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1. INTRODUCTION

Let C � C be the tensor product of two composition algebras over a1 F 2
Ž . � � � �field F with char F � 2. Brauer 8 and Albert 1�3 seemed to be the

first mathematicians who investigated the tensor product of two quater-
nion algebras. Later their results were generalized to this more general

1 The second author thanks DGES for support from grants PB-1291-C03-02 and API-
00�B04.

41
0021-8693�01 $35.00

Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.



MORANDI, PEREZ-IZQUIERDO, AND PUMPLUN´ ¨42

� �situation by Allison 4�6 and to biquaternion algebras over rings by Knus
� �20 .

In Section 2 we give some new results on the Albert form of these
algebras. We also investigate the F-quadric defined by this Albert form,

� �generalizing a result of Knus 21 .
Since Allison regarded the involution � � � � � as an essential part1 2

of the algebra C � C � C , he only studied automorphisms of C which1 F 2
Ž .are compatible with � . In Section 3 we determine, if char F � 2, the

automorphism group of a tensor product of octonion algebras. We also
show that any automorphism of such a tensor product is compatible with
the canonical tensor product involution. As a consequence, we determine
the forms of a tensor product of octonion algebras. Furthermore, we show
that any such algebra does not satisfy the Skolem�Noether Theorem.

Our results of Section 3 arise from a study of the generalized alternative
nucleus of an algebra, since a tensor product of octonion algebras is
generated by its generalized alternative nucleus. In Section 4, using Lie
algebra-theoretic techniques, we classify finite dimensional simple unital
algebras over an algebraically closed field of characteristic 0 which are
generated by their generalized alternative nucleus, proving that such an
algebra is the tensor product of a simple associative algebra and a
symmetric tensor product of octonion algebras. This result is used in
Section 5 to sketch a variation of the Allison�Smirnov proof of the
classification of finite dimensional central simple structurable algebras
over a field of characteristic 0.

Finally, in Section 6, we prove that if A is generated by its generalized
Ž . Ž .alternative nucleus, then the associated bilinear form x, y � trace L Lx y

is associative.
Let F be a field and C a unital, nonassociative F-algebra. Then S is a

composition algebra if there exists a nondegenerate quadratic form n: C �
Ž . Ž . Ž .F such that n x � y � n x n y for all x, y � C. The form n is uniquely

determined by these conditions and is called the norm of C. We will write
Ž � �.n � n . Composition algebras only exist in rank 1, 2, 4, or 8 see 17 .C

Those of rank 4 are called quaternion algebras and those of rank 8 octonion
algebras. A composition algebra C has a canonical in�olution � given by
Ž . Ž . Ž .� x � t x 1 � x, where the trace map t: C � F is given by t x �C
Ž .n 1, x .
An example of an eight-dimensional composition algebra is Zorn’s

Ž . Ž � � .algebra of vector matrices Zor F see 22, p. 507 for the definition . The
Ž .norm form of Zor F is given by the determinant and is a hyperbolic form.

Composition algebras are quadratic. That is, they satisfy the identities

x 2� t x x	n x 1 � 0 for all x � C ,Ž . Ž . C

n 1 � 1Ž .C
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2 Ž . 2 Ž .and are alternati�e algebras; i.e., xy � xy y and x y � x xy for all
Ž . Ž . Ž . Ž . Ž .x, y � C. In particular, n x � � x x � x� x and t x 1 � � x 	 x.C

Ž .For any composition algebra D over F with dim D 
 4 and anyF
� � F�, the F-vector space D � D becomes a composition algebra via the
multiplication

u , � u�, � � � uu� 	 �� � � � , � �u 	 �� u�Ž . Ž . Ž . Ž .Ž .

for all u, � , u�, � � � D, with norm

n u , � � n u � �n � .Ž . Ž . Ž .Ž . D D

Ž .This algebra is denoted by Cay D, � . Note that the embedding of D into
Ž .the first summand of Cay D, � is an algebra monomorphism. The norm

Ž . ² :form of Cay D, � is obviously isometric to 1, �� � n . Since twoD
composition algebras are isomorphic if and only if their norm forms are
isometric, we see that if C is a composition algebra whose norm form

² : Ž .satisfies n � 1, �� � n for some D then C � Cay D, � . In particu-C D
Ž . Ž . ² :lar, Zor F � Cay D, 1 for any quaternion algebra D since 1, �1 � nD

is hyperbolic. A composition algebra is split if it contains an isomorphic
copy of F � F as a composition subalgebra, which is the case if and only if
it contains zero divisors. Over algebraically closed fields any composition
algebra of dimension 
 2 is split.

2. ALBERT FORMS

Ž .From now on we consider only the fields F with char F � 2 unless
stated otherwise. It is well known that any norm of a composition algebra
is a 3-fold Pfister form, and conversely any 3-fold Pfister form is the norm
of some composition algebra.

² :� � Ž .Let C be a composition algebra. Define C� � F1 � x � C : t x �
Ž . 4 �n x, 1 � 0 . Then n� � n is the pure norm of C. Note thatC �

C� � x � C : x � 0 or x � F1 and x 2 � F1� 4C C

� x � C : � x � �x .� 4Ž .

Moreover, C is split if and only if its norm n is hyperbolic, two composi-
tion algebras are isomorphic if and only if their norms are isometric, and C
is a division algebra if and only if n is anisotropic.

We first investigate tensor products of two composition algebras. Follow-
ing Albert, we associate to the tensor product C � C � C of two1 F 2

Ž . Ž .composition algebras with dim C � r and n � n the r 	 r � 2 -i i C i 1 2i� ² : �dimensional form n � �1 n of determinant �1. This definition, for1 2
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� �C or C an octonion algebra, was first given by Allison in 5 . In the Witt1 2
Ž .ring W F , obviously this form is equivalent to n � n . Like the norm1 2

form of a composition algebra, this Albert form contains crucial informa-
tion about the tensor product algebra C. For biquaternion algebras, this is

� �well-known 1, Theorem 3; 19, Theorem 3.12 . We introduce some notation
² :and terminology. If q is a quadratic form and if � � 1, �1 is the

hyperbolic plane, then q � q � i� for some anisotropic form q and0 0
integer i. The integer i is called the Witt index of q and is denoted by

Ž .i q . In the proof of the following proposition, we use the notion ofW
Ž � �.linkage of Pfister forms see 12, Section 4 . Recall that two n-fold Pfister

forms q and q are r-linked if there is an r-fold Pfister form h with1 2
q � h � q� for some Pfister forms q�. Finally, we call a two-dimensional1 i i
commutative F-algebra that is separable over F a quadratic etale algebra.´
Note that any quadratic etale algebra either is a quadratic field extension´
of F or is isomorphic to F � F. Part of the following result has been

� �proved in 15, Theorem 5.1 .

PROPOSITION 2.1. Let C and C be octonion algebras o�er F with norms1 2
Ž . �n and n , and let i � i N be the Witt index of the Albert form N � n �1 2 W 1

² : ��1 n .2

Ž .i i � 0 � C and C do not contain isomorphic quadratic etale´1 2
subalgebras.

Ž .ii i � 1 � C and C contain isomorphic quadratic etale subalge-´1 2
bras, but no isomorphic quaternion subalgebras.

Ž .iii i � 3 � C and C contain isomorphic quaternion subalgebras,1 2
but C and C are not isomorphic.1 2

Ž .iv i � 7 � C � C .1 2

� � ² :Proof. By 12, Propositions 4.4 and 4.5 , the Witt index of n � �1 n1 2
r ² :is 2 , where r is the linkage number of n � �1 n . Note that the Witt1 2

² :index of N is one less than the Witt index of n � �1 n since1 2
² :n � � 1 n � � � N. If C � C , then n � n , so i � 7. Conversely,1 2 1 2 1 2

² :if i � 7, then n � � 1 n is hyperbolic, so n � n , which forces1 2 1 2
C � C . If C and C are not isomorphic but contain a common quater-1 2 1 2

Ž .nion algebra Q, then C � Cay Q, � for some i. Therefore, n � n �i i 1 Q
² : ² :1, �� and n � n � 1, � . These descriptions show that n and n1 2 Q 2 1 2
are 2-linked, so i � 3. Conversely, if i � 3, then n and n are 2-linked1 2

²² ::but not isometric. If a, b is a factor of both n and n , then1 2
²² :: ²² :: �n � a, b, c and n � a, b, d for some c, d � F . If Q �1 2

Ž . Ž . Ž .�a, �b , we get C � Cay Q, �c and Cay Q, �d , so C and C con-1 1 2
tain a common quaternion algebra. If C and C contain a common1 2

� � Ž 2 .quadratic etale algebra F t � t � a but no common quaternion algebra,´
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² :then 1, �a is a factor of n and n , which means they are 1-linked. If n1 2 1
and n are 2-linked, then the previous step shows that C and C have a2 1 2
common quaternion subalgebra, which is false. Conversely, if n and n1 2
are 1-linked but not 2-linked, then C and C do not have a common1 2

²² ::quaternion subalgebra, and if a is a common factor to n and n , then1 2
2� � Ž .C and C both contain the etale algebra F t � t � a .´1 2

PROPOSITION 2.2. Let C be an octonion algebra o�er F and C be a1 2
quaternion algebra o�er F, with norms n and n . Again consider the Witt1 2

� ² : �index i of the Albert form N � n � �1 n .1 2

Ž .i i � 0 � C and C do not contain isomorphic quadratic etale´1 2
subalgebras.

Ž .ii i � 1 � C and C contain isomorphic quadratic etale subalge-´1 2
bras, but C is not a quaternion subalgebra of C .2 1

Ž . Ž . �iii i � 3 � C � Cay C , � for a suitable � � F and C is a1 2 2
di�ision algebra.

Ž . Ž . Ž .iv i � 5 � C � Zor F and C � M F .1 2 2

Proof. In the case that both algebras C and C are division algebras,1 2
� �this is an immediate consequence of 15, Lemma 3.2 . If both C and C1 2

are split, then clearly N has Witt index 5. If C is a division algebra and2
Ž .C � Cay C , � for some �, then n is anisotropic and N � � � n �1 2 2 2

² : ² : ² :1, �� � �1 n � 4� � �� n , so N has Witt index 3. Note that2 2
the converse is easy, since if i � 3 then n is isomorphic to a subform of2

² :n , which forces n to be a factor of n . If n � 1, a � n , then1 2 1 1 2
Ž .C � Cay C , �a , so C is a subalgebra of C . If C and C contain a1 2 2 1 1 2

� � Ž 2 .common quadratic etale algebra F t � t � a but C is not a quaternion´ 2
²² ::subalgebra of C , then n and n have a as a common factor, so1 1 2

Ž .i � 1. Finally, if N is isotropic, there are x � C , both skew, with n x �i i 1 1
Ž . Ž . Ž . � � � �n x . Then, as t x � 0 � t x , the algebras F x and F x are2 2 1 1 2 2 1 2

isomorphic, so C and C share a common quadratic etale subalgebra.´1 2
This finishes the proof.

ŽIf C is a biquaternion algebra i.e., C � C � C for two quaternion1 F 2
. � ² : �algebras C and C , then the Albert form n � �1 n is determined up1 2 1 2

� �to similarity by the isomorphism class of the algebra C 19, Theorem 3.12 .
� �Allison generalizes this result 5, Theorem 5.4 to tensor products of

arbitrary composition algebras. However, he always considers the involu-
tion � � � � � as a crucial part of the algebra C � C � C . Allison1 2 1 F 2

Ž . Ž .proves that C � C , � � � and C � C , � � � are isotropic1 F 2 1 2 3 F 4 3 4
algebras if and only if they have similar Albert forms, for the cases that
C ,C are octonion and C , C are quaternion or octonion algebras.1 3 2 4
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Ž . ŽThe fact that any F-algebra isomorphism � : C � C , � � � � C1 F 2 1 2 3
.� C , � � � between arbitrary products of composition algebras yieldsF 4 3 4

� ² : � Ž � ² : � . �an isometry n � �1 n � � n � �1 n for a suitable � � F is1 2 3 4
² :easy to see. Also, since for C � C � C the map , : C � C � F1 F 2

² : Ž . Ž .given by x � x , y � y � n x , y � n x , y is a nondegenerate1 2 1 2 1 1 1 2 2 2
² Ž . Ž .: ² :symmetric bilinear form on C such that � x , � y � x, y , the equa-

² : ² Ž . : Ž ² : �tion zx, y � x, � z y holds that is, , is an in�ariant form; cf. 6,
� . Ž . ² Ž .:p. 144 or Section 6 below and � : C � C � k, � x, y � x, � y is an

associative nondegenerate symmetric bilinear form which is proper, it
follows easily that n � n � n � n .1 2 3 4

Suppose that we have two algebras that each are a tensor product of an
octonion algebra and a quaternion algebra. We obtain a necessary and
sufficient condition for when their Albert forms are similar. We use the

Ž . �notation D q to denote the elements of F represented by a quadratic
form q.

THEOREM 2.3. Let C , C be octonion algebras and Q , Q quaternion1 2 1 2
algebras o�er F. Let N and N be the Albert forms of C � Q and1 2 1 F 1
C � Q , respecti�ely. If N � �N for some � � F�, then Q � Q .2 F 2 1 2 1 2
Moreo�er, there is a quaternion algebra Q and elements c, d � F� such that

Ž . Ž . Ž . Ž .C � Cay Q, c , C � Cay Q, d , Cay Q , � � Cay Q, cd , and ��c �1 2 1
Ž .D n . Con�ersely, if there is a quaternion algebra Q and elements c, d, � �C2

F� such that C , Q � Q , and C satisfy the conditions of the pre�ious1 1 2 2
sentence, then N � �N .1 2

� Ž . Ž .Proof. Suppose that N � �N for some � � F . If c: W F � Br F1 2
Ž . Ž . Ž .is the Clifford invariant, then c N � c �N � c N . Since c is trivial1 2 2

3Ž . Ž . Ž . Ž . Ž . Ž �on I F , we have c N � c �n and c N � c �n see 23, Chap.1 Q 2 Q1 2�. Ž . Ž .5.3 . Therefore, c n � c n . However, the Clifford invariant of theQ Q1 2

norm form of a quaternion algebra is the class of the quaternion algebra,
� � Ž . � � Ž . � �by 23, Corollary V.3.3 . This implies that c N � Q and c �N � Q .1 1 2 2

� � � �Since Q � Q , we get Q � Q . As a consequence of this, n � n .1 2 1 2 Q Q1 2

Thus,

² :n � � 1, �� � n � n � �n � �nŽ .C Q C Q Q1 1 1 1 1

� � n � �n � �n � �n � �n � ��nŽ . Ž .C Q Q C Q Q2 2 1 2 1 2

� �n � 4�.C2

² :The forms n and 1, �� � n are Pfister forms. The line above showsC Q1 1 � �that these Pfister forms are 2-linked, in the terminology of 12 . Therefore,
²² :: ²² ::there is a 2-fold Pfister form � a, �b with n � �a, �b, �cC1

² : ²² :: �and 1, �� � n � � a, �b, �e for some c, e � F . An elemen-Q1
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tary calculation shows that

²² :: ²² ::�a, �b, �c � � � a, �b, �e

² : ²² ::� 4� � � c, e � � a, �b .

² : ²² :: ²²Therefore, �n � � c, e � � a, �b . Thus, n � ��c �C C2 2
:: ²² ::a, �b, �ce . Since n and �a, �b, �ce are Pfister forms, we getC2

²² ::n � �a, �b, �ce . If we set d � ce and let Q be the quaternionC2
Ž . ²² ::algebra a, b , then the isomorphisms n � �a, �b, �c and n �F C C1 2

²² :: Ž . Ž .�a, �b, �d give C � Cay Q, c and C � Cay Q, d . Moreover,1 2
Ž . ² :n � ��cn , so ��c � D n . Finally, the isomorphism 1, �� �C C C2 2 2

²² :: Ž . Ž . Ž .n � �a, �b, �e gives Cay Q , � � Cay Q, e � Cay Q, cd .Q 12
Ž . Ž .It is a short calculation to show that if C � Cay Q, c , C � Cay Q, d ,1 2
Ž . Ž .and Q � Q is a quaternion algebra with Cay Q , � � Cay Q, �dc ,1 2 1

� � � �² : Ž ² : .then n � � 1 n � � n � � 1 n .C Q C Q1 1 2 2

The argument of the previous theorem does not work for a tensor
product of two octonion algebras since the Albert form is an element of

3Ž .I F , whose Clifford invariant is trivial.

COROLLARY 2.4. With the notation in the pre�ious theorem, suppose that
N � �N for some � � F�. If one of C and C is split, then the other1 2 1 2

Ž .algebra is isomorphic to Cay Q , � .1

Proof. We saw in the proof of the previous proposition that

² :n � � 1, �� � n � �n � 4�.C Q C1 1 2

² :Suppose that C is split. Then n � � 1, �� � n is hyperbolic, so2 C Q1 1
² : Ž .n � 1, �� � n . Therefore, C � Cay Q , � . On the other hand, ifC Q 1 11 2

² :C is split, then n � 4�, so by Witt cancellation ��n � 1, �� �1 C C1 2
² :n . Since n and 1, �� � n are both Pfister forms, this implies thatQ C Q1 2 1

² : Ž .n � 1, �� � n , and so C � Cay Q , � .C Q 2 12 1

In Theorem 2.3 above, it is possible for N � �N without C � C .1 2 1 2
Moreover, the quaternion algebra Q of the proposition need not be
isomorphic to Q . We verify both of these claims in the following example.1

EXAMPLE 2.5. In this example we produce nonisomorphic octonion
algebras C and C and a quaternion algebra Q that is not isomorphic to1 2 1
a subalgebra of either C or C and is such that the Albert forms of1 2
C � Q and C � Q are similar. To do this we produce nonisometric1 F 1 2 F 1

²² :: ²² ::Pfister forms x, y, z and x, y, w and elements u, � , � with
²² :: ²² :: ²² ::x, y, zw � u, � , � such that the Witt indexes of x, y, z �
²² :: ²² :: ²² ::� u, � , � and x, y, w � � u, � , � are both 2 and � z �
Ž²² ::. Ž . Ž .D x, y, w . We then set Q � �x, �y , C � Cay Q, �z , C �1 2
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Ž . Ž .Cay Q, �w , and Q � �u, �� . From Theorem 2.3, we have N � �N .1 1 2
However, Proposition 2.2 shows that Q is not isomorphic to a subalgebra1
of either C or C . Moreover, C and C are not isomorphic since their1 2 1 2
norm forms are not isometric. Note that Q and C are not isomorphic2
since Q is not a subalgebra of C .1 1

Ž .Let k be a field of characteristic not 2, and let F � k x, y, z, w be the
rational function field in four variables over k. Set � � xyzw, n �1
²² :: ²² ::x, y, z , and n � x, y, w . By embedding F in the Laurent series2

Ž .ŽŽ .. ²² :: ²² ::field k x, y, z w , we see that n and n � x, y � w x, y are1 2
�not isomorphic over this field by Springer’s theorem 23, Proposition

� 2Ž .VI.1.9 , so n and n are not isomorphic over F. Also, � z � z xyw ,1 2
Ž .which is clearly represented by n . Set Q � �zw, �xzw . A short calcu-2 1

²² :: ²² ::lation shows that x, y, zw � zw, xzw, � . Finally, for the Witt
indices, we have

² : ² :n � �n � 1, x , y , xy , z , xz , yz , xyz � � 1, zw , xzw, x1 Q1

² :� 2� � y , xy , z , xz , yz , xyz , �zw, �xzw

² : ² :� 2� � y , xy , z , xz , yz , xyz � w � z , �xz .

The Springer theorem shows that this form has Witt index 2. Similarly,

² : ² :n � �n � 1, x , y , xy , w , xw , yw , xyw � � 1, zw , xzw, x2 Q1

² :� 2� � y , xy , w , xw , yw , xyw , �zw, �xzw

² : ² :� 2� � y , xy � w 1, x , y , xy , �z , �xz

has Witt index 2.

For the remainder of this section we will also consider the case that
Ž . Ž .char F � 2. Let C and C be composition algebras over F of dim C1 2 F i

� �� r 
 2, and let n be the norm form of C . Using the notation of 21 , thei i i
Ž . � Ž . Ž .4subspace Q C , C � u � x � 1 � 1 � x : t x � t x has dimen-1 2 1 2 1 1 2 2

Ž . � Ž .Ž . 4sion r 	 r � 2, and Q C , C � z � � � � z : z � C � C is the1 2 1 2 1 2 1 F 2
set of alternating elements of C � C with respect to � � � . The1 F 2 1 2

Ž . Žnondegenerate quadratic form N: Q C , C � F given by N x � 1 � 11 2 1
. Ž . Ž . � ² : �� x � n x � n x is isometric to the Albert form n � �1 n of2 1 1 2 2 1 2

C � C .1 F 2
Let V � � r1	r 2�3 be the F-quadric defined via N. In the case thatN
Ž .char F � 2, V coincides with the open subvariety U of closed pointsN N

�x � 1 � 1 � x with x � F1 and x � F1. We now generalize 21,1 2 1 2
�Proposition in the following two propositions. We will make use of the

� �following fact that comes from Galois theory: Let F z be the commuta-i
tive F-subalgebra of dimension two of C generated by z � C for i � 1, 2.i i i
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�� � � 4 Ž .Then there exists an isomorphism 	 : F z � F z such that 	 z � z1 2 1 2
Ž . Ž . Ž . Ž .if and only if n z � n z and t z � t z .1 1 2 2 1 1 2 2

PROPOSITION 2.6. There exists a bijection 
 between the set of F-rational
Ž .points of U and the set of triples K , K , 	 , where K is a two-dimensionalN 1 2 i

�commutati�e subalgebra of C and where 	 : K � K is an F-algebrai 1 2
isomorphism,

�� 4
 : P � U : P an F-rational point � K , K , 	 : K , K , 	 as abo�e� 4Ž .N 1 2 1 2

�� � � � � � � �F z , F z , 	 : F z � F z1 2 1 2P � z � 1 � 1 � z � .1 2 ž /z � z1 2

Proof. Any F-rational point P � U corresponds with an elementN
Ž . Ž . Ž . Ž . Ž .x � 1 � 1 � x � Q C , C with t x � t x and n x � n x .1 2 1 2 1 1 2 2 1 1 2 2

�� � � �Then there exists an F-algebra isomorphism 	 : F x � F x with x �1 2 1
x . For x � 1 � 1 � x � z � 1 � 1 � z it can easily be verified that2 1 2 1 2

�� � � � � � � �F x , F x , 	 : F x � F x1 2 1 2ž /x � x1 2

�� � � � � � � �F z , F z , � : F z � F z1 2 1 2� .ž /z � z1 2

Therefore, the mapping 
 is well defined.
Ž . �Given a triple K , K , 	 , there are elements z � C such that K �1 2 i i i

�� � � � � �F z and 	 : F z � F z with z � z . By the remark before thei 1 2 1 2
Ž . Ž . Ž . Ž . Žproposition, we have n z � n z and t z � t z ; thus N z � 1 �1 1 2 2 1 1 2 2 1

.1 � z � 0 and the triple defines the F-rational point P � U corre-2 N
sponding to z � 1 � 1 � z . So 
 is surjective.1 2

Ž . ŽTo prove injectivity, suppose that 
 x � 1 � 1 � x � 
 z � 1 � 11 2 1
�. � � � � � � � � � �� z . Then F x � F z , F x � F z , and the maps 	 : F x �2 1 1 2 2 1

�� � � � � � � �F x , x � x , and � : F z � F z , z � z , are equal. Since F x �2 1 2 1 2 2 i
� �F z , we write x � a 	 bz and x � c 	 dz with a, b, c, d � F. Wei 1 1 2 2

Ž . Ž .have a � c since t x � t x . Therefore, we may replace x with bz1 1 2 2 1 1
and x with dz without changing x � 1 � 1 � x . Thus, x � 1 � 1 �2 2 1 2 1

Ž . Ž . Ž . Ž .x � bz � 1 � 1 � dz , and n x � n x , n z � n z imply that2 1 2 1 1 2 2 1 1 2 2
Ž . 2 Ž . Ž . 2 Ž . 2 2n x � b n z and n x � d n z . Therefore, b � d , so b � �d.1 1 1 1 2 2 2 2

Ž . Ž .Now x � 	 x � 	 bz � bz yields b � d, and we get x � 1 � 1 �2 1 1 2 1
Ž .x � b z � 1 � 1 � z which shows that 
 is injective.2 1 2

Ž . �In the case that char F � 2, the set U � x � 1 � 1 � x : x � F1,N 1 2 1
4x � F1 is a proper open subvariety of V . The proof of the previous2 N

proposition shows that 
 again is a bijection between the F-rational points
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Ž .of U and the triples K , K , 	 , where K is a two-dimensional commu-N 1 2 i
�tative F-subalgebra of C and 	 : K � L is an F-algebra isomorphism. Wei

can say more in this situation.

Ž .PROPOSITION 2.7. Let char F � 2. There exists an F-rational point in VN
Ž .if and only if there exists a triple K , K , 	 such that K is a quadratic etale´1 2 i

�subalgebra of C and 	 : K � K is an F-algebra isomorphism. In addition,i 1 2
� Ž . 4there exists an F-rational point in V � t x � 0 if and only if there exists aN 1 1

Ž .triple K , K , 	 such that K and K are purely inseparable quadratic1 2 1 2
�extensions and 	 : K � K is an F-algebra isomorphism.1 2

Proof. As pointed out before the proposition, there is a bijection
Ž .between F-rational points in U and triples K , K , 	 with K � CN 1 2 i i

commutative subalgebras of dimension 2 over F. To prove the first
statement, only one half needs further argument. Suppose V has anN
F-rational point. Since V is a quadric hypersurface, V is then bira-N N
tionally equivalent to � r1	r 2�3 . The F-rational points of projective space
are dense, so there is an F-rational point in U . Therefore, we get a tripleN
Ž .K , K , 	 with K a quadratic etale subalgebra of C .´1 2 i i

� Ž . 4For the second statement, an F-rational point in V � t x � 0N 1 1
Ž . Ž .corresponds with an element x � 1 � 1 � x such that n x � n x1 2 1 1 2 2

Ž . Ž . � �and t x � t x � 0, so F x is a purely inseparable extension. There1 1 2 2 i
�� � � � Ž .exists an isomorphism 	 : F x � F x with 	 x � x and thus a triple1 2 1 2

Ž � � � � . Ž .F x , F x , 	 . Conversely, if there is a triple K , K , 	 with K1 2 1 2 i
Ž . � �purely inseparable, there are x � C with t x � 0 such that K � F x ,i i i i 1

�� � � � � � Ž . Ž .L � F x , and 	 : F x � F x , x � x , so n x � n x and x �2 1 2 1 2 1 1 2 2 1
� Ž . 41 � 1 � x defines an F-rational point in V � t x � 0 .2 N 1 1

3. THE AUTOMORPHISM GROUP OF A TENSOR
PRODUCT OF OCTONION ALGEBRAS

In this section we compute the automorphism group, the derivation
algebra, and the forms of a tensor product of a finite number of octonion

Ž .algebras over a field F with char F � 2. Let C � C � ��� � C be the1 F F n
tensor product of octonion algebras. As we will see, the subspace C � F1 F
� ��� � F 	 ��� 	F � ��� � F � C is responsible for many proper-F F F F F n
ties of C, so our first goal is to characterize it.

Ž . �Recall that the associati�e nucleus of an algebra A is N A � a �
Ž . Ž . Ž . 4 Ž . Ž .A : a, A, A � A, a, A � A, A, a � 0 , where x, y, z � xy z �

Ž .x yz denotes the usual associator. The commutati�e nucleus of A is the
Ž . � �Ž � 4set K A � a � A : a, A � 0 .
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DEFINITION 3.1. The subspace

N A : � a � A : a, x , y � � x , a, y � x , y , a � x , y � A� 4Ž . Ž . Ž . Ž .alt

will be called the generalized alternative nucleus of A.

� �Remark 3.2. The alternati�e nucleus was introduced by Thedy 35 as

a � A : x , a, x � 0 and a, x , y � x , y , a � y , a, x for all x , y � A� 4Ž . Ž . Ž . Ž .

and is a subalgebra of A. The generalized alternative nucleus differs from
this nucleus and, in general, it may not be closed under products, although

Ž .it possesses an interesting algebraic structure see Proposition 4.6 .

Ž .PROPOSITION 3.3. Let A , A be unital algebras with N A � F �1 2 1
Ž . Ž . Ž . Ž . Ž .K A or N A � F � K A . Then N A � A � N A � F 	2 2 1 alt 1 F 2 alt 1 F

Ž .F � N A .F alt 2

Ž . Ž .Proof. By symmetry we can assume that N A � F � K A . Let1 2
� Ž . �a � Ýa � a � N A � A with a linearly independent. The identi-i i alt 1 F 2 i

ties defining the generalized alternative nucleus with x replaced with
Ž .x � 1 and y with y � y � 1 show that a � N A . A similar argumenti alt 1

Ž Ž .. Ž .with a linearly independent in N A shows that N A � A �i alt 1 alt 1 F 2
Ž . Ž . Ž . Ž .N A � N A . Now the identity a, x, y � � x, a, y with x re-alt 1 F alt 2

Ž . �placed with x � x� and y with y � 1 leads to Ý a , x, y � a x� �i i
Ž . � Ž . � Ž .�Ý x, a , y � x�a . Since a � N A , this implies that Ý a , x, y �i i i alt 1 i

� �a , 1 � x� � 0. But, by hypothesis, the centralizer of A in A � A isi 2 1 F 2
Ž . � � �A � F, hence Ý a , x, y � a � A � F. By choosing a � 1 and a1 F i i 1 F 1 i

Ž .linearly independent, we get that a , x, y � 0 if i 
 2, and since a �i i
Ž . Ž . Ž .N A , it follows that x, a , y � 0 � x, y, a , too. Therefore, a �alt 1 i i i

Ž . Ž . Ž . Ž .N A � F if i 
 2 and N A � A � N A � F 	 F � N A .1 alt 1 F 2 alt 1 F F alt 2
The other inclusion is obvious.

In general, in a tensor product of algebras A � ��� � A we will1 F F n
identify the factors A with the subalgebra F � ��� � A � ��� � Fi F F i F F
without mention; thus, for instance, we will write A � ��� � A �1 F F n
Ł A .i i

Ž .COROLLARY 3.4. N C � ��� � C � C 	 ��� 	C .alt 1 F F n 1 n

� � Ž . Ž .Proof. It is well known 37, p. 41 that N C � F � K C and thati i
Ž . Ž . Ž . Ž . Ž . Ž .N A � A � N A � N A and K A � A � K A � K A .1 F 2 1 F 2 1 F 2 1 F 2
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� �Recall that in any algebra with product denoted by , the element
Ž . �� � � �� � � �� � �J x, y, z � x, y , z 	 y, z , x 	 z, x , y is called the Jacobian of x,

y, z. The algebra is called a Malce� algebra if it is anticommutative and
Ž � �. � Ž . �J x, y, x, z � J x, y, z , x . One important example of a simple Malcev

algebra is the algebra of elements of zero trace in an octonion algebra with
� � Ž .the product given by the commutator 24, 26, 29, 30 . Therefore N C is aalt

Ž . � � �Malcev algebra, and N C � F1 � C � ��� � C with C minimal idealsalt 1 n i
that are simple Malcev algebras and F1 the center. The derived algebra of

Ž .N C isalt

� � �N C � N C , N C � C � ��� � C .Ž . Ž . Ž .alt alt alt 1 n

Remark 3.5. Let � : C� � C� be an isomorphism of Malcev algebras.0 1 2
� � �� Ž . Ž . Ž Ž . Ž ..Since a, a, b � �4n a b 	 2n a, b a, we have n � a , � b �1 1 2 0 0

Ž . Ž .n a, b , so we can define � : C � C by 	1 	 a � 	1 	 � a , which is1 1 2 0
� � Ž .an isomorphism because of the identity 2 ab � a, b � n a, b . That is,1

any isomorphism from C� onto C� is the restriction of an isomorphism1 2
Ž .between C and C . Moreover, given an automorphism � � Aut F then1 2

any �-semilinear isomorphism � between C� and C� is induced by a0 1 2
Ž . Ž .�-semilinear isomorphism � : 	1 	 a � � 	 1 	 � a between C and0 1

C . In the same way, any derivation of C� is the restriction of a derivation2 1
of C . Something similar holds for C � ��� � C . Let � be an auto-1 1 F F n 0
morphism of C� � ��� � C� . Since C� are the minimal ideals there exists a1 n i

Ž � . �permutation 
 � Ý such that � C � C . Therefore, by the previous,n 0 i 
 Ž i.
� �� is the restriction of an isomorphism � : C � C and we can defineC0 i i 
 Ž i.i

an automorphism � of C � ��� � C such that the restriction to C is1 F F n i
� . Hence, any automorphism of C� � ��� � C� is the restriction of ani 1 n
automorphism of C � ��� � C . The same is true for �-semilinear1 F F n
automorphisms.

PROPOSITION 3.6. The restriction map gi�es the isomorphisms

Aut C � Aut N� C ,Ž . Ž .Ž .alt

Der C � Der N� C � Der C � ��� � Der C .Ž . Ž . Ž . Ž .Ž .alt 1 n

Ž . � Ž .Proof. Any automorphism resp. derivation of C leaves N C invari-alt
Ž . � Ž .ant, so it induces an automorphism resp. derivation of N C . Sincealt

� Ž .N C generates C as an algebra, the restriction map induces monomor-alt
Ž . Ž � Ž .. Ž . Ž � Ž ..phisms Aut C � Aut N C and Der C � Der N C . In the case ofalt alt
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Ž .Aut C this monomorphism is also an epimorphism by Remark 3.5. In the
Ž . Ž � Ž ..case of Der C , given d � Der N C we havealt

� � � � � � � �� �d C � d C , C � d C , C 	 C , d C � CŽ . Ž . Ž .Ž .i i i i i i i i

Ž � Ž .. Ž � . Ž � . �so Der N C � Der C � ��� � Der C . Since any derivation d of Calt 1 n i i
is induced by a derivation d of C , and d � id � ��� � id 	 ��� 	idi i i

Ž � .� ��� � id � d is a derivation of C, it follows that Der C � ��� �n 1
�Ž . Ž .Der C � Der C .n

Let � be the tensor product of the canonical involutions of the C andi
Ž .Aut C, � the automorphisms of C that commute with � .

Ž . Ž .COROLLARY 3.7. With the pre�ious notation, Aut c � Aut C, � .

Remark 3.8. We can write C � C�n1 � ��� � C�nm with C�ni the1 F F m i
tensor product of n copies of C and C � C if i � j and n 	 ��� 	n �i i i j 1 m

� Ž . � � �n. Thus, N C � n C � ��� � n C with n C isomorphic to the directalt 1 1 m m i i
� � � Ž �.sum of n copies of C , and C � C if i � j. Since Aut n C is the wreathi i i j i i

Ž �. Ž �ni.product of Aut C and the symmetric group Ý , we obtain that Aut Ci ni
Ž . Ž . Ž .� Aut C , the wreath product of Aut C and Ý , and thus Aut C �i n i ni i

Ž . Ž .Aut C � ��� � Aut C .1 n m n1 m

� Ž . � �The uniqueness of the decomposition N C � C � ��� � C gives thealt 1 n
following uniqueness of the factorization of C.

PROPOSITION 3.9. Let A , A be unital algebras such that C � ��� �1 2 1 F F
� 4C � A � A . Then there exists a partition 1, . . . , n � � � � such thatn 1 F 2 1 2

� 4A � � C and A � � C . In particular, the factors C , . . . , C in1 i 2 j 1 ni� � j� �1 2
C � ��� � C are uniquely determined up to order and isomorphism.1 F F n

Proof. Since the associative and commutative nuclei of C � C �1 F
Ž . Ž .��� � C are each the base field, N A � F � K A for i � 1, 2. ByF n i i

Proposition 3.3,

N A � 	 F � N A � C 	 ��� 	C � F1 � C� � ��� � C� .Ž . Ž .alt 1 F F alt 2 1 n 1 n

� � 4The C are minimal ideals; therefore, there exists a partition 1, . . . , n �i
Ž . �

� � � such that N A � F1 � � C . Thus, the image in A �1 2 alt i j 1 Fj� � i
A of the subalgebra � C generated by � C� is contained in A .2 j j ij� � j� �i i
Since the two algebras have the same dimension, they must be equal.

˜ ˜COROLLARY 3.10. Two algebras C � ��� � C and C � ��� � C1 F F n 1 F F m
are isomorphic if and only if n � m and there exists a permutation � such that

˜C is isomorphic to C .i � Ž i.

EXAMPLE 3.11. It is well known that if the Albert forms of two
biquaternion algebras are similar, then the algebras are isomorphic. We
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give an example to show that the analogue of this result is false for
octonion algebras. Let C and C be nonisomorphic octonion F-algebras1 2
and consider the tensor products C � C and C � C . Then their1 F 1 2 F 2
Albert forms are n � � �n � and n � � �n � , respectively. Therefore,C C C C1 1 2 2

these forms are isomorphic as they are both hyperbolic. However, C � C1 F 1
is not isomorphic to C � C by the previous corollary since C and C2 F 2 1 2
are not isomorphic.

The following result points out the special role played by the involu-
tion � .

COROLLARY 3.12. The only in�olution of C � ��� � C which com-1 F F n
mutes with all automorphisms is � .

Proof. Let � � be another involution of C � C � ��� � C commut-1 F F n
Ž . Ž . Ž .ing with Aut C . The elements fixed by Aut C � Aut C are exactlyi

ˆ ˆ ˆ ˆŽ .C � � C . Therefore, � � C � C . Looking at the centralizer of Ci j� i j i i i
Ž .yields � � C � C . The automorphism � �� induces an automorphism ofi i

Ž . � �C which commutes with Aut C . That is, � �� � id 17 and � � � � .i i

We will call � the canonical in�olution of C � ��� � C .1 F F n

˜ ˜ ˜COROLLARY 3.13. Let � : C � C � ��� � C � C � C � ��� � C1 F F n 1 F F n
˜be an isomorphism. If � and � � are the canonical in�olutions of C and C

respecti�ely, then �� � � ��.

˜ �1 �1Ž . Ž .Proof. Since Aut C � � Aut C � , then ��� commutes with
�1˜Ž .Aut C . Therefore, � � � ��� .

We now show that the Skolem-Noether theorem does not hold for C.

COROLLARY 3.14. There exist simple F-subalgebras B and B� of C and an
F-algebra isomorphism f : B � B� such that there is no F-algebra automor-

�phism � of C with � � f.B

Proof. Let Q be a quaternion subalgebra of C for i � 1,2 and let fi i
be an F-algebra automorphism of A � Q � Q that is not compatible1 F 2

�with � ; such maps exist since we can take f to be the inner automor-A
Ž . Ž .phism of an element t � A with � t t � F. The condition � t t � F is

�precisely the condition needed to ensure that f is compatible with � .A
ŽFor example, we can take t � 1 	 i i � A � Q � Q where the stan-1 2 1 F 2

.dard generators of Q are i and j . If f extends to an automorphism �r r r
Ž . �of C, then � A � A, so � is compatible with � . This forces � � f toA

�be compatible with � , and f is chosen so that this does not happen.A

We devote the remainder of this section to computing the forms of
tensor products of octonions, that is, F-algebras A such that A � K �K F
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A � C � ��� � C for some extension K�F and octonion algebras C1 K K n i
over K. We will denote C � ��� � C by T.1 K K n

� Ž . � Ž . � �Since K � N A � N K � A � C � ��� � C , the algebraF alt alt F 1 n
� Ž .N A is separable. It is worth noting that for a finite dimensionalalt

separable F-algebra R and a field extension K�F such that K � R � RF 1
� ��� � R , with R central simple K-algebras, there exists a subfield Kn i 0

˜of K such that K �F is a finite Galois extension and K � R � R0 0 F 1
˜ ˜ ˜� ��� � R with R central simple K -algebras and R � K � R .n i 0 i K i0

LEMMA 3.15. Let A be a form of a tensor product of octonion algebras
o�er F. There exists a finite Galois extension F � K � K such that A is the0 K 0

tensor product of octonion algebras o�er K .0

Proof. Let K be a finite Galois extension of F contained in K such0
� �̃ �̃ ˜Ž .that K � N A � C � ��� � C with C octonion algebras over K0 F alt 1 n i 0

�̃ �and K � C � C . By Remark 3.5, this isomorphism is induced by anK i i0 ˜ ˜Žisomorphism K � C � C . Thus we have an isomorphism K � CK i i K 10 0˜ ˜ ˜.� ��� � C � T which restricts to an isomorphism C � ��� � CK K n 1 K K n0 0 0 0

� K � A.0 F

This proposition allows us to assume in the following that K�F is a
finite Galois extension. We denote the F-subalgebra generated by S by

² : ² :alg S and the subspace spanned by S by span S . SinceF F

� � ² � � :² : ² :K � alg N A � alg N K � A � alg C � ��� � CŽ . Ž .F K alt F alt F K 1 n

� T � K � A ,F

� Ž . ² � Ž .:we obtain A from N A since A � alg N A .alt F alt

PROPOSITION 3.16. The map

� 4 � � � 4F-forms of C � ��� � C � F-forms of C � ��� � C1 K K n 1 n

A � N� AŽ .alt

² :is a bijection with in�erse gi�en by N� � alg N� . Moreo�er, if A and B are
� Ž . � Ž .F-forms of C � ��� � C then A � B if and only if N A � N B .1 K K n alt alt

� Ž . � �Proof. It is clear that N A is an F-form of C � ��� � C if A is analt 1 n
F-form of C � ��� � C . Conversely, let N� be an F-form of C�

1 K K n 1
� � Ž .4� ��� � C and U : � � Gal K�F the semilinear automorphisms ofn �

C� � ��� � C� such that N� is the set of fixed elements. By Remark 3.5, we1 n
˜can assume that U is the restriction of a �-semilinear automorphism U� �

˜�of C � ��� � C . The algebra A of fixed elements by U : � �1 K K n �

Ž .4Gal K�F is an F-form of C � ��� � C containing N�. In fact, since1 K K n
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� � � Ž . ² :N� extends to C � ��� � C , we get N� � N A , and thus alg N� � A1 n alt F
is an F-form of C � ��� � C .1 K K n

� Ž . � Ž . � Ž . � Ž .If A � B then N A � N B . Conversely, if � : N A � N Balt alt 0 alt alt
is an isomorphism, it induces an automorphism � of C� � ��� � C� that,˜0 1 n
by Remark 3.5, is the restriction of an automorphism � of C � ��� � C .˜ 1 K K n
Since

² � : � �² : ² :� A � � alg N A � alg � N A � alg N B � B ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .˜ ˜ ˜F alt F alt F alt

it follows that A � B.

This proposition allows us to construct easily the forms of a tensor
� Ž .product of octonion algebras. First, observe that if N A � N � N thenalt 1 2

� � 4K � N � � C , i � 1, 2 for some partition 1, . . . , n � � � � . ByF i j 1 2j� � i ² :Proposition 3.16, A � alg N is an F-form of � C and hencei F i jj� � i
A � A � A . Therefore, it is enough to construct the forms of a tensor1 F 2
product of octonion algebras with simple generalized alternative nucleus.

� Ž .Let A be an F-algebra with N A simple and K a finite Galoisalt
extension such that K � A � C � ��� � C for some octonion alge-F 1 K K n

� Ž . Ž � Ž ..bras C over K. Since N A is simple, the centroid � � � N A is ai alt alt
finite separable extension of F. In fact,

K � � � � K � N� A � � C� � ��� � C� � K � ��� � KŽ . Ž .Ž .F F alt 1 n

implies that � is an extension of degree n and that we have n different
F-monomorphisms � : � � K. Every � allows us to define a right �-vec-i i

Ž .tor space structure on K by 	 �� � 	� � , 	 � K , � � �. We denote thisi
new vector space by K �1. Now,

K � N� A � K � � � N� A � K � � � N� AŽ . Ž . Ž . Ž .Ž .F alt F � alt F � alt

� K �1 � ��� � K �n � N� AŽ . Ž .� alt

� K �1 � N� A � ��� � K �n � N� AŽ . Ž .Ž . Ž .� alt � alt

� C� � ��� � C�
1 n

� i � Ž . �implies that, up to order, K � N A � C . Therefore, we can think of� alt i
� Ž . � �the �-algebra N A as a form of C . By the arguments in 24, pp.alt i

� � Ž .240�241 , for instance, we can conclude that N A � C� for somealt
Ž �1octonion algebra C over �. Under the isomorphism K � C� � K �F �

. Ž �n . Ž . Ž .C� � ��� � K � C� we identify x � C� with 1 � x 	 ��� 	 1 � x .�

Ž �1 . Ž �n .Since we can view K � C� � ��� � K � C� as the generalized� �

Ž �1 . Ž �n .alternative nucleus of K � C� � ��� � K � C� , the algebra A� K K �

Ž . Žcorresponds with the F-subalgebra generated by 1 � x � ��� � 1 �� K K �

. Ž . Ž .1 	 ��� 	 1 � 1 � ��� � 1 � x . Conversely, given an octonion �-al-� K K �
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gebra C with � a finite separable extension of F, it is easy to check that
the algebra A constructed as above is a form of a tensor product of
octonion algebras with a simple generalized alternative nucleus.

4. THE GENERALIZED ALTERNATIVE NUCLEUS

The generalized alternative nucleus is responsible for many properties
of the tensor product of octonion algebras. In this section we pay special
attention to this nucleus. We classify the simple finite dimensional unital
algebras which are generated by their generalized alternative nucleus. Our
methods rely on the representation theory of some Lie algebras; therefore,

Ž .in this section we will assume that char F � 0 and that F is algebraically
closed. We make free use of Lie algebra terminology and refer the reader

� � � �to the books of Humphreys 16 and Jacobson 18 for definitions and
results.

nŽ .Let C be an octonion algebra over F and Sym C the symmetric
tensors of C � ��� � C, the tensor product of n copies of C. TheF F

Želements a � 1 � ��� � 1 	 ��� 	1 � ��� � 1 � a with a � C lie in N Calt
. nŽ . nŽ .� ��� � C and generate Sym C . Therefore Sym C is an algebraF F

nŽ .generated by its generalized alternative nucleus. However, Sym C is no
nŽ . n�2Ž .longer simple. The contraction Sym C � Sym C induced by x

Ž .� ��� � x � n x x � ��� � x is an epimorphism whose nucleus we will
Ž .denote by T C , n 
 2. We recover the Kantor�Smirnov structurablen

� � Ž .algebra when n � 2 33, 7 . We will see that T C is a unital simplen
Ž Ž .. Ž . Ž .algebra generated by N T C . We set T C � C and T C � F. Wealt n 1 0

now give our classification result.

THEOREM 4.1. Any simple finite dimensional unital algebra o�er an
algebraically closed field of characteristic zero which is generated by its
generalized alternati�e nucleus is isomorphic to the tensor product of a simple

Ž .associati�e algebra and T C for some n.n

� �Recall from 28 that a ternary deri�ation of an algebra A is a triple
Ž . Ž . Ž . Ž .d , d , d � End A � End A � End A such that1 2 3 F F F

d xy � d x y 	 xd y 1Ž . Ž . Ž . Ž .1 2 3

for any x, y � A. The Lie algebra of ternary derivations is denoted by
Ž . Ž .Tder A . If d � d � d then 1 says that d is a derivation, and in that1 2 3 1

Ž .case we will say that d , d , d represents a deri�ation. Let T � L 	 R .1 2 3 a a a
It is worth noting that

a � N A � L , T , �L and R , �R , T � Tder A . 2Ž . Ž . Ž . Ž . Ž .alt a a a a a a
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The following identities will be useful.

Ž .LEMMA 4.2. Let a, b � N A and x � A. Thenalt

Ž . � � � �i L � L L 	 R , L , L � L L 	 L , R .a x a x a x x a x a x a

Ž . � � � �ii R � R R 	 R , L , R � R R 	 L , R .a x x a x a x a a x a x

Ž . � � � �iii L , R � R , L .a b a b

Ž . � � � � � � � �iv L , L � L � 2 R , L , R , R � �R � 2 L , R .a b � a, b � a b a b � a, b � a b

Ž . � � � � � �v The map D � L , L 	 L , R 	 R , R is a deri�ationa, b a b a b a b
� � � �of A, D � ad � 3 L , R and 2 D � ad 	 ad , ad , wherea, b � a, b � a b a, b � a, b � a b

� �ad : x � a, x .a

Ž . Ž . Ž . Ž .Proof. Parts i and ii follow from the identities a, x, y � x, y, a ,
Ž . Ž . Ž . Ž . Ž . Ž .x, a, y � � x, y, a , y, a, x � � a, y, x , and y, x, a � a, y, x . Part
Ž . Ž . Ž . Ž .iii follows from b, x, a � � a, x, b , while iv is an easy consequence

Ž . Ž . Ž . Ž . Ž� � � �of parts i , ii , and iii . Now, by 2 we have that L , L , T , T ,a b a b
� �. Ž� � � � � �. Ž� � � � � �.L , L , L , R , � T , R , � L , T , and R , R , R , R , T , Ta b a b a b a b a b a b a b

Ž . Ž .lie in Tder A . Adding up these elements and using ii , we obtain a
Ž .ternary derivation that represents the derivation D . From iv we geta, b

� �D � ad � 3 L , R . Finally,a,b � a, b � a b

� � � � � � � �ad 	 ad , ad � ad 	 L , L 	 R , R � 2 L , R� a , b � a b � a , b � a b a b a b

� �� 2 ad � 3 L , R � 2 D .Ž .� a , b � a b a , b

Ž .As we saw in the case of tensor products of octonions, N A may notalt
Ž .be a subalgebra of A. The natural product on N A seems to be thealt

� �commutator a, b � ab � ba.

Ž . � � Ž .PROPOSITION 4.3. Gi�en a, b � N A then a, b � N A . Moreo�er,alt alt
Ž Ž . � �.N A , , is a Malce� algebra.alt

Ž . � � � �Proof. By Lemma 4.2 iv , L � L , L 	 2 R , L and R �� a, b � a b a b � a, b �
� � � � Ž .� R , R � 2 L , R , thus by 2 we obtaina b a b

� � � � � � � �L , T , T 	 2 �R , T , L , L 	 2 T , �L � Tder A .Ž .Ž .� a , b � a b a b a b a b

Since

� � � � � � � �T � L , L � R , R � T , T 	 2 �R , T� a , b � a b a b a b a b

and

� � � � � � � ��L � � L , L � 2 R , L � L , L 	 2 T , �L ,� a , b � a b a b a b a b

Ž . Ž . Žit follows that L , T , �L � Tder A . Similarly, R ,� a, b � � a, b � � a, b � � a, b �
. Ž . � � Ž .�R , T � Tder A . Therefore, a, b � N A . The same argu-� a, b � � a, b � alt

� � Ž Ž . � �.ments as those in 27, p. 9 show that N A , , is a Malcev algebra.alt
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In the following we will always assume that A is simple, finite dimen-
Ž . Ž .sional and generated by N A . In our discussion, the Lie algebra T Aalt

� Ž .4generated by L , R : a � N A will play a prominent role.a a alt
Ž .Given a subset S of an algebra we say that � x is the degree of x on

Ž .S if x can be written as x � p s , . . . , s with s , . . . , s � S and1 m 1 n
Ž . Ž .p x , . . . , x some nonassociative polynomial constants are allowed of1 n

Ž .degree � x , and if there is no other such expression for a polynomial of
Ž .degree � � x . By convention the degree of 0 is set to ��.

Ž .LEMMA 4.4. If S � N A then the degree of x on S is the same as thealt
² :degree of L , R on span L , R : a � S .x x F a a

Proof. We proceed by induction to see that the degree of L and R isx x
Ž . Ž . Ž .
 � x . The case � x � �� is trivial. If � x � 0 then 0 � x � F and

Ž . Ž .therefore � L � 0 � � R . Now let x be a monomial of degree n � 1,x x
Ž . Ž . Ž . Ž .so x � x x with � x � � x . By induction � L � � x , and therefore1 2 i x1

Ž . Ž . Ž .x � ax or x � x a with a � S and � x � � x . By Lemma 4.2 i and ii0 0 0
Ž . Ž . Ž .and by the hypothesis of induction we get � L , � R 
 � x . Finally,x x

Ž . Ž . Ž . Ž . Ž .since x � L 1 � R 1 , it follows that � x 
 � L , � R .x x x x

Ž . Ž . Ž .PROPOSITION 4.5. A is an irreducible T A -module and T A � T� A
Ž . � Ž . Ž .�� F id, with T� A � T A , T A a semisimple Lie algebra.

Proof. By Lemma 4.4, the multiplication algebra of A is generated by
Ž .the left and right multiplication maps L , R for a � N A . Therefore,a a alt

Ž .any T A -submodule is an ideal, hence A irreducible. Since A is irre-
Ž . Ž .ducible and faithful, T� A is semisimple and T A is the direct sum of

Ž . � �T� A and the center 19, p. 47 . But any element in the center commutes
with the multiplication algebra of A and therefore lives in the centroid of
A. Since A is simple and F is algebraically closed, we conclude that the
center is F id.

Recall that a Malcev algebra is semisimple if 0 is the only Abelian ideal
� �24 .

� Ž .PROPOSITION 4.6. N A is a semisimple Malce� algebra.alt

� Ž .Proof. Let I be an ideal of N A and consider T �alt I
² � Ž .: Ž . Ž .span L , R , D : a � I, c � N A . By Lemma 4.2 iv , T � T � A .F a a a, c alt I

Ž . � � � �Moreover, Part v of the same lemma shows that L , R � R , L � Ta b a b I
� Ž . Ž . � �if a � I and b � N A . Then, by Part iv , it follows that L , L ,alt a b

� � Ž . Ž . � �R , R � T , too. Finally, D b � I by v , so D , L � L ,a b I a, c a, c b D Žb.a, c� � Ž .D , R � R � T . Therefore T is an ideal of T � A . By thea,c b D Žb. I Ia, c
Ž . � �semisimplicity of T � A we must have T , T � T . In particular, I �I I I

Ž . � �Ž . � � � Ž .T 1 � T , T 1 � I, I and therefore the only abelian ideal of N AI I I alt
� Ž .is 0, so N A is semisimple.alt
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In a Malcev algebra M the subspace generated by the Jacobians is an
Ž . Ž . �ideal of M denoted by J M, M, M . The subspace N M � x �

Ž . 4M : J x, M, M � 0 is also an ideal and is called the J-nucleus of M. It is
Ž . Ž .well-known that N M J M, M, M � 0. In fact, any finite dimensional

semisimple Malcev algebra M over a perfect field of characteristic not two
Ž . Ž . Ž .can be decomposed as M � N M � J M, M, M with N M a semisim-

Ž .ple Lie algebra and J M, M, M the direct sum of simple non-Lie Malcev
Ž .algebras. If the field has characteristic 0 then N M is the direct sum of

� �simple Lie algebras, by 16, Theorem 5.3 .
� Ž . � � Ž .PROPOSITION 4.7. Let N A � � N be the decomposition of N Aalt i alti

as the direct sum of ideals that are simple Malce� algebras, and let A �i
² � : Ž .alg N , 1 . Then, A is a simple unital algebra generated by N A � F1 	i i alt i

N �, and A � � A .i ii
� � Ž .Proof. Given a � N and b � N with i � j, then by Lemma 4.2 v wei j

� � Ž Ž ..have D � 3 L , R and D N A � 0. Since A is generated bya, b a b a, b alt
Ž . � � Ž .N A , it follows that L , R � 0. By Lemma 4.2 iv , we also getalt a b

� � � �L , L � R , R � 0. By Lemma 4.4, the left and right multiplicationa b a b
operators by elements of A commute with those by elements of A .i j
Therefore, we have an epimorphism � : � A � A given by the multipli-ii

Ž .�cation of the factors. Consider the ideals T of T � A as in the proof ofNi
Ž . �Proposition 4.6. Since T � A is semisimple so is T . The subalgebra A isN ii

a T �-module, and by Weyl’s theorem it is completely reducible. In fact, byNi

Lemma 4.4 any submodule is an ideal and the converse. Thus A is thei
Ž . �direct sum of simple unital ideals. Fix A to be one of these simplei

� Ž .ideals. Clearly Ł A � A is a T A -submodule. By irreducibility it followsi i
that A � Ł A� . Any other simple ideal A	 in the decomposition of Aj j i i

	 	 Ž � . � 	 �verifies A � AA � Ł A A A � 0. So, A � A is a central simplei i j� i j i i i i
algebra as well as � A , and consequently � is an isomorphism. Finally,ii

Ž . Ž . � Ž .we observe that Ý N A � N A � F1 	 Ý N implies N A �i alt i alt i i alt i
�F1 	 N .i

This proposition allows us to distinguish two cases, algebras in which N�
alt

is a simple Lie algebra and algebras in which N� is a simple non-Liealt
Malcev algebra.

� Ž .PROPOSITION 4.8. If N A is a simple Lie algebra, then A is a simplealt
associati�e algebra.

Ž . Ž . Ž . � �Proof. Since J a, c, b � 6 a, c, b for any a, b, c � N A 27, 37 , thealt
Ž . Ž . Ž .hypothesis implies that a, b, c � 0 and thus D c � ad c �a, b � a, b �

�� � � � Ž .a, b , c by Lemma 4.2. Since N A is a simple Lie algebra, anyalt
� Ž .derivation of N A has the form ad ; thus, we obtain an epimorphismalt � a, b �

� Ž .from the derivations of A onto the derivations of N A that is in fact analt
Ž . � Ž .isomorphism because A is generated by N A . Given a � N A , wealt alt
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� Ž .denote by D the unique derivation of A that restricts to ad over N A .a a alt
² � Ž .:It is not difficult to check that span D � ad : a � N A is an idealF a a alt

Ž . Ž . Ž .of T � A that kills N A . Since T � A is semisimple then the subspacealt
killed by an ideal is a submodule of A and, by irreducibility, it must be all

Žof A. Therefore, ad � D is a derivation. But L � R , T 	 R , �L �a a a a a a a
. Ž . Ž . Ž .T , L � R , L � R , L � R � Tder R implies 0, 3R , �3L �a a a a a a a a a

Ž . Ž . Ž . Ž .Tder A which can be written as x, a, y � 0. Thus a, x, y � x, y, a �
Ž . Ž . � Ž . Ž .� x, a, y � 0 and a � N A . Since A is generated by N A and N Aalt

is a subalgebra, this finishes the proof.
� Ž .Now we will assume that N A is a simple non-Lie Malcev algebra,alt

� Ž . Ž .that is, N A � C� where C � Zor F denotes the split octonion alge-alt
bra, which is the only octonion algebra up to isomorphism over an
algebraically closed field.

PROPOSITION 4.9. We ha�e that

Ž . Ž . ² � Ž .:i Der A � span D : a, b � N A is a simple Lie algebra ofF a, b alt
type G .2

Ž . ² � Ž .:ii span D , ad : a, b � N A is a simple Lie algebra ofF a, b a alt
type B .3

Ž . Ž .iii T � A is a simple Lie algebra of type D .4

Ž . Ž . Ž .iv The maps � , �: T � A � T � A gi�en by � : L � T , R � �R ,a a a a
D � D , and �: L � �L , R � T , D � D can be identifieda, b a, b a a a a a, b a, b

Ž . Ž .with the automorphisms corresponding to the permutations 13 and 14 of
the Dynkin diagram of D .4

� Ž .Proof. Any derivation of A induces a derivation of N A , and sincealt
Ž . � Ž .A is generated by N A then any two derivations that agree on N Aalt alt

Ž � Ž .. ² � �must be equal. It is known that Der N A � D : a, b �N Ž A.alt a, b alt
� Ž .: Ž .N A ; therefore, this yields the first part of i . Consider a standardalt

� 4 � �basis e , e , u , u , u , � , � , � of C 11 and f � e � e . Relative to the1 2 1 2 3 1 2 3 1 2
² : Ž .subalgebra H � span D , D , L , R , T � A decomposes as theF u , � u , � f f1 1 2 2

Ždirect sum of root spaces in the way given in Table I note that the
elements in the right column are not 0 by evaluating them in appropriate

.elements of the standard basis .
Ž .Therefore, H is a Cartan subalgebra of T � A and the root system

corresponds to a simple Lie algebra of type D . The automorphism �4
leaves H invariant and permutes the root spaces corresponding to 	 and1
	 , but fixes those corresponding to 	 and 	 . Thus, � can be thought of3 2 4

Ž .as the automorphism 13 of the Dynkin diagram of D . Similarly, �4
Ž .corresponds to 14 .

² � Ž .:The subalgebra span D , ad : a, b � N A is the algebra fixed byF a, b a alt
Ž .the automorphism ��� which corresponds to the automorphism 34 of the

Dynkin diagram. This algebra is known to be a simple Lie algebra of type
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TABLE I

Root Element that spans the root space

	 L � R � D1 u u e , u3 3 1 3

	 D2 u , �2 3

	 L 	 2 R � D3 u u e , u3 3 1 3

	 2 L 	 R 	 D4 u u e , u3 3 1 3

	 	 	 L � R � D1 2 u u e , u2 2 1 2

	 	 	 L 	 2 R � D2 3 u u e , u2 2 1 2

	 	 	 2 L 	 R 	 D2 4 u u e , u2 2 1 2

	 	 	 	 	 2 L 	 R 	 D1 2 3 � � e , �1 1 2 1

	 	 	 	 	 L 	 2 R � D1 2 4 � � e , �1 1 2 1

	 	 	 	 	 L � R � D2 3 4 � � e , �1 1 2 1

	 	 	 	 	 	 	 D1 2 3 4 � , u1 3

	 	 2	 	 	 	 	 D1 2 3 4 � , u1 2

Negative roots Change 	 by �	 , e by e andi i 1 2
u by � in the previous rowsi i

Ž . ² � Ž .:B . Finally, Der A � span D : a, b � N A is the algebra fixed by3 F a, b alt
Ž .the automorphism �� , which corresponds to 134 as an automorphism of

the Dynkin diagram, therefore it is a Lie algebra of type G .2

� 4Let 	 , . . . , 	 be a basis of a root system of D as in the above table1 4 4
and � , . . . , � be the corresponding fundamental weights. If � is a1 4

Ž .dominant weight, we will denote by V � the irreducible module of highest
weight �.

PROPOSITION 4.10. The Lie algebra A is isomorphic as a D -module to4
Ž .V n� for some n.1

Proof. Since F1 is a trivial submodule for B , the branching rules for3
� �the inclusion B � D 14, Theorem 8.1.4 imply that there exists an n such3 4

Ž .that A � V n� .1

Ž .Since C � V � , this proposition allows us to identify A with the1
submodule of C � ��� � C generated by � � ��� � � with � theF F 0 0 0

nŽ .highest weight of C. This submodule obviously lies in Sym C and it is
nŽ . n�2Ž . Ž .killed by the contraction Sym C � Sym C , x � ��� � x � n x x

� �� ��� � x. In fact, this is the kernel of this contraction 13, Example 19.21 .
Finally, in order to prove Theorem 4.1 we have to determine the product

Ž . Ž .on A. This product is not a D -homomorphism of V n� � V n� �4 1 F 1
Ž .V n� since that would imply that D acts as derivations, which is not1 4

true. Given an automorphism � of D and V a module, we denote by V4 �

Ž .the vector space V but with a new action given by d� x � � d x for all
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Ž .d � D and x � V. Then 2 implies that4

V n� � V n� � V n�Ž . Ž . Ž .� �1 F 1 1

x � y � xy

Ž . Ž . Ž . Ž .is a D -homomorphism. Since V n� � V n� and V n� � V n� ,4 1 � 3 1 � 4
Ž . Ž . Ž .the product is a D -homomorphism from V n� � V n� onto V n� .4 3 F 4 1

However, since

dim Hom V n� � V n� , V n� � 1Ž . Ž . Ž .Ž .Ž .D 3 F 4 14

� �25 , then we only have a possibility that is fulfilled by the induced product
nŽ .of Sym C . This proves Theorem 4.1.

Ž Ž ..Remark 4.11. The commutative nucleus K T C is killed by ad forn a
any a, so it is killed by the action of B . Since the decomposition of3
Ž . Ž Ž ..V n� as a B -module is multiplicity free this implies that K T C � F.1 3 n

Ž Ž ..The generalized alternative nucleus N T C is the direct sum ofalt n
simple Malcev ideals. One of these ideals is F and the other is C�. Since
any other ideal would be killed by the action of B we have that3

Ž Ž .. Ž Ž ..N T C � C. In particular, N T C � F.alt n n
If A is as in Theorem 4.1 and A � A � ��� � A is the decomposi-1 F F m

tion as a tensor product given by the theorem, then Proposition 3.3 implies
that

N A � N A � F � ��� � 	 ��� 	F � ��� � F � N A .Ž . Ž . Ž .alt alt 1 F F F F F F alt m

As in Corollary 3.10, this implies that the decomposition is unique up to
order and isomorphism of the factors.

5. CONNECTIONS WITH STRUCTURABLE ALGEBRAS

� �In 6 Allison classified the finite dimensional central simple structurable
� �algebras over fields of characteristic zero. Later, Smirnov 33, 34 showed

that there was a gap in the list provided by Allison, and one has to include
� �in the previous list the algebra of symmetric octonion tensors 7 , a

Ž .35-dimensional algebra which in our notation corresponds to T C .2
We want to analyze the connection between structurable algebras and

� �algebras generated by its generalized alternative nucleus. Recall from 6
Ž �.that any structurable algebra A, is skew-alternative; that is, the skew-

symmetric elements for the involution lie in the generalized alternative
nucleus. In his work, Allison first reduces the classification of finite

Ž .dimensional central simple as algebras with involution structurable alge-
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bras to the case in which the algebra is central simple, so up to a scalar
extension one may assume that the field is algebraically closed. After that,
he splits the proof into two cases, depending on whether or not the algebra
is generated by the skew-symmetric elements. If the algebra is not gener-

Ž .ated by the skew-symmetric elements Case 1 , then one obtains either a
central simple Jordan algebra with the identity as involution, an algebra
constructed from a nondegenerate Hermitian form on a module over a
unital central simple associative algebra with involution, or an algebra with

Ž .involution constructed from an admissible triple. The second case Case 2 ,
where the Kantor�Smirnov structurable algebra is missed, deals with
algebras generated by the skew-symmetric elements. In this case Allison
and Smirnov obtain that the only possibilities are either a central simple
associative algebra with involution, the tensor product of an octonion
algebra with a composition algebra, or the Kantor�Smirnov structurable
algebra.

Since the skew-symmetric elements lie in the generalized alternative
nucleus, then Case 2 falls naturally into our context. So we can use
Theorem 4.1 to give a new proof of this case. We will assume that A is a
finite dimensional central simple structurable algebra, over an alge-
braically closed field of characteristic zero, which is generated by the
skew-symmetric elements. The key point is Lemma 14 in Allison’s paper

� 2 4which establishes that A is spanned by s, s : s is skew-symmetric . Let us
write A � A � ��� � A as given by Theorem 4.1. Since for any skew-1 F F m
symmetric element s,

s, s2 � F � ��� � F � A � F � ���Ý F F F i F F
i , j

� F � A � F � ��� � F ,F F j F F F

Ž .then m 
 2. If m � 1, then A is either associative or isomorphic to T Cn
Ž Ž ..with n 
 2. Since N T C � C then, in the latter case, Lemma 14 alsoalt n

Ž . Ž .implies that dim T C � dim V n� 
 35, so n 
 2, and we obtain then 1
octonions and the Kantor�Smirnov structurable algebra. Finally, if m � 2
then A � A � A and Lemma 14 implies that A � A � F 	 F � A1 F 2 1 F F 2

Ž . Ž .	 N A � N A . In particular, A and A are alternative, so A isalt 1 F alt 2 1 2
either the tensor product of two octonion algebras or the tensor product of
an octonion algebra and an associative algebra. In the second case, the
involution of A preserves the associative nucleus and its centralizer so it
preserves each factor in the tensor product. If S denotes the skew-sym-i
metric elements of A , then Lemma 14 implies that A � A � F 	 F �i 1 F F
A 	 S � S , so the set of symmetric elements of A must be F and A2 1 F 2 i i
are quadratic algebras. Therefore the associative factor must be isomor-
phic to the two-by-two matrices, which is isomorphic to the quaternions.
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6. INVARIANT BILINEAR FORMS

Ž .A symmetric bilinear form , : A � A � F on an F-algebra A is said
Ž . Ž .to be associati�e if xy, z � x, yz for any x, y, z � A. If the algebra has

Ž . Ž . ² :an involution x � x with x, y � x, y , the new bilinear form x, y �
Ž . ² : ² : ² : ² :x, y is symmetric and verifies x, y � x, y and xy, z � y, xz ;

² : � �that is, , is invariant. In 33 , Schafer proves that, up to scalar
multiples, there is only one invariant symmetric bilinear form on a finite
dimensional central simple structurable algebra over a field of characteris-

� �tic zero. That invariant form was constructed by Allison in 6 . In this
section we construct an associative symmetric bilinear form on any algebra
generated by its generalized alternative nucleus.

PROPOSITION 6.1. Let A be an algebra generated by its generalized alterna-
ti�e nucleus; then the symmetric bilinear form

x , y � trace L LŽ . Ž .x y

Ž . Ž .is associati�e. If A is unital, then x, y � trace L .x y

Ž . Ž .Proof. We prove that xy, z � y, zx by induction on the degree of x
Ž . Ž .on N A . If x � a � N A thenalt alt

trace L L � trace L L L 	 R , L LŽ . Ž .a y z a y z a y z

� trace L L L 	 R , L LŽ .y z a a y z

� �� trace L L � L L , R 	 R , L LŽ .y z a y z a a y z

� trace L L 	 R , L LŽ .y z a a y z

� trace L L ,Ž .y z a

Ž . Ž .where we have used Lemma 4.2. Thus ay, z � y, za and we get the first
step in the induction. Now suppose that x � ax or x � x a with a �0 0

Ž . Ž . Ž .N A and that x y, z � y, zx for any y, z. In the first case it followsalt 0 0
that

xy , z � ax y , z � a x y , z 	 a, x , y zŽ . Ž . Ž . Ž .Ž . Ž . Ž .0 0 0

� y , za x 	 a, x , y zŽ . Ž .Ž . Ž .0 0

� y , zx 	 y , z , a, x 	 a, x , y zŽ . Ž . Ž .Ž . Ž .0 0

� y , zx � y , a, z , x 	 x , y , a zŽ . Ž . Ž .Ž . Ž .0 0

� y , zx � y , R , L z 	 R , L y , zŽ . Ž . Ž .Ž . Ž .x a a x0 0

� y , zx � R , L y , z 	 R , L y , z � y , zx .Ž . Ž . Ž . Ž .Ž . Ž .a x a x0 0
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The second case is analogous. This completes the induction. If A is unital,
Ž . Ž . Ž .then x, y � xy, 1 � trace L .x y

We denote the radical of this bilinear form by Rad. Since the form is
associative, Rad is an ideal. We remark that if this form is nondegenerate
then it is, up to scalar multiples, the only nondegenerate associative

� �bilinear form on A 9 .

Ž .COROLLARY 6.2. If , is nondegenerate then A is the direct sum of
algebras as in Theorem 4.1.

Proof. Let I be an ideal with I 2 � 0 and x � I. Given y � A,
Ž Ž Ž ... Ž .x y x yA � xI � 0; thus L L is nilpotent and x, y � 0. Since Rad �x y

� �0, we obtain I � 0. By 31, Theorem 2.6 , A is the direct sum of ideals Ai
Ž . Ž .that are simple unital algebras. Moreover, N A � N � A �alt alt ii

Ž . ² Ž .:� N A implies that A � alg N A .alt i i alt ii

Ž .Remark 6.3. Let A be generated by N A and suppose that thealt
Ž . Ž .associative bilinear form x, y � trace L L is nondegenerate. If A isx y

unital, the corollary yields the classification of A. In general, we consider
the unital algebra A� � A � F1, which contains A as an ideal. Since the
bilinear forms on A and A� agree, it follows that A� � A � Fe with Fe
the orthogonal complement of A, which is an ideal. Now e � 	1 	 x with
x � A, and 	 � 0 implies that 0 � e2 � Fe, and we can assume that e is

Ž . �an idempotent. Therefore trace L L � 1 and the bilinear form on A ise e
nondegenerate. By the corollary, A� is the direct sum of simple unital
ideals, but A is an ideal and thus it is the sum of some of these ideals. This
implies that A must be unital if the bilinear form is nondegenerate.
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