) \cong F 1 \oplus \oplus_{j \in \Lambda_{i}} C_{j}^{\prime}$. Thus, the image in $A_{1} \otimes_{F}$ $A_{2}$ of the subalgebra $\otimes_{j \in \Lambda_{i}} C_{j}$ generated by $\oplus_{j \in \Lambda_{i}} C_{j}^{\prime}$ is contained in $A_{i}$. Since the two algebras have the same dimension, they must be equal.
Corollary 3.10. Two algebras $C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$ and $\tilde{C}_{1} \otimes_{F} \cdots \otimes_{F} \tilde{C}_{m}$ are isomorphic if and only if $n=m$ and there exists a permutation $\tau$ such that $C_{i}$ is isomorphic to $\tilde{C}_{\tau(i)}$.

Example 3.11. It is well known that if the Albert forms of two biquaternion algebras are similar, then the algebras are isomorphic. We
give an example to show that the analogue of this result is false for octonion algebras. Let $C_{1}$ and $C_{2}$ be nonisomorphic octonion $F$-algebras and consider the tensor products $C_{1} \otimes_{F} C_{1}$ and $C_{2} \otimes_{F} C_{2}$. Then their Albert forms are $n_{C_{1}^{\prime}} \perp-n_{C_{1}^{\prime}}$ and $n_{C_{2}^{\prime}} \perp-n_{C_{2}^{\prime}}$, respectively. Therefore, these forms are isomorphic as they are both hyperbolic. However, $C_{1} \otimes_{F} C_{1}$ is not isomorphic to $C_{2} \otimes_{F} C_{2}$ by the previous corollary since $C_{1}$ and $C_{2}$ are not isomorphic.

The following result points out the special role played by the involution $\sigma$.

Corollary 3.12. The only involution of $C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$ which commutes with all automorphisms is $\sigma$.

Proof. Let $\sigma^{\prime}$ be another involution of $C=C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$ commuting with $\operatorname{Aut}(C)$. The elements fixed by $\operatorname{Aut}\left(C_{i}\right) \subseteq \operatorname{Aut}(C)$ are exactly $\hat{C}_{i}=\otimes_{j \neq i} C_{j}$. Therefore, $\sigma^{\prime}\left(\hat{C}_{i}\right)=\hat{C}_{i}$. Looking at the centralizer of $\hat{C}_{i}$ yields $\sigma^{\prime}\left(C_{i}\right)=C_{i}$. The automorphism $\sigma^{\prime} \sigma$ induces an automorphism of $C_{i}$ which commutes with $\operatorname{Aut}\left(C_{i}\right)$. That is, $\sigma^{\prime} \sigma=\mathrm{id}[17]$ and $\sigma^{\prime}=\sigma$.

We will call $\sigma$ the canonical involution of $C_{1} \otimes_{F} \cdots \otimes_{F} C_{n}$.
Corollary 3.13. Let $\varphi: C=C_{1} \otimes_{F} \cdots \otimes_{F} C_{n} \rightarrow \tilde{C}=\tilde{C}_{1} \otimes_{F} \cdots \otimes_{F} \tilde{C}_{n}^{n}$ be an isomorphism. If $\sigma$ and $\sigma^{\prime}$ are the canonical involutions of $C$ and $\tilde{C}$ respectively, then $\varphi \sigma=\sigma^{\prime} \varphi$.

Proof. Since $\operatorname{Aut}(\tilde{C})=\varphi \operatorname{Aut}(C) \varphi^{-1}$, then $\varphi \sigma \varphi^{-1}$ commutes with $\operatorname{Aut}(\tilde{C})$. Therefore, $\sigma^{\prime}=\varphi \sigma \varphi^{-1}$. 】

We now show that the Skolem-Noether theorem does not hold for $C$.
Corollary 3.14. There exist simple $F$-subalgebras $B$ and $B^{\prime}$ of $C$ and an $F$-algebra isomorphism $f: B \rightarrow B^{\prime}$ such that there is no $F$-algebra automorphism $\varphi$ of $C$ with $\left.\varphi\right|_{B}=f$.

Proof. Let $Q_{i}$ be a quaternion subalgebra of $C_{i}$ for $i=1,2$ and let $f$ be an $F$-algebra automorphism of $A=Q_{1} \otimes_{F} Q_{2}$ that is not compatible with $\left.\sigma\right|_{A}$; such maps exist since we can take $f$ to be the inner automorphism of an element $t \in A$ with $\sigma(t) t \notin F$. The condition $\sigma(t) t \in F$ is precisely the condition needed to ensure that $f$ is compatible with $\left.\sigma\right|_{A}$. For example, we can take $t=1+i_{1} i_{2} \in A=Q_{1} \otimes_{F} Q_{2}$ (where the standard generators of $Q_{r}$ are $i_{r}$ and $j_{r}$ ). If $f$ extends to an automorphism $\varphi$ of $C$, then $\varphi(A)=A$, so $\varphi$ is compatible with $\sigma$. This forces $\left.\varphi\right|_{A}=f$ to be compatible with $\left.\sigma\right|_{A}$, and $f$ is chosen so that this does not happen.

We devote the remainder of this section to computing the forms of tensor products of octonions, that is, $F$-algebras $A$ such that $A_{K}=K \otimes_{F}$
$A \cong C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$ for some extension $K / F$ and octonion algebras $C_{i}$ over $K$. We will denote $C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$ by $T$.

Since $K \otimes_{F} \mathrm{~N}_{\mathrm{alt}}^{\prime}(A) \cong \mathrm{N}_{\mathrm{alt}}^{\prime}\left(K \otimes_{F} A\right) \cong C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$, the algebra $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ is separable. It is worth noting that for a finite dimensional separable $F$-algebra $R$ and a field extension $K / F$ such that $K \otimes_{F} R \cong R_{1}$ $\oplus \cdots \oplus R_{n}$, with $R_{i}$ central simple $K$-algebras, there exists a subfield $K_{0}$ of $K$ such that $K_{0} / F$ is a finite Galois extension and $K_{0} \otimes_{F_{\tilde{\sim}}} R \cong \tilde{R}_{1}$ $\oplus \cdots \oplus \tilde{R}_{n}$ with $\tilde{R}_{i}$ central simple $K_{0}$-algebras and $R_{i} \cong K \otimes_{K_{0}} \tilde{R}_{i}$.

Lemma 3.15. Let $A$ be a form of a tensor product of octonion algebras over $F$. There exists a finite Galois extension $F \subseteq K_{0} \subseteq K$ such that $A_{K_{0}}$ is the tensor product of octonion algebras over $K_{0}$.

Proof. Let $K_{0}$ be a finite Galois extension of $F$ contained in $K$ such that $K_{0} \otimes_{F} \tilde{\tilde{C}}_{\text {alt }}^{\prime}(A)=\tilde{C}_{1}^{\prime} \oplus \cdots \oplus \tilde{C}_{n}^{\prime}$ with $\tilde{C}_{i}$ octonion algebras over $K_{0}$ and $K \otimes_{K_{0}} \tilde{C}_{i}^{\prime} \cong C_{i}^{\prime}$. By Remark 3.5, this isomorphism is induced by an isomorphism $\tilde{\tilde{C}}) \otimes_{K_{0}} \tilde{C}_{i} \cong C_{i}$. Thus we have an isomorphism $K \otimes_{K_{0}}\left(\tilde{C}_{1}\right.$ $\left.\otimes_{K_{0}} \cdots \otimes_{K_{0}} \tilde{C}_{n}\right) \cong T$ which restricts to an isomorphism $\tilde{C}_{1} \otimes_{K_{0}} \cdots \otimes_{K_{0}} \tilde{C}_{n}$ $\cong K_{0} \otimes_{F} A$.
This proposition allows us to assume in the following that $K / F$ is a finite Galois extension. We denote the $F$-subalgebra generated by $S$ by $\operatorname{alg}_{F}\langle S\rangle$ and the subspace spanned by $S$ by $\operatorname{span}_{F}\langle S\rangle$. Since

$$
\begin{aligned}
K \otimes_{F} \operatorname{alg}_{K}\left\langle\mathrm{~N}_{\mathrm{alt}}^{\prime}(A)\right\rangle & \cong \operatorname{alg}_{F}\left\langle\mathrm{~N}_{\mathrm{alt}}^{\prime}\left(K \otimes_{F} A\right)\right\rangle=\operatorname{alg}_{K}\left\langle C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}\right\rangle \\
& =T=K \otimes_{F} A,
\end{aligned}
$$

we obtain $A$ from $\mathrm{N}_{\text {alt }}^{\prime}(A)$ since $A=\operatorname{alg}_{F}\left\langle\mathrm{~N}_{\text {alt }}^{\prime}(A)\right\rangle$.
Proposition 3.16. The map

$$
\begin{aligned}
\left\{F \text {-forms of } C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}\right\} & \rightarrow\left\{F \text {-forms of } C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}\right\} \\
A & \mapsto \mathrm{~N}_{\text {alt }}^{\prime}(A)
\end{aligned}
$$

is a bijection with inverse given by $N^{\prime} \mapsto \operatorname{alg}\left\langle N^{\prime}\right\rangle$. Moreover, if $A$ and $B$ are $F$-forms of $C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$ then $A \cong B$ if and only if $\mathrm{N}_{\mathrm{alt}}^{\prime}(A) \cong \mathrm{N}_{\mathrm{alt}}^{\prime}(B)$.
Proof. It is clear that $\mathrm{N}_{\text {alt }}^{\prime}(A)$ is an $F$-form of $C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$ if $A$ is an $F$-form of $C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$. Conversely, let $N^{\prime}$ be an $F$-form of $C_{1}^{\prime}$ $\oplus \cdots \oplus C_{n}^{\prime}$ and $\left\{U_{\sigma}: \sigma \in \operatorname{Gal}(K / F)\right\}$ the semilinear automorphisms of $C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$ such that $N^{\prime}$ is the set of fixed elements. By Remark 3.5, we can assume that $U_{\sigma}$ is the restriction of a $\sigma$-semilinear automorphism $\tilde{U}_{\sigma}$ of $C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$. The algebra $A$ of fixed elements by $\left\{\tilde{U}_{\sigma}: \sigma \in\right.$ $\operatorname{Gal}(K / F)\}$ is an $F$-form of $C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$ containing $N^{\prime}$. In fact, since
$N^{\prime}$ extends to $C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$, we get $N^{\prime}=\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$, and thus $\operatorname{alg}_{F}\left\langle N^{\prime}\right\rangle=A$ is an $F$-form of $C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$.

If $A \cong B$ then $\mathrm{N}_{\mathrm{alt}}^{\prime}(A) \cong \mathrm{N}_{\mathrm{alt}}^{\prime}(B)$. Conversely, if $\varphi_{0}: \mathrm{N}_{\mathrm{alt}}^{\prime}(A) \rightarrow \mathrm{N}_{\mathrm{alt}}^{\prime}(B)$ is an isomorphism, it induces an automorphism $\tilde{\varphi}_{0}$ of $C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}$ that, by Remark 3.5, is the restriction of an automorphism $\tilde{\varphi}$ of $C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$. Since

$$
\tilde{\varphi}(A)=\tilde{\varphi}\left(\operatorname{alg}_{F}\left\langle\mathrm{~N}_{\mathrm{alt}}^{\prime}(A)\right\rangle\right)=\operatorname{alg}_{F}\left\langle\tilde{\varphi}\left(\mathrm{~N}_{\mathrm{alt}}^{\prime}(A)\right)\right\rangle=\operatorname{alg}_{F}\left\langle\left(\mathrm{~N}_{\mathrm{alt}}^{\prime}(B)\right)\right\rangle=B,
$$

it follows that $A \cong B$.
This proposition allows us to construct easily the forms of a tensor product of octonion algebras. First, observe that if $\mathrm{N}_{\text {alt }}^{\prime}(A)=N_{1} \oplus N_{2}$ then $K \otimes_{F} N_{i} \cong \bigoplus_{j \in \Lambda_{i}} C_{j}^{\prime}, i=1,2$ for some partition $\{1, \ldots, n\}=\Lambda_{1} \cup \Lambda_{2}$. By Proposition 3.16, $A_{i}=\operatorname{alg}_{F}\left\langle N_{i}\right\rangle$ is an $F$-form of $\otimes_{j \in \Lambda_{i}} C_{j}$ and hence $A \cong A_{1} \otimes_{F} A_{2}$. Therefore, it is enough to construct the forms of a tensor product of octonion algebras with simple generalized alternative nucleus.

Let $A$ be an $F$-algebra with $\mathrm{N}_{\text {alt }}^{\prime}(A)$ simple and $K$ a finite Galois extension such that $K \otimes_{F} A \cong C_{1} \otimes_{K} \cdots \otimes_{K} C_{n}$ for some octonion algebras $C_{i}$ over $K$. Since $\mathrm{N}_{\text {alt }}^{\prime}(A)$ is simple, the centroid $\Gamma=\Gamma\left(\mathrm{N}_{\text {alt }}^{\prime}(A)\right)$ is a finite separable extension of $F$. In fact,

$$
K \otimes_{F} \Gamma \cong \Gamma\left(K \otimes_{F} \mathrm{~N}_{\mathrm{alt}}^{\prime}(A)\right) \cong \Gamma\left(C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}\right) \cong K \oplus \cdots \oplus K
$$

implies that $\Gamma$ is an extension of degree $n$ and that we have $n$ different $F$-monomorphisms $\sigma_{i}: \Gamma \rightarrow K$. Every $\sigma_{i}$ allows us to define a right $\Gamma$-vector space structure on $K$ by $\alpha \circ \gamma=\alpha \sigma_{i}(\gamma), \alpha \in K, \gamma \in \Gamma$. We denote this new vector space by $K^{\sigma_{1}}$. Now,

$$
\begin{aligned}
K \otimes_{F} \mathrm{~N}_{\mathrm{alt}}^{\prime}(A) & \cong K \otimes_{F}\left(\Gamma \otimes_{\Gamma} \mathrm{N}_{\mathrm{alt}}^{\prime}(A)\right) \cong\left(K \otimes_{F} \Gamma\right) \otimes_{\Gamma} \mathrm{N}_{\mathrm{alt}}^{\prime}(A) \\
& \cong\left(K^{\sigma_{1}} \oplus \cdots \oplus K^{\sigma_{n}}\right) \otimes_{\Gamma} \mathrm{N}_{\mathrm{alt}}^{\prime}(A) \\
& \cong\left(K^{\sigma_{1}} \otimes_{\Gamma} \mathrm{N}_{\mathrm{alt}}^{\prime}(A)\right) \oplus \cdots \oplus\left(K^{\sigma_{n}} \otimes_{\Gamma} \mathrm{N}_{\mathrm{alt}}^{\prime}(A)\right) \\
& \cong C_{1}^{\prime} \oplus \cdots \oplus C_{n}^{\prime}
\end{aligned}
$$

implies that, up to order, $K^{\sigma_{i}} \otimes_{\Gamma} \mathrm{N}_{\text {alt }}^{\prime}(A) \cong C_{i}^{\prime}$. Therefore, we can think of the $\Gamma$-algebra $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ as a form of $C_{i}^{\prime}$. By the arguments in [24, pp. 240-241], for instance, we can conclude that $\mathrm{N}_{\text {alt }}^{\prime}(A) \cong C^{\prime}$ for some octonion algebra $C$ over $\Gamma$. Under the isomorphism $K \otimes_{F} C^{\prime} \cong\left(K^{\sigma_{1}} \otimes_{\Gamma}\right.$ $\left.C^{\prime}\right) \oplus \cdots \oplus\left(K^{\sigma_{n}} \otimes_{\Gamma} C^{\prime}\right)$ we identify $x \in C^{\prime}$ with $(1 \otimes x)+\cdots+(1 \otimes x)$. Since we can view $\left(K^{\sigma_{1}} \otimes_{\Gamma} C^{\prime}\right) \oplus \cdots \oplus\left(K^{\sigma_{n}} \otimes_{\Gamma} C^{\prime}\right)$ as the generalized alternative nucleus of $\left(K^{\sigma_{1}} \otimes_{\Gamma} C^{\prime}\right) \otimes_{K} \cdots \otimes_{K}\left(K^{\sigma_{n}} \otimes_{\Gamma} C^{\prime}\right)$, the algebra $A$ corresponds with the $F$-subalgebra generated by $\left(1 \otimes_{\Gamma} x\right) \otimes_{K} \cdots \otimes_{K}\left(1 \otimes_{\Gamma}\right.$ 1) $+\cdots+\left(1 \otimes_{\Gamma} 1\right) \otimes_{K} \cdots \otimes_{K}\left(1 \otimes_{\Gamma} x\right)$. Conversely, given an octonion $\Gamma$-al-
gebra $C$ with $\Gamma$ a finite separable extension of $F$, it is easy to check that the algebra $A$ constructed as above is a form of a tensor product of octonion algebras with a simple generalized alternative nucleus.

## 4. THE GENERALIZED ALTERNATIVE NUCLEUS

The generalized alternative nucleus is responsible for many properties of the tensor product of octonion algebras. In this section we pay special attention to this nucleus. We classify the simple finite dimensional unital algebras which are generated by their generalized alternative nucleus. Our methods rely on the representation theory of some Lie algebras; therefore, in this section we will assume that $\operatorname{char}(F)=0$ and that $F$ is algebraically closed. We make free use of Lie algebra terminology and refer the reader to the books of Humphreys [16] and Jacobson [18] for definitions and results.

Let $C$ be an octonion algebra over $F$ and $\operatorname{Sym}^{n}(C)$ the symmetric tensors of $C \otimes_{F} \cdots \otimes_{F} C$, the tensor product of $n$ copies of $C$. The elements $a \otimes 1 \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes a$ with $a \in C$ lie in $\mathrm{N}_{\mathrm{alt}}(C$ $\left.\otimes_{F} \cdots \otimes_{F} C\right)$ and generate $\operatorname{Sym}^{n}(C)$. Therefore $\operatorname{Sym}^{n}(C)$ is an algebra generated by its generalized alternative nucleus. However, $\operatorname{Sym}^{n}(C)$ is no longer simple. The contraction $\operatorname{Sym}^{n}(C) \rightarrow \operatorname{Sym}^{n-2}(C)$ induced by $x$ $\otimes \cdots \otimes x \mapsto n(x) x \otimes \cdots \otimes x$ is an epimorphism whose nucleus we will denote by $\mathrm{T}_{n}(C), n \geq 2$. We recover the Kantor-Smirnov structurable algebra when $n=2[33,7]$. We will see that $\mathrm{T}_{n}(C)$ is a unital simple algebra generated by $\mathrm{N}_{\mathrm{alt}}\left(\mathrm{T}_{n}(C)\right)$. We set $\mathrm{T}_{1}(C)=C$ and $\mathrm{T}_{0}(C)=F$. We now give our classification result.

Theorem 4.1. Any simple finite dimensional unital algebra over an algebraically closed field of characteristic zero which is generated by its generalized alternative nucleus is isomorphic to the tensor product of a simple associative algebra and $\mathrm{T}_{n}(C)$ for some $n$.

Recall from [28] that a ternary derivation of an algebra $A$ is a triple $\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{End}_{F}(A) \times \operatorname{End}_{F}(A) \times \operatorname{End}_{F}(A)$ such that

$$
\begin{equation*}
d_{1}(x y)=d_{2}(x) y+x d_{3}(y) \tag{1}
\end{equation*}
$$

for any $x, y \in A$. The Lie algebra of ternary derivations is denoted by $\operatorname{Tder}(A)$. If $d_{1}=d_{2}=d_{3}$ then (1) says that $d_{1}$ is a derivation, and in that case we will say that $\left(d_{1}, d_{2}, d_{3}\right)$ represents a derivation. Let $T_{a}=L_{a}+R_{a}$. It is worth noting that

$$
\begin{equation*}
a \in \mathrm{~N}_{\mathrm{alt}}(A) \Leftrightarrow\left(L_{a}, T_{a},-L_{a}\right) \text { and }\left(R_{a},-R_{a}, T_{a}\right) \in \operatorname{Tder}(A) . \tag{2}
\end{equation*}
$$

The following identities will be useful.
Lemma 4.2. Let $a, b \in \mathrm{~N}_{\mathrm{alt}}(A)$ and $x \in A$. Then
(i) $L_{a x}=L_{a} L_{x}+\left[R_{a}, L_{x}\right], L_{x a}=L_{x} L_{a}+\left[L_{x}, R_{a}\right]$.
(ii) $R_{a x}=R_{x} R_{a}+\left[R_{x}, L_{a}\right], R_{x a}=R_{a} R_{x}+\left[L_{a}, R_{x}\right]$.
(iii) $\left[L_{a}, R_{b}\right]=\left[R_{a}, L_{b}\right]$.
(iv) $\left[L_{a}, L_{b}\right]=L_{[a, b]}-2\left[R_{a}, L_{b}\right],\left[R_{a}, R_{b}\right]=-R_{[a, b]}-2\left[L_{a}, R_{b}\right]$.
(v) The map $D_{a, b}=\left[L_{a}, L_{b}\right]+\left[L_{a}, R_{b}\right]+\left[R_{a}, R_{b}\right]$ is a derivation of $A, D_{a, b}=\operatorname{ad}_{[a, b]}-3\left[L_{a}, R_{b}\right]$ and $2 D_{a, b}=\operatorname{ad}_{[a, b]}+\left[\mathrm{ad}_{a}, \mathrm{ad}_{b}\right]$, where $\mathrm{ad}_{a}: x \mapsto[a, x]$.

Proof. Parts (i) and (ii) follow from the identities $(a, x, y)=(x, y, a)$, $(x, a, y)=-(x, y, a),(y, a, x)=-(a, y, x)$, and $(y, x, a)=(a, y, x)$. Part (iii) follows from $(b, x, a)=-(a, x, b)$, while (iv) is an easy consequence of parts (i), (ii), and (iii). Now, by (2) we have that ( $\left[L_{a}, L_{b}\right],\left[T_{a}, T_{b}\right]$, $\left.\left[L_{a}, L_{b}\right]\right),\left(\left[L_{a}, R_{b}\right],-\left[T_{a}, R_{b}\right],-\left[L_{a}, T_{b}\right]\right)$, and $\left(\left[R_{a}, R_{b}\right],\left[R_{a}, R_{b}\right],\left[T_{a}, T_{b}\right]\right)$ lie in $\operatorname{Tder}(A)$. Adding up these elements and using (ii), we obtain a ternary derivation that represents the derivation $D_{a, b}$. From (iv) we get $D_{a, b}=\operatorname{ad}_{[a, b]}-3\left[L_{a}, R_{b}\right]$. Finally,

$$
\begin{aligned}
\operatorname{ad}_{[a, b]}+\left[\mathrm{ad}_{a}, \mathrm{ad}_{b}\right] & =\operatorname{ad}_{[a, b]}+\left[L_{a}, L_{b}\right]+\left[R_{a}, R_{b}\right]-2\left[L_{a}, R_{b}\right] \\
& =2\left(\operatorname{ad}_{[a, b]}-3\left[L_{a}, R_{b}\right]\right)=2 D_{a, b}
\end{aligned}
$$

As we saw in the case of tensor products of octonions, $\mathrm{N}_{\text {alt }}(A)$ may not be a subalgebra of $A$. The natural product on $\mathrm{N}_{\mathrm{alt}}(A)$ seems to be the commutator $[a, b]=a b-b a$.

Proposition 4.3. Given $a, b \in \mathrm{~N}_{\mathrm{alt}}(A)$ then $[a, b] \in \mathrm{N}_{\mathrm{alt}}(A)$. Moreover, $\left(\mathrm{N}_{\mathrm{alt}}(A),[],\right)$ is a Malcev algebra.

Proof. By Lemma 4.2(iv), $L_{[a, b]}=\left[L_{a}, L_{b}\right]+2\left[R_{a}, L_{b}\right]$ and $R_{[a, b]}=$ $-\left[R_{a}, R_{b}\right]-2\left[L_{a}, R_{b}\right]$, thus by (2) we obtain

$$
\left(L_{[a, b]},\left[T_{a}, T_{b}\right]+2\left[-R_{a}, T_{b}\right],\left[L_{a}, L_{b}\right]+2\left[T_{a},-L_{b}\right]\right) \in \operatorname{Tder}(A)
$$

Since

$$
T_{[a, b]}=\left[L_{a}, L_{b}\right]-\left[R_{a}, R_{b}\right]=\left[T_{a}, T_{b}\right]+2\left[-R_{a}, T_{b}\right]
$$

and

$$
-L_{[a, b]}=-\left[L_{a}, L_{b}\right]-2\left[R_{a}, L_{b}\right]=\left[L_{a}, L_{b}\right]+2\left[T_{a},-L_{b}\right],
$$

it follows that $\left(L_{[a, b]}, T_{[a, b]},-L_{[a, b]}\right) \in \operatorname{Tder}(A)$. Similarly, $\quad\left(R_{[a, b]}\right.$, $\left.-R_{[a, b]}, T_{[a, b]}\right) \in \operatorname{Tder}(A)$. Therefore, $[a, b] \in \mathrm{N}_{\text {alt }}(A)$. The same arguments as those in [27, p. 9] show that $\left(\mathrm{N}_{\mathrm{alt}}(A),[],\right)$ is a Malcev algebra.

In the following we will always assume that $A$ is simple, finite dimensional and generated by $\mathrm{N}_{\text {alt }}(A)$. In our discussion, the Lie algebra $T(A)$ generated by $\left\{L_{a}, R_{a}: a \in \mathrm{~N}_{\text {alt }}(A)\right\}$ will play a prominent role.

Given a subset $S$ of an algebra we say that $\delta(x)$ is the degree of $x$ on $S$ if $x$ can be written as $x=p\left(s_{1}, \ldots, s_{m}\right)$ with $s_{1}, \ldots, s_{n} \in S$ and $p\left(x_{1}, \ldots, x_{n}\right)$ some nonassociative polynomial (constants are allowed) of degree $\delta(x)$, and if there is no other such expression for a polynomial of degree $<\delta(x)$. By convention the degree of 0 is set to $-\infty$.

Lemma 4.4. If $S \subseteq \mathrm{~N}_{\text {alt }}(A)$ then the degree of $x$ on $S$ is the same as the degree of $L_{x}, R_{x}$ on $\operatorname{span}_{F}\left\langle L_{a}, R_{a}: a \in S\right\rangle$.

Proof. We proceed by induction to see that the degree of $L_{x}$ and $R_{x}$ is $\leq \delta(x)$. The case $\delta(x)=-\infty$ is trivial. If $\delta(x)=0$ then $0 \neq x \in F$ and therefore $\delta\left(L_{x}\right)=0=\delta\left(R_{x}\right)$. Now let $x$ be a monomial of degree $n>1$, so $x=x_{1} x_{2}$ with $\delta\left(x_{i}\right)<\delta(x)$. By induction $\delta\left(L_{x_{1}}\right)<\delta(x)$, and therefore $x=a x_{0}$ or $x=x_{0} a$ with $a \in S$ and $\delta\left(x_{0}\right)<\delta(x)$. By Lemma 4.2 (i and ii) and by the hypothesis of induction we get $\delta\left(L_{x}\right), \delta\left(R_{x}\right) \leq \delta(x)$. Finally, since $x=L_{x}(1)=R_{x}(1)$, it follows that $\delta(x) \leq \delta\left(L_{x}\right), \delta\left(R_{x}\right)$.

Proposition 4.5. $A$ is an irreducible $\mathrm{T}(A)$-module and $\mathrm{T}(A)=\mathrm{T}^{\prime}(A)$ $\oplus F$ id, with $\mathrm{T}^{\prime}(A)=[\mathrm{T}(A), \mathrm{T}(A)]$ a semisimple Lie algebra.

Proof. By Lemma 4.4, the multiplication algebra of $A$ is generated by the left and right multiplication maps $L_{a}, R_{a}$ for $a \in \mathrm{~N}_{\mathrm{alt}}(A)$. Therefore, any $\mathrm{T}(A)$-submodule is an ideal, hence $A$ irreducible. Since $A$ is irreducible and faithful, $\mathrm{T}^{\prime}(A)$ is semisimple and $\mathrm{T}(A)$ is the direct sum of $\mathrm{T}^{\prime}(A)$ and the center [19, p. 47]. But any element in the center commutes with the multiplication algebra of $A$ and therefore lives in the centroid of $A$. Since $A$ is simple and $F$ is algebraically closed, we conclude that the center is $F$ id.

Recall that a Malcev algebra is semisimple if 0 is the only Abelian ideal [24].

Proposition 4.6. $\quad \mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ is a semisimple Malcev algebra.
Proof. Let $I$ be an ideal of $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ and consider $T_{I}=$ $\operatorname{span}_{F}\left\langle L_{a}, R_{a}, D_{a, c}: a \in I, c \in \mathrm{~N}_{\text {alt }}^{\prime}(A)\right\rangle$. By Lemma 4.2 (iv), $T_{I} \subseteq T^{\prime}(A)$. Moreover, Part (v) of the same lemma shows that $\left[L_{a}, R_{b}\right]=\left[R_{a}, L_{b}\right] \in T_{I}$ if $a \in I$ and $b \in \mathrm{~N}_{\text {alt }}^{\prime}(A)$. Then, by Part (iv), it follows that $\left[L_{a}, L_{b}\right.$ ], $\left[R_{a}, R_{b}\right] \in T_{I}$, too. Finally, $D_{a, c}(b) \in I$ by (v), so $\left[D_{a, c}, L_{b}\right]=L_{D_{a, c}(b)}$, $\left[D_{a, c}, R_{b}\right]=R_{D_{a, c}(b)} \in T_{I}$. Therefore $T_{I}$ is an ideal of $T^{\prime}(A)$. By the semisimplicity of $T^{\prime}(A)$ we must have $\left[T_{I}, T_{I}\right]=T_{I}$. In particular, $I=$ $T_{I}(1)=\left[T_{I}, T_{I}\right](1)=[I, I]$ and therefore the only abelian ideal of $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ is 0 , so $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ is semisimple.

In a Malcev algebra $M$ the subspace generated by the Jacobians is an ideal of $M$ denoted by $J(M, M, M)$. The subspace $N(M)=\{x \in$ $M: J(x, M, M)=0\}$ is also an ideal and is called the $J$-nucleus of $M$. It is well-known that $N(M) J(M, M, M)=0$. In fact, any finite dimensional semisimple Malcev algebra $M$ over a perfect field of characteristic not two can be decomposed as $M=N(M) \oplus J(M, M, M)$ with $N(M)$ a semisimple Lie algebra and $J(M, M, M)$ the direct sum of simple non-Lie Malcev algebras. If the field has characteristic 0 then $N(M)$ is the direct sum of simple Lie algebras, by [16, Theorem 5.3].

Proposition 4.7. Let $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)=\oplus_{i} N_{i}^{\prime}$ be the decomposition of $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ as the direct sum of ideals that are simple Malcev algebras, and let $A_{i}=$ $\operatorname{alg}\left\langle N_{i}^{\prime}, 1\right\rangle$. Then, $A_{i}$ is a simple unital algebra generated by $\mathrm{N}_{\text {alt }}\left(A_{i}\right)=F 1+$ $N_{i}^{\prime}$, and $A \cong \otimes_{i} A_{i}$.

Proof. Given $a \in N_{i}^{\prime}$ and $b \in N_{j}^{\prime}$ with $i \neq j$, then by Lemma 4.2(v) we have $D_{a, b}=3\left[L_{a}, R_{b}\right]$ and $D_{a, b}\left(\mathrm{~N}_{\text {alt }}(A)\right)=0$. Since $A$ is generated by $\mathrm{N}_{\text {alt }}(A)$, it follows that $\left[L_{a}, R_{b}\right]=0$. By Lemma 4.2(iv), we also get [ $\left.L_{a}, L_{b}\right]=\left[R_{a}, R_{b}\right]=0$. By Lemma 4.4, the left and right multiplication operators by elements of $A_{i}$ commute with those by elements of $A_{j}$. Therefore, we have an epimorphism $\varphi: \otimes_{i} A_{i} \rightarrow A$ given by the multiplication of the factors. Consider the ideals $T_{N_{i}^{\prime}}$ of $T^{\prime}(A)$ as in the proof of Proposition 4.6. Since $T^{\prime}(A)$ is semisimple so is $T_{N_{i}^{\prime}}$. The subalgebra $A_{i}$ is a $T_{N_{i}^{\prime}}$-module, and by Weyl's theorem it is completely reducible. In fact, by Lemma 4.4 any submodule is an ideal and the converse. Thus $A_{i}$ is the direct sum of simple (unital) ideals. Fix $A_{i}^{\prime}$ to be one of these simple ideals. Clearly $\Pi_{i} A_{i}^{\prime} \subseteq A$ is a $T(A)$-submodule. By irreducibility it follows that $A=\Pi_{j} A_{j}^{\prime}$. Any other simple ideal $A_{i}^{\prime \prime}$ in the decomposition of $A_{i}$ verifies $A_{i}^{\prime \prime}=A A_{i}^{\prime \prime}=\left(\prod_{j \neq i} A_{j}^{\prime}\right) A_{i}^{\prime} A_{i}^{\prime \prime}=0$. So, $A_{i}=A_{i}^{\prime}$ is a central simple algebra as well as $\otimes_{i} A_{i}$, and consequently $\varphi$ is an isomorphism. Finally, we observe that $\sum_{i} \mathrm{~N}_{\text {alt }}\left(A_{i}\right) \subseteq \mathrm{N}_{\text {alt }}(A) \subseteq F 1+\sum_{i} N_{i}^{\prime}$ implies $\mathrm{N}_{\text {alt }}\left(A_{i}\right)=$ $F 1+N_{i}^{\prime}$.

This proposition allows us to distinguish two cases, algebras in which $\mathrm{N}_{\text {alt }}^{\prime}$ is a simple Lie algebra and algebras in which $\mathrm{N}_{\text {alt }}^{\prime}$ is a simple non-Lie Malcev algebra.

Proposition 4.8. If $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ is a simple Lie algebra, then $A$ is a simple associative algebra.

Proof. Since $J(a, c, b)=6(a, c, b)$ for any $a, b, c \in \mathrm{~N}_{\mathrm{alt}}(A)[27,37]$, the hypothesis implies that $(a, b, c)=0$ and thus $D_{a, b}(c)=\operatorname{ad}_{[a, b]}(c)=$ [ $[a, b], c]$ by Lemma 4.2. Since $\mathrm{N}_{\text {alt }}^{\prime}(A)$ is a simple Lie algebra, any derivation of $\mathrm{N}_{\text {alt }}^{\prime}(A)$ has the form $\mathrm{ad}_{[a, b]}$; thus, we obtain an epimorphism from the derivations of $A$ onto the derivations of $\mathrm{N}_{\text {alt }}^{\prime}(A)$ that is in fact an isomorphism because $A$ is generated by $\mathrm{N}_{\text {alt }}(A)$. Given $a \in \mathrm{~N}_{\text {alt }}^{\prime}(A)$, we
denote by $D_{a}$ the unique derivation of $A$ that restricts to $\operatorname{ad}_{a}$ over $\mathrm{N}_{\text {alt }}^{\prime}(A)$. It is not difficult to check that $\operatorname{span}_{F}\left\langle D_{a}-\mathrm{ad}_{a}: a \in \mathrm{~N}_{\text {alt }}^{\prime}(A)\right\rangle$ is an ideal of $T^{\prime}(A)$ that kills $\mathrm{N}_{\text {alt }}(A)$. Since $T^{\prime}(A)$ is semisimple then the subspace killed by an ideal is a submodule of $A$ and, by irreducibility, it must be all of $A$. Therefore, $\mathrm{ad}_{a}=D_{a}$ is a derivation. But $\left(L_{a}-R_{a}, T_{a}+R_{a},-L_{a}-\right.$ $\left.T_{a}\right),\left(L_{a}-R_{a}, L_{a}-R_{a}, L_{a}-R_{a}\right) \in \operatorname{Tder}(R)$ implies $\left(0,3 R_{a},-3 L_{a}\right) \in$ $\operatorname{Tder}(A)$ which can be written as $(x, a, y)=0$. Thus $(a, x, y)=(x, y, a)=$ $-(x, a, y)=0$ and $a \in \mathrm{~N}(A)$. Since $A$ is generated by $\mathrm{N}_{\text {alt }}^{\prime}(A)$ and $\mathrm{N}(A)$ is a subalgebra, this finishes the proof.
Now we will assume that $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ is a simple non-Lie Malcev algebra, that is, $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)=C^{\prime}$ where $C=\operatorname{Zor}(F)$ denotes the split octonion algebra, which is the only octonion algebra up to isomorphism over an algebraically closed field.

## Proposition 4.9. We have that

(i) $\operatorname{Der}(A)=\operatorname{span}_{F}\left\langle D_{a, b}: a, b \in \mathrm{~N}_{\text {alt }}^{\prime}(A)\right\rangle$ is a simple Lie algebra of type $G_{2}$.
(ii) $\operatorname{span}_{F}\left\langle D_{a, b}, \operatorname{ad}_{a}: a, b \in \mathrm{~N}_{\mathrm{alt}}^{\prime}(A)\right\rangle$ is a simple Lie algebra of type $B_{3}$.
(iii) $\quad T^{\prime}(A)$ is a simple Lie algebra of type $D_{4}$.
(iv) The maps $\zeta, \eta: T^{\prime}(A) \rightarrow T^{\prime}(A)$ given by $\zeta: L_{a} \mapsto T_{a}, R_{a} \mapsto-R_{a}$, $D_{a, b} \mapsto D_{a, b}$, and $\eta: L_{a} \mapsto-L_{a}, R_{a} \mapsto T_{a}, D_{a, b} \mapsto D_{a, b}$ can be identified with the automorphisms corresponding to the permutations (13) and (14) of the Dynkin diagram of $D_{4}$.

Proof. Any derivation of $A$ induces a derivation of $\mathrm{N}_{\text {alt }}^{\prime}(A)$, and since $A$ is generated by $\mathrm{N}_{\mathrm{alt}}(A)$ then any two derivations that agree on $\mathrm{N}_{\mathrm{alt}}^{\prime}(A)$ must be equal. It is known that $\operatorname{Der}\left(\mathrm{N}_{\mathrm{alt}}^{\prime}(A)\right)=\left\langle\left. D_{a, b}\right|_{\mathrm{Natr}_{\prime}^{\prime}(A)}: a, b \in\right.$ $\left.\mathrm{N}_{\mathrm{alt}}^{\prime}(A)\right\rangle$; therefore, this yields the first part of (i). Consider a standard basis $\left\{e_{1}, e_{2}, u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}\right\}$ of $C$ [11] and $f=e_{1}-e_{2}$. Relative to the subalgebra $H=\operatorname{span}_{F}\left\langle D_{u_{1}, v_{1}}, D_{u_{2}, v_{2}}, L_{f}, R_{f}\right\rangle, T^{\prime}(A)$ decomposes as the direct sum of root spaces in the way given in Table I (note that the elements in the right column are not 0 by evaluating them in appropriate elements of the standard basis).

Therefore, $H$ is a Cartan subalgebra of $T^{\prime}(A)$ and the root system corresponds to a simple Lie algebra of type $D_{4}$. The automorphism $\zeta$ leaves $H$ invariant and permutes the root spaces corresponding to $\alpha_{1}$ and $\alpha_{3}$, but fixes those corresponding to $\alpha_{2}$ and $\alpha_{4}$. Thus, $\zeta$ can be thought of as the automorphism (13) of the Dynkin diagram of $D_{4}$. Similarly, $\eta$ corresponds to (14).

The subalgebra $\operatorname{span}_{F}\left\langle D_{a, b}, \mathrm{ad}_{a}: a, b \in \mathrm{~N}_{\mathrm{alt}}^{\prime}(A)\right\rangle$ is the algebra fixed by the automorphism $\zeta \eta \zeta$ which corresponds to the automorphism (34) of the Dynkin diagram. This algebra is known to be a simple Lie algebra of type

TABLE I

| Root | Element that spans the root space |
| :--- | :--- |
| $\alpha_{1}$ | $L_{u_{3}}-R_{u_{3}}-D_{e_{1}, u_{3}}$ |
| $\alpha_{2}$ | $D_{u_{2}, v_{3}}$ |
| $\alpha_{3}$ | $L_{u_{3}}+2 R_{u_{3}}-D_{e_{1}, u_{3}}$ |
| $\alpha_{4}$ | $2 L_{u_{3}}+R_{u_{3}}+D_{e_{1}, u_{3}}$ |
| $\alpha_{1}+\alpha_{2}$ | $L_{u_{2}}-R_{u_{2}}-D_{e_{1}, u_{2}}$ |
| $\alpha_{2}+\alpha_{3}$ | $L_{u_{2}}+2 R_{u_{2}}-D_{e_{1}, u_{2}}$ |
| $\alpha_{2}+\alpha_{4}$ | $2 L_{u_{2}}+R_{u_{2}}+D_{e_{1}, u_{2}}$ |
| $\alpha_{1}+\alpha_{2}+\alpha_{3}$ | $2 L_{v_{1}}+R_{v_{1}}+D_{e_{2}, v_{1}}$ |
| $\alpha_{1}+\alpha_{2}+\alpha_{4}$ | $L_{v_{1}}+2 R_{v_{1}}-D_{e_{2}, v_{1}}$ |
| $\alpha_{2}+\alpha_{3}+\alpha_{4}$ | $L_{v_{1}}-R_{v_{1}}-D_{e_{2}, v_{1}}$ |
| $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ | $D_{v_{1}, u_{3}}$ |
| $\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}$ | $D_{v_{1}, u_{2}}$ |
| Negative roots | Change $\alpha_{i}$ by $-\alpha_{i}, e_{1}$ by $e_{2}$ and |
|  | $u_{i}$ by $v_{i}$ in the previous rows |

$B_{3}$. Finally, $\operatorname{Der}(A)=\operatorname{span}_{F}\left\langle D_{a, b}: a, b \in \mathrm{~N}_{\text {alt }}^{\prime}(A)\right\rangle$ is the algebra fixed by the automorphism $\eta \zeta$, which corresponds to (134) as an automorphism of the Dynkin diagram, therefore it is a Lie algebra of type $G_{2}$.

Let $\left\{\alpha_{1}, \ldots, \alpha_{4}\right\}$ be a basis of a root system of $D_{4}$ as in the above table and $\lambda_{1}, \ldots, \lambda_{4}$ be the corresponding fundamental weights. If $\lambda$ is a dominant weight, we will denote by $V(\lambda)$ the irreducible module of highest weight $\lambda$.

Proposition 4.10. The Lie algebra $A$ is isomorphic as a $D_{4}$-module to $V\left(n \lambda_{1}\right)$ for some $n$.

Proof. Since $F 1$ is a trivial submodule for $B_{3}$, the branching rules for the inclusion $B_{3} \subseteq D_{4}$ [14, Theorem 8.1.4] imply that there exists an $n$ such that $A \cong V\left(n \lambda_{1}\right)$.

Since $C \cong V\left(\lambda_{1}\right)$, this proposition allows us to identify $A$ with the submodule of $C \otimes_{F} \cdots \otimes_{F} C$ generated by $v_{0} \otimes \cdots \otimes v_{0}$ with $v_{0}$ the highest weight of $C$. This submodule obviously lies in $\operatorname{Sym}^{n}(C)$ and it is killed by the contraction $\operatorname{Sym}^{n}(C) \rightarrow \operatorname{Sym}^{n-2}(C), x \otimes \cdots \otimes x \mapsto n(x) x$ $\otimes \cdots \otimes x$. In fact, this is the kernel of this contraction [13, Example 19.21].

Finally, in order to prove Theorem 4.1 we have to determine the product on $A$. This product is not a $D_{4}$-homomorphism of $V\left(n \lambda_{1}\right) \otimes_{F} V\left(n \lambda_{1}\right) \rightarrow$ $V\left(n \lambda_{1}\right)$ since that would imply that $D_{4}$ acts as derivations, which is not true. Given an automorphism $\xi$ of $D_{4}$ and $V$ a module, we denote by $V_{\xi}$ the vector space $V$ but with a new action given by $d \circ x=\xi(d) x$ for all
$d \in D_{4}$ and $x \in V$. Then (2) implies that

$$
\begin{aligned}
V\left(n \lambda_{1}\right)_{\zeta} \otimes_{F} V\left(n \lambda_{1}\right)_{\eta} & \rightarrow V\left(n \lambda_{1}\right) \\
x \otimes y & \mapsto x y
\end{aligned}
$$

is a $D_{4}$-homomorphism. Since $V\left(n \lambda_{1}\right)_{\eta} \cong V\left(n \lambda_{3}\right)$ and $V\left(n \lambda_{1}\right)_{\eta} \cong V\left(n \lambda_{4}\right)$, the product is a $D_{4}$-homomorphism from $V\left(n \lambda_{3}\right) \otimes_{F} V\left(n \lambda_{4}\right)$ onto $V\left(n \lambda_{1}\right)$. However, since

$$
\operatorname{dim}\left(\operatorname{Hom}_{D_{4}}\left(V\left(n \lambda_{3}\right) \otimes_{F} V\left(n \lambda_{4}\right), V\left(n \lambda_{1}\right)\right)\right)=1
$$

[25], then we only have a possibility that is fulfilled by the induced product of $\operatorname{Sym}^{n}(C)$. This proves Theorem 4.1.

Remark 4.11. The commutative nucleus $K\left(T_{n}(C)\right)$ is killed by $a d_{a}$ for any $a$, so it is killed by the action of $B_{3}$. Since the decomposition of $V\left(n \lambda_{1}\right)$ as a $B_{3}$-module is multiplicity free this implies that $K\left(T_{n}(C)\right)=F$.
The generalized alternative nucleus $\mathrm{N}_{\text {alt }}\left(T_{n}(C)\right)$ is the direct sum of simple Malcev ideals. One of these ideals is $F$ and the other is $C^{\prime}$. Since any other ideal would be killed by the action of $B_{3}$ we have that $\mathrm{N}_{\text {alt }}\left(T_{n}(C)\right)=C$. In particular, $N\left(T_{n}(C)\right)=F$.

If $A$ is as in Theorem 4.1 and $A=A_{1} \otimes_{F} \cdots \otimes_{F} A_{m}$ is the decomposition as a tensor product given by the theorem, then Proposition 3.3 implies that

$$
\mathrm{N}_{\mathrm{alt}}(A)=\mathrm{N}_{\mathrm{alt}}\left(A_{1}\right) \otimes_{F} F \otimes_{F} \cdots \otimes_{F}+\cdots+F \otimes_{F} \cdots \otimes_{F} F \otimes_{F} \mathrm{~N}_{\mathrm{alt}}\left(A_{m}\right) .
$$

As in Corollary 3.10, this implies that the decomposition is unique up to order and isomorphism of the factors.

## 5. CONNECTIONS WITH STRUCTURABLE ALGEBRAS

In [6] Allison classified the finite dimensional central simple structurable algebras over fields of characteristic zero. Later, Smirnov [33, 34] showed that there was a gap in the list provided by Allison, and one has to include in the previous list the algebra of symmetric octonion tensors [7], a 35-dimensional algebra which in our notation corresponds to $T_{2}(C)$.

We want to analyze the connection between structurable algebras and algebras generated by its generalized alternative nucleus. Recall from [6] that any structurable algebra $\left(A,{ }^{-}\right)$is skew-alternative; that is, the skewsymmetric elements for the involution lie in the generalized alternative nucleus. In his work, Allison first reduces the classification of finite dimensional central simple (as algebras with involution) structurable alge-
bras to the case in which the algebra is central simple, so up to a scalar extension one may assume that the field is algebraically closed. After that, he splits the proof into two cases, depending on whether or not the algebra is generated by the skew-symmetric elements. If the algebra is not generated by the skew-symmetric elements (Case 1), then one obtains either a central simple Jordan algebra with the identity as involution, an algebra constructed from a nondegenerate Hermitian form on a module over a unital central simple associative algebra with involution, or an algebra with involution constructed from an admissible triple. The second case (Case 2), where the Kantor-Smirnov structurable algebra is missed, deals with algebras generated by the skew-symmetric elements. In this case Allison and Smirnov obtain that the only possibilities are either a central simple associative algebra with involution, the tensor product of an octonion algebra with a composition algebra, or the Kantor-Smirnov structurable algebra.

Since the skew-symmetric elements lie in the generalized alternative nucleus, then Case 2 falls naturally into our context. So we can use Theorem 4.1 to give a new proof of this case. We will assume that $A$ is a finite dimensional central simple structurable algebra, over an algebraically closed field of characteristic zero, which is generated by the skew-symmetric elements. The key point is Lemma 14 in Allison's paper which establishes that $A$ is spanned by $\left\{s, s^{2}: s\right.$ is skew-symmetric $\}$. Let us write $A=A_{1} \otimes_{F} \cdots \otimes_{F} A_{m}$ as given by Theorem 4.1. Since for any skewsymmetric element $s$,

$$
\begin{gathered}
s, s^{2} \in \sum_{i, j} F \otimes_{F} \cdots \otimes_{F} F \otimes_{F} A_{i} \otimes_{F} F \otimes_{F} \cdots \\
\otimes_{F} F \otimes_{F} A_{j} \otimes_{F} F \otimes_{F} \cdots \otimes_{F} F,
\end{gathered}
$$

then $m \leq 2$. If $m=1$, then $A$ is either associative or isomorphic to $T_{n}(C)$ with $n \geq 2$. Since $\mathrm{N}_{\text {alt }}\left(T_{n}(C)\right) \cong C$ then, in the latter case, Lemma 14 also implies that $\operatorname{dim} T_{n}(C)=\operatorname{dim} V\left(n \lambda_{1}\right) \leq 35$, so $n \leq 2$, and we obtain the octonions and the Kantor-Smirnov structurable algebra. Finally, if $m=2$ then $A=A_{1} \otimes_{F} A_{2}$ and Lemma 14 implies that $A=A_{1} \otimes_{F} F+F \otimes_{F} A_{2}$ $+\mathrm{N}_{\mathrm{alt}}\left(A_{1}\right) \otimes_{F} \mathrm{~N}_{\mathrm{alt}}\left(A_{2}\right)$. In particular, $A_{1}$ and $A_{2}$ are alternative, so $A$ is either the tensor product of two octonion algebras or the tensor product of an octonion algebra and an associative algebra. In the second case, the involution of $A$ preserves the associative nucleus and its centralizer so it preserves each factor in the tensor product. If $S_{i}$ denotes the skew-symmetric elements of $A_{i}$, then Lemma 14 implies that $A=A_{1} \otimes_{F} F+F \otimes_{F}$ $A_{2}+S_{1} \otimes_{F} S_{2}$, so the set of symmetric elements of $A_{i}$ must be $F$ and $A_{i}$ are quadratic algebras. Therefore the associative factor must be isomorphic to the two-by-two matrices, which is isomorphic to the quaternions.

## 6. INVARIANT BILINEAR FORMS

A symmetric bilinear form (, ) : $A \times A \rightarrow F$ on an $F$-algebra $A$ is said to be associative if $(x y, z)=(x, y z)$ for any $x, y, z \in A$. If the algebra has an involution $x \mapsto \bar{x}$ with $(x, y)=(\bar{x}, \bar{y})$, the new bilinear form $\langle x, y\rangle=$ $(\bar{x}, y)$ is symmetric and verifies $\langle\bar{x}, \bar{y}\rangle=\langle x, y\rangle$ and $\langle x y, z\rangle=\langle y, \bar{z} z\rangle$; that is, $\langle$,$\rangle is invariant. In [33], Schafer proves that, up to scalar$ multiples, there is only one invariant symmetric bilinear form on a finite dimensional central simple structurable algebra over a field of characteristic zero. That invariant form was constructed by Allison in [6]. In this section we construct an associative symmetric bilinear form on any algebra generated by its generalized alternative nucleus.

Proposition 6.1. Let A be an algebra generated by its generalized alternative nucleus; then the symmetric bilinear form

$$
(x, y)=\operatorname{trace}\left(L_{x} L_{y}\right)
$$

is associative. If $A$ is unital, then $(x, y)=\operatorname{trace}\left(L_{x y}\right)$.
Proof. We prove that $(x y, z)=(y, z x)$ by induction on the degree of $x$ on $\mathrm{N}_{\mathrm{alt}}(A)$. If $x=a \in \mathrm{~N}_{\mathrm{alt}}(A)$ then

$$
\begin{aligned}
\operatorname{trace}\left(L_{a y} L_{z}\right) & =\operatorname{trace}\left(L_{a} L_{y} L_{z}+\left[R_{a}, L_{y}\right] L_{z}\right) \\
& =\operatorname{trace}\left(L_{y} L_{z} L_{a}+\left[R_{a}, L_{y}\right] L_{z}\right) \\
& =\operatorname{trace}\left(L_{y} L_{z a}-L_{y}\left[L_{z}, R_{a}\right]+\left[R_{a}, L_{y}\right] L_{z}\right) \\
& =\operatorname{trace}\left(L_{y} L_{z a}+\left[R_{a}, L_{y} L_{z}\right]\right) \\
& =\operatorname{trace}\left(L_{y} L_{z a}\right)
\end{aligned}
$$

where we have used Lemma 4.2. Thus $(a y, z)=(y, z a)$ and we get the first step in the induction. Now suppose that $x=a x_{0}$ or $x=x_{0} a$ with $a \in$ $\mathrm{N}_{\text {alt }}(A)$ and that $\left(x_{0} y, z\right)=\left(y, z x_{0}\right)$ for any $y, z$. In the first case it follows that

$$
\begin{aligned}
(x y, z) & =\left(\left(a x_{0}\right) y, z\right)=\left(a\left(x_{0} y\right), z\right)+\left(\left(a, x_{0}, y\right) z\right) \\
& =\left(y,(z a) x_{0}\right)+\left(\left(a, x_{0}, y\right) z\right) \\
& =(y, z x)+\left(y,\left(z, a, x_{0}\right)\right)+\left(\left(a, x_{0}, y\right) z\right) \\
& =(y, z x)-\left(y,\left(a, z, x_{0}\right)\right)+\left(\left(x_{0}, y, a\right) z\right) \\
& =(y, z x)-\left(y,\left[R_{x_{0}}, L_{a}\right](z)\right)+\left(\left[R_{a}, L_{x_{0}}\right](y), z\right) \\
& =(y, z x)-\left(\left[R_{a}, L_{x_{0}}\right](y), z\right)+\left(\left[R_{a}, L_{x_{0}}\right](y), z\right)=(y, z x) .
\end{aligned}
$$

The second case is analogous. This completes the induction. If $A$ is unital, then $(x, y)=(x y, 1)=\operatorname{trace}\left(L_{x y}\right)$.

We denote the radical of this bilinear form by Rad. Since the form is associative, Rad is an ideal. We remark that if this form is nondegenerate then it is, up to scalar multiples, the only nondegenerate associative bilinear form on $A$ [9].

Corollary 6.2. If (, ) is nondegenerate then $A$ is the direct sum of algebras as in Theorem 4.1.

Proof. Let $I$ be an ideal with $I^{2}=0$ and $x \in I$. Given $y \in A$, $x(y(x(y A))) \subseteq x I=0$; thus $L_{x} L_{y}$ is nilpotent and $(x, y)=0$. Since $\mathrm{Rad}=$ 0 , we obtain $I=0$. By [31, Theorem 2.6], $A$ is the direct sum of ideals $A_{i}$ that are simple unital algebras. Moreover, $\mathrm{N}_{\mathrm{alt}}(A)=\mathrm{N}_{\mathrm{alt}}\left(\oplus_{i} A_{i}\right)=$ $\oplus_{i} \mathrm{~N}_{\mathrm{alt}}\left(A_{i}\right)$ implies that $A_{i}=\operatorname{alg}\left\langle\mathrm{N}_{\mathrm{alt}}\left(A_{i}\right)\right\rangle$. I

Remark 6.3. Let $A$ be generated by $\mathrm{N}_{\text {alt }}(A)$ and suppose that the associative bilinear form $(x, y)=\operatorname{trace}\left(L_{x} L_{y}\right)$ is nondegenerate. If $A$ is unital, the corollary yields the classification of $A$. In general, we consider the unital algebra $A^{\#}=A \oplus F 1$, which contains $A$ as an ideal. Since the bilinear forms on $A$ and $A^{\#}$ agree, it follows that $A^{\#}=A \oplus F e$ with $F e$ the orthogonal complement of $A$, which is an ideal. Now $e=\alpha 1+x$ with $x \in A$, and $\alpha \neq 0$ implies that $0 \neq e^{2} \in F e$, and we can assume that $e$ is an idempotent. Therefore trace $\left(L_{e} L_{e}\right)=1$ and the bilinear form on $A^{\#}$ is nondegenerate. By the corollary, $A^{\#}$ is the direct sum of simple unital ideals, but $A$ is an ideal and thus it is the sum of some of these ideals. This implies that $A$ must be unital if the bilinear form is nondegenerate.

## REFERENCES

1. A. A. Albert, On the Wedderburn norm condition for cyclic algebras, Bull. Amer. Math. Soc. 37 (1931), 301-312.
2. A. A. Albert, A construction of non-cyclic normal division algebras, Bull. Amer. Math. Soc. 38 (1932), 449-456.
3. A. A. Albert, Tensor products of quaternion algebras, Proc. Amer. Math. Soc. 35 (1972), 65-66.
4. B. N. Allison, Structurable division algebras and relative rank one simple Lie algebras, Can. Math. Soc. Conf. Proc. 5 (1986), 149-156.
5. B. N. Allison, Tensor products of composition algebras, Albert forms and some exceptional simple Lie algebras, Trans. Amer. Math. Soc. 306, No. 2 (1988), 667-695.
6. B. N. Allison, A class of nonassociative algebras with involution containing the class of Jordan algebras, Math. Ann. 237 (1978), 133-156.
7. B. N. Allison and J. R. Faulkner, The algebra of symmetric octonion tensors, Nova J. Algebra Geom. 2, No. 1 (1993), 47-57.
8. R. Brauer, Untersuchungen über die arithmetischen Eigenschaften von Gruppen bilinearer Substitutionen II, Math. Z. 31 (1929), 733-747.
9. M. Cabrera, J. Martinez, and A. Rodriguez, Structurable $H^{*}$-algebras, J. Algebra 147 (1992), 19-62.
10. A. Elduque, On semisimple Malcev algebras, Proc. Amer. Math. Soc. 107, No. 1 (1989), 73-82.
11. A. Elduque and J. M. Pérez-Izquierdo, Composition algebras with associative bilinear form, Comm. Algebra 24, No. 3 (1996), 1091-1116; 107, No. 1 (1989), 73-82.
12. R. Elman and T.-Y. Lam, Pfister forms and K-theory of fields, J. Algebra 23 (1972), 181-213.
13. W. Fulton and J. Harris, "Representation Theory, a First Course," Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
14. R. Goodman and N. R. Wallach, "Representations and Invariants of the Classical Groups," Encyclopedia of Mathematics and Its Applications, Vol. 68, Cambridge University Press, Cambridge, U.K., 1998.
15. D. Hoffmann, Twisted Pfister forms, Doc. Math. 1, No. 3 (1996), 67-102.
16. J. Humphreys, "Introduction to Lie Algebras and Representation Theory," Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York/Berlin, 1978.
17. N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 55-80.
18. N. Jacobson, "Lie Algebras," Dover, New York, 1979.
19. N. Jacobson, Some applications of Jordan norms to involutorial simple associative algebras, Adv. in Math. 48 (1983), 149-165.
20. M.-A. Knus, "Quadratic and Hermitian Forms over Rings," Grundlehren der Mathematischen Wissenschaften, Vol. 294, Springer-Verlag, Berlin, 1991.
21. M.-A. Knus, Sur la forme d'Albert et le produit tensoriel de deux algébres de quaternions, Bull. Soc. Math. Belg. 45, No. 3 (1993), 332-337.
22. M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, "The Book of Involutions," Colloquium Publications, Vol. 44, American Mathematical Society, Providence, RI, 1998.
23. T.-Y. Lam, "The Algebraic Theory of Quadratic Forms," Mathematics Lecture Notes Series, Benjamin, Reading, MA, 1973.
24. E. N. Kuz'min, Mal'tsev algebras and their representations, Algebra and Logic 14 (1968), 233-244.
25. P. Littelmann, On spherical double cones, J. Algebra 166 (1994), 142-157.
26. O. Loos, Über eine beziehung zwischen Malcev-Algebren und Lie-Triplelsystemen, Pacific J. Math. 18 (1966), 553-562.
27. H. C. Myung, "Malcev-admissible Algebras," Progress in Mathematics, Vol. 64, Birkhäuser, Basel, 1986.
28. J. M. Pérez-Izquierdo, manuscript in preparation.
29. A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458.
30. A. A. Sagle, Simple Malcev algebras over fields of characteristic zero, Pacific J. Math. 12 (1962), 1057-1078.
31. R. D. Schafer, "An Introduction to Nonassociative Algebras," Academic Press, New York, 1966.
32. R. D. Schafer, Invariant forms on central simple structurable algebras, J. Algebra $\mathbf{1 2 2}$ (1981), 112-117.
33. O. N. Smirnov, An example of a simple structurable algebra, Algebra and Logic 29 (1990), 331-336.
34. O. N. Smirnov, Simple and semisimple structurable algebras, Algebra and Logic 29 (1990), 377-395.
35. A. Thedy, Generalizations of commutative and alternative rings, papers from the "Open House for Algebraists," pp. 27-30, Mat. Institut., Aarhus University, 1970.
36. W. Waterhouse, "Introduction to Affine Group Schemes," Lecture Notes in Mathematics, Vol. 66, Springer-Verlag, New York, 1979.
37. K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, and A. I. Shirshov, "Rings that Are Nearly Associative," Nauka, Moscow, 1978 [in Russian]; Academic Press, New York, 1982 [Engl. transl.].

[^0]:    ${ }^{1}$ The second author thanks DGES for support from grants PB-1291-C03-02 and API00/B04.

