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Abstract

We prove that Bol algebras arise as primitive elements of certain bialgebras which genera
usual universal enveloping algebras of Lie and Malcev algebras. The Bol algebra is located in
generalized left alternative nucleus of the envelope, and its binary and ternary products are n
recovered from the product of the envelope.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A vector spaceV equipped with a trilinear operation[a, b, c] is called aLie triple system
if

[a, a, b] = 0,

[a, b, c] + [b, c, a]+ [c, a, b] = 0,[
x, y, [a, b, c]]= [[x, y, a], b, c

]+ [
a, [x, y, b], c]+ [

a, b, [x, y, c]]
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for all x, y, a, b, c ∈ V . A (left) Bol algebra(V , [ , , ], [ , ]) is a Lie triple system(V , [ , , ])
with an additional bilinear skew-symmetric operation[a, b] satisfying

[
a, b, [c, d]] = [[a, b, c], d]+ [

c, [a, b, d]]+ [
c, d, [a, b]]+ [[a, b], [c, d]]. (1)

Bol algebras were introduced in differential geometry to study smooth Bol loops [4,5
A setQ with a binary operationx · y is called aright loop if for any y ∈ Q the right

multiplication operatorRy :x �→ x · y is bijective, and there exists an elementε ∈ Q, the
left neutral, such thatε · y = y for anyy ∈ Q. It is also customary to writex/y instead of
R−1

y (x). A left loop is a setQ with a binary operationx · y such that for anyx ∈ Q the left
multiplication operatorLx :y �→ x · y is bijective, and there exists an elementε ∈ Q, the
right neutral, such thatx · ε = x for anyx ∈ Q. The elementL−1

x (y) is usually denoted
by x\y. In case that〈Q, · , ε〉 is simultaneously a left and right loop then it is called aloop
with identity elementε. A left smooth loopM is a left loop equipped with a structure
smooth manifold so that the maps(x, y) �→ x · y and(x, y) �→ x\y are smooth (see [4] fo
a local version). The most well-known examples of loops and smooth loops are grou
Lie groups, respectively, though many other families of loops have come into scene
the years, Moufang and Bol loops among others.

A right Bol loop〈Q, · , ε〉 is a right loop that satisfies theright Bol property

x · [(a · y) · a] = [
(x · a) · y] · a

for all a, x, y ∈Q. Similarly, aleft Bol loopsatisfies the identity

a · [x · (a · y)
] = [

a · (x · a)
] · y.

In any loop the following identities are equivalent:

((ax)a)y = a(x(ay)) left Moufang identity,
((xa)y)a = x(a(ya)) right Moufang identity,
(ax)(ya) = (a(xy))a middle Moufang identity.

A loop is called aMoufang loopif satisfies any of them.
The classical correspondence between Lie groups and Lie algebras has been succ

fully extended to smooth loops. Firstly, it was achieved for Moufang loops [1]. The tan
space at the identity inherits a skew-symmetric product[ , ] from the product of the so
called fundamentalvector fields over the loop, and with this product the tangent s
becomes aMalcev algebra, i.e.,

[x, x] = 0 and
[[x, y], [x, z]]= [[[x, y], z], x] + [[[y, z], x]

, x
] + [[[z, x], x]

, y
]

for any x, y, z. Later, the correspondence was studied for (local) left Bol loops
two-sided neutral. The picture here is slightly more complicated. On the one han
fundamental vector fields form a Lie triple system that naturally induces a structure
triple system on the tangent space at the identity. On the other hand, the product of
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fields induces a binary product on this tangent space so that it becomes a Bol alge
contrast to Lie groups and Moufang loops, both products, binary and ternary, are n
to locally recover and classify the Bol loop [5]. For general loops the corresponde
established in terms of a family of multilinear operations calledhyperalgebra[6].

So far, the geometrical origins of Lie, Malcev and Bol algebras are well-unders
However, algebraic settings for these algebras are less known. The Poincaré–Bi
Witt theorem says that any Lie algebraL is a subalgebra of some unital associative alge
considered with the commutator product[x, y] = xy − yx. The universal enveloping alge
braU(L) is the universal object with respect to this property. This theorem was exte
in [3] to Malcev algebras.Given an arbitrary algebraA, thegeneralized alternative nucleu
of A is defined as Nalt(A) = {a ∈ A | (a, x, y) = −(x, a, y) = (x, y, a) ∀x, y ∈ A}, where
(x, y, z) denotes the associator ofx, y andz. Nalt(A) is always a Malcev algebra with th
commutator product[x, y] = xy − yx. Moreover, given a Malcev algebraM, then there
exists a pair(U(M), ι), whereU(M) is a unital algebra andι :M ↪→ Nalt(U(M)) ⊆ U(M)

is a monomorphism of Malcev algebras, with the following universal property:

Given a unital algebraA andι′ :M → Nalt(A) ⊆ A a homomorphism of Malcev alge
bras then there exists a unique homomorphismϕ :U(M) → A of unital algebras suc
thatι′ = ϕ ◦ ι.

The aim of this paper is to construct an envelope for Bol algebras by extendin
techniques developed in [3]. To start with, we define thegeneralized left alternative nucleu
of an algebraA as

LNalt(A) = {
a ∈ A

∣∣ (a, x, y) = −(x, a, y) ∀x, y ∈ A
}
.

LNalt(A) is a Lie triple system with the triple product

[a, b, c] = a(bc) − b(ac) − c[a, b].

In fact, any subspaceV of LNalt(A) closed under the triple product[ , , ] and the commu
tator product[ , ] is a Bol algebra with these operations (see Section 2).

The main result in this paper is

Main result. Let (V , [ , , ], [ , ]) be a Bol algebra, then there exist a unital algebraU(V )

and a linear injective mapι :V ↪→ LNalt(U(V )), a �→ a, such that

ι
([a, b]) = ab − ba and ι

([a, b, c]) = a(bc) − b(ac) − c[a, b],

and the following universal property holds:

For any unital algebraA and any linear mapι′ :V → LNalt(A), a �→ a′, with
ι′([a, b]) = a′b′ − b′a′ and ι′([a, b, c]) = a′(b′c′) − b′(a′c′) − c′[a′, b′] there exists
a homomorphismϕ :U(V ) → A of unital algebras satisfyingι′ = ϕ ◦ ι.
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The algebraU(V ) will be called theuniversal enveloping algebraof the Bol algebra
(V , [ , , ], [ , ]). As in the classical case, this algebra admits a Poincaré–Birkhoff–Witt
basis. Though, in general, LNalt(U(V )) may be larger thanV , U(V ) can be endowed with
a natural structure of bialgebra so that if the characteristic of the ground fieldF is zero
thenV is recovered as the set of primitive elements ofU(V ).

Throughout this paperF will denote a field of characteristic
= 2.

2. Lie enveloping algebras of Bol algebras

Given an algebraA andd1, d2, d3 ∈ EndF (A), (d1, d2, d3) is called a ternary derivatio
of A if d1(xy) = d2(x)y + xd3(y) for anyx, y ∈ A [2]. In case thatA is a unital algebra
then the relations

d1 = d2 + Rd3(1) and d1 = d3 + Ld2(1) (2)

hold, whereLa andRa stand for the left and right multiplication operators bya. We will
denoteLa + Ra by Ta for short. Observe thata ∈ LNalt(A) if and only if (La,Ta,−La) is
a ternary derivation ofA.

Lemma 1. Let A be a unital algebra andd, d ′ ∈ EndF (A).Then,(d, d ′,−d) is a ternary
derivation ofA if and only ifd = La andd ′ = Ta for somea ∈ LNalt(A).

Proof. Assume that(d, d ′,−d) is a ternary derivation. By (2),d = La andd ′ = Ta with
a = 1/2d ′(1). Since(d, d ′,−d) is a ternary derivation, thena ∈ LNalt(A). �

Recall the notation[a, b, c] = a(bc) − b(ac) − c[a, b].

Proposition 2. LetA be an algebra anda, b, c ∈ LNalt(A). Then

(i) [La,Lb] = [Ta,Tb] + R[a,b],
(ii) [[La,Lb],Lc] = L[a,b,c],
iii) [[Ta,Tb], Tc] = T[a,b,c],
(iv) (LNalt(A), [ , , ]) is a Lie triple system.

Proof. LetA# be the unitization ofA. Sincea, b, c ∈ LNalt(A
#) and the ternary derivation

form a Lie algebra, then([La,Lb], [Ta,Tb], [La,Lb]) is a ternary derivation ofA#, which
by (2) shows that[La,Lb] = [Ta,Tb] + R[a,b]. Moreover,([[La,Lb],Lc], [[Ta,Tb], Tc],
−[[La,Lb],Lc]) is also a ternary derivation, so Lemma 1 implies that[[La,Lb],Lc] = Le

and[[Ta,Tb], Tc] = Te for somee ∈ LNalt(A
#). Evaluating these operators on 1 leads

[[La,Lb],Lc] = L[a,b,c] and[[Ta,Tb], Tc] = T[a,b,c]. Part (iv) follows from (ii). �
Proposition 3. LetA be an algebra andV a subspace ofLNalt(A) closed under[ , , ] and
[ , ]. Then(V , [ , , ], [ , ]) is a Bol algebra.
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Proof. Givena, b, c, e ∈ LNalt(A), in A#

[[La,Lb], [Lc,Le]
]
(1) =




[L[a,b,c],Le](1) + [Lc,L[a,b,e]](1)

= [[a, b, c], e]+ [
c, [a, b, e]],[[Ta,Tb] + R[a,b], [Tc, Te] + R[c,e]

]
(1)

〈1〉= [
a, b, [c, e]]+ [c, e][a, b]− [

c, e, [a, b]]− [a, b][c, e]
holds, where〈1〉 follows from the identities[Tx,Ty ](1) = 0 and[Tx,Ty ](z) = [x, y, z]. So,
[a, b, [c, e]]= [[a, b, c], e]+ [c, [a, b, e]]+ [c, e, [a, b]]+ [[a, b], [c, e]]. �

Let us recall some definitions and constructions on Bol algebras. Given a Bol a
(V , [ , , ], [ , ]) overF , apseudodifferentiationof (V , [ , , ], [ , ]) is a linear mapD :V → V

for which there existsz ∈ V (thecompanionof D) with

D
([c, d]) = [

D(c), d
] + [

c,D(d)
] + [c, d, z] + [

z, [c, d]]
for all c, d ∈ V . The companion is not necessarily unique and it depends onD. The set
of all companions ofD is denoted by com(D). With the notationDa,b : c �→ [a, b, c],
condition (1) is equivalent to saying thatDa,b is a pseudodifferentiation with companio
[a, b] for any a, b ∈ V . The pseudodifferentiations ofV form a Lie algebra, denoted b
pderV , under the natural product[D,D′] = DD′ − D′D. The Lie subalgebra ipderV

generated by{Da,b | a, b ∈ V } is called the (Lie) algebra of inner pseudodifferentiation
of V . Theenlarged algebraPderV of pseudodifferentiationsof V is defined as

PderV = {
(D, z)

∣∣ D ∈ pderV, z ∈ com(D)
}
,

and it becomes a Lie algebra with the product

[
(D, z), (D′, z′)

] = ([D,D′],D(z′) − D′(z) − [z, z′]).
Theenlarged algebra of inner pseudodifferentiationsis defined as

IPderV = {
(D, z) ∈ PderV

∣∣ D ∈ ipderV, z ∈ com(D)
}
.

Given a subalgebraK of PderV with IPderV ⊆ K and a copyV̄ = {ā | a ∈ V } of V , the
product onK is extended to a product onK × V̄ by

[
(D, z), b̄

] = D(b), [ā, b̄] = (
Da,b, [a, b])

and skew-symmetry to obtain aZ2-graded Lie algebra Env(V ,K). The subspace

L = 〈
(D, z) − z̄ ∈ Env(V ,K)

∣∣ (D, z) ∈ K
〉

is a Lie subalgebra and Env(V ,K) = L ⊕ V̄ . Furthermore,

[ā, b̄] = ((
Da,b, [a, b])− [a, b]) + [a, b]
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implies that[a, b] = pr([ā, b̄]) where pr( ) denotes the projection on̄V parallel toL. There-
fore, the binary and triple products onV are recovered as

[a, b] = pr
([ā, b̄]) and [a, b, c] = [[ā, b̄], c̄].

The Lie algebra Env(V ,K) is called aLie enveloping algebraof the Bol algebraV .
Looking at Env(V ,K) asL ⊕ V̄ , we may defineγa,b = (Da,b, [a, b]) − [a, b] the pro-

jection onL of [ā, b̄]. These maps satisfy the relation

[γa,b, γc,d ] = γ[a,b,c],d + γc,[a,b,d] + γ[a,b],[c,d]. (3)

Modeled on these enveloping algebras Env(V ,K) we define another Lie algebra. L
{τa | a ∈ V } be a copy ofV , and E(V ) the Lie algebra generated by{τa | a ∈ V } with
relations

[[τa, τb], τc

] = τ[a,b,c], (4)

[δa,b, δc,d ] = δ[a,b,c],d + δc,[a,b,d] + δ[a,b],[c,d], (5)

whereδa,b stands for[τa, τb]− τ[a,b]. By abuse of notation, we continue to writeτa for the
image ofτa in E(V ). This notation will be fully justified after proving Corollary 5.

Proposition 4. There exists an automorphismθ of the Lie algebraE(V ) such thatθ2 = id
andθ(τa) = −τa for all a ∈ V .

Proof. Let us use the temporary notationτ ′
a = −τa andδ′

a,b = [τ ′
a, τ

′
b] − τ ′[a,b]. In E(V )

[δ′
a,b, δ

′
c,d ] = [δa,b, δc,d ] + 2[δa,b, τ[c,d]] + 2[τ[a,b], δc,d ] + 4[τ[a,b], τ[c,d]]

〈1〉= δ[a,b,c],d + δc,[a,b,d] + δ[a,b],[c,d] + 2τ[a,b,[c,d]] − 2[τ[a,b], τ[c,d]]
− 2τ[c,d,[a,b]] + 2[τ[c,d], τ[a,b]] + 4[τ[a,b], τ[c,d]]

= δ[a,b,c],d + δc,[a,b,d] + δ[a,b],[c,d] + 2τ[a,b,[c,d]] − 2τ[c,d,[a,b]]
〈2〉= δ[a,b,c],d + δc,[a,b,d] + δ[a,b],[c,d]

+ 2τ[[a,b,c],d] + 2τ[c,[a,b,d]] + 2τ[[a,b],[c,d]]
= δ′[a,b,c],d + δ′

c,[a,b,d] + δ′[a,b],[c,d]

holds, where〈1〉 follows from the defining relations of E(V ) and〈2〉 from (1). This shows
that (5) is satisfied if we changeδ by δ′. Similarly, (4) holds ifτ is replaced byτ ′. There-
fore, there exists a Lie algebra endomorphismθ of E(V ) such thatθ(τa) = −τa ∀a ∈ V .
Sinceθ2 fixes the generators of E(V ), thenθ2 = id. �
Corollary 5. Let E+ = 〈[τa, τb] | a, b ∈ V 〉 andE− = 〈τa | a ∈ V 〉 ⊆ E(V ). ThenE(V ) =
E+ ⊕ E− is a Z2-gradation andE− ∼= V as vector spaces.



486 J.M. Pérez-Izquierdo / Journal of Algebra 284 (2005) 480–493

p-

2.

t

Proof. The Z2-gradation in the statement is the one induced by the automorphismθ of
order two, so we only need to show thatE− ∼= V as vector spaces. By (3), for any envelo
ing algebra Env(V ,K) there exists a homomorphism from E(V ) to Env(V ,K) sendingτa

to ā. Sincea �→ ā is injective, soa �→ τa is. �

3. An envelope for Bol algebras

Let (V , [ , , ], [ , ]) be a Bol algebra andE = E(V ) the Lie algebra defined in Section
Consider the left ideals of the universal enveloping algebraU(E) of E defined by

KL = U(E)〈δa,b | a, b ∈ V 〉 and KT = U(E)
〈[τa, τb] | a, b ∈ V

〉
.

These left ideals provide twoE-modules

U(E)/KL and U(E)/KT .

The elements inU(E)/KL will be denoted byx̄ wherex ∈ U(E), while the elements in
U(E)/KT will be denoted by[x]. A third module(U(E)/KL)θ appears when we twis
the action ofE on U(E)/KL by the automorphismθ . As vector spaces(U(E)/KL)θ and
U(E)/KL are the same, but the action ofE on (U(E)/KL)θ is defined byd ◦ x̄ = θ(d)x.

Let us introduce some temporary notation:

• {τai | i ∈ Λ} denotes an ordered basis ofE−.
• τ∅ = 1, τI = τai1

· · · τain
if I = (i1, . . . , in).

• I ′ = (i2, . . . , in) and|I | = n if I = (i1, . . . , in).
• If I = (i1, . . . , in) andJ = (j1, . . . , jm), thenI ∗ J = (k1, . . . , kn+m) with

{k1, . . . , kn+m} = {i1, . . . , in, j1, . . . , jm} andk1 � · · · � kn+m.

By the classical Poincaré–Birkhoff–Witt theorem we know that

{[τI ]
∣∣ I = (i1, . . . , in) with i1 � · · · � in andn � 0

}
is a basis ofU(E)/KT . The subspaces

(
U(E)/KT

)
n

= 〈[τI ]
∣∣ |I | � n

〉
form a filtration ofU(E)/KT . In the same way,U(E)/KL has a basis{τ̄I |, I = (i1, . . . , in)

with i1 � · · · � in andn � 0} and a filtration given by the subspaces(U(E)/KL)n = 〈τ̄I |
|I | � n〉. It is easy to prove that

τai0
[τI ] ≡ [τI∗(i0)] mod

(
U(E)/KT

)
|I | and

τai0
τ̄I ≡ τ̄I∗(i0) mod

(
U(E)/KL

)
|I |. (6)

The following theorem is similar to [3, Proposition 3.1].
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Theorem 6. There exists a homomorphism ofE-modules

∗ :U(E)/KT ⊗ (
U(E)/KL

)
θ
→ U(E)/KL

defined recursively by

[1] ∗ x̄ = x̄ and [τI ] ∗ x̄ = τai1

([τI ′ ] ∗ x̄
) − [τI ′ ] ∗ θ(τai1

)x.

Proof. We will prove that

d
([τI ] ∗ x̄

) − (
d[τI ]

) ∗ x̄ − [τI ] ∗ (
θ(d)x̄

) = 0

by induction on|I |. For |I | = 0 andd = d0 + τa with d0 ∈ E+ we have

d
([1] ∗ x̄

) − (
d[1]) ∗ x̄ − [1] ∗ (

θ(d)x̄
)

= (
d − θ(d)

)
x̄ − [τa] ∗ x̄ = 2τax̄ − [τa] ∗ x̄

= 2τax̄ − τa

([1] ∗ x̄
) + [1] ∗ θ(τa)x̄ = 2τax̄ − τax̄ − τax̄ = 0.

In the general case we observe that

d
([τI ] ∗ x̄

) − (
d[τI ]

) ∗ x̄ − [τI ] ∗ (
θ(d)x̄

)
= d

(
τai1

([τI ′ ] ∗ x̄
) − [τI ′ ] ∗ θ(τai1

)x̄
) − (

d[τI ]
) ∗ x̄ − τai1

([τI ′ ] ∗ θ(d)x̄
)

+ [τI ′ ] ∗ (
θ(τai1

)θ(d)x̄
)

〈1〉= dτai1

([τI ′ ] ∗ x̄
) − (

d[τI ′ ]) ∗ θ(τai1
)x̄ − [τI ′ ] ∗ (

θ(d)θ(τai1
)x̄

)
− (

d[τI ]
) ∗ x̄ − τai1

([τI ′ ] ∗ θ(d)x̄
) + [τI ′ ] ∗ (

θ(τai1
)θ(d)x̄

)
〈2〉= [d, τai1

]([τI ′ ] ∗ x̄
) + τai1

((
d[τI ′ ]) ∗ x̄ + [τI ′ ] ∗ θ(d)x̄

) − (
d[τI ′ ]) ∗ θ(τai1

)x̄

− [τI ′ ] ∗ [
θ(d), θ(τai1

)
]
x̄ − (

d[τI ]
) ∗ x̄ − τai1

([τI ′ ] ∗ θ(d)x̄
)

〈3〉= ([d, τai1
][τI ′ ]) ∗ x̄ + τai1

((
d[τI ′ ]) ∗ x̄

) − (
d[τI ′ ]) ∗ θ(τai1

)x̄ − (
d[τI ]

) ∗ x̄

〈4〉= τai1

((
d[τI ′ ]) ∗ x̄

) − (
τai1

d[τI ′ ]) ∗ x̄ − (
d[τI ′ ]) ∗ θ(τai1

)x̄,

where 〈1〉 follows by using induction ond([τ̄I ′ ] ∗ θ(τai1
)x̄), 〈2〉 by subtracting

τai1
d([τ̄I ′ ] ∗ x̄) and addingτai1

((d[τI ′ ]) ∗ x̄ + [τI ′ ] ∗ θ(d)x̄) (they both are equal by induc
tion); 〈3〉 follows by induction on[d, τai1

]([τI ′ ] ∗ x̄), some simplifications and the fact th
θ is an automorphism, and〈4〉 by simplification. So, it suffices to prove the induction s
with d = τai0

for someτai0
. If i0 � i1 then it follows from the very definition of∗. There-

fore, we may assume thati0 > i1. By (6),τai0
[τI ′ ] = [τI ′∗(i0)] + r with r ∈ (U(E)/KT )|I ′|,

and by the previous computations and the hypothesis of induction we have
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τai0

([τI ] ∗ x̄
) − (

τai0
[τI ]

) ∗ x̄ − [τI ] ∗ θ(τai0
)x̄

= τai1

((
τai0

[τI ′ ]) ∗ x̄
) − (

τai1
τai0

[τI ′ ]) ∗ x̄ − (
τai0

[τI ′ ]) ∗ θ(τai1
)x̄

= τai1

([τI ′∗(i0)] ∗ x̄
) − (

τai1
[τI ′∗(i0)]

) ∗ x̄ − [τI ′∗(i0)] ∗ θ(τai1
)x̄

which by definition vanishes.�
While this homomorphism∗ induces a product onU(E)/KL, by identifying [τI ]

with τ̄I , the algebra thus obtained has no unit element in general (observe that,
stance,[τa] ∗ 1̄ = 2τ̄a). A natural way to overcome this defect is to use an isotope.

Lemma 7. The mapφ :U(E)/KT → U(E)/KL given by[x] �→ [x] ∗ 1̄ is a linear isomor-
phism.

Proof. We first observe that[τI ] ∗ τ̄J ≡ 2|I |τ̄I∗J mod(U(E)/KL)|I |+|J |−1. In fact, by de-
finition and induction,

[τI ] ∗ τ̄J = τai1

([τI ′ ] ∗ τ̄J

) − [τI ′ ] ∗ θ(τai1
)τ̄J ≡ 2|I |−1τai1

τ̄I ′∗J + [τI ′ ] ∗ τ̄(i1)∗J

≡ 2|I |−1τ̄I∗J + 2|I |−1τ̄I∗J = 2|I |τ̄I∗J mod
(
U(E)/KL

)
|I |+|J |−1.

As a particular case,φ([τI ]) ≡ 2|I |τ̄I mod(U(E)/KL)|I |−1. Thus, sinceφ maps a basis
of U(E)/KT onto a basis ofU(E)/KL, φ must be a linear isomorphism.�

The product that we will consider onU(E)/KL is

U(E)/KL ⊗ U(E)/KL → U(E)/KL, x̄ ⊗ ȳ �→ φ−1(x̄) ∗ ȳ. (7)

Theorem 8. The algebraU(E)/KL defined by(7) satisfies

(i) 1̄ is the unit element,
(ii) τ̄a ∈ LNalt(U(E)/KL) for anya ∈ V ,
(iii) τ̄[a,b] = [τ̄a, τ̄b] and τ̄[a,b,c] = τ̄a(τ̄bτ̄c) − τ̄b(τ̄a τ̄c) − τ̄c[τ̄a, τ̄b].

Proof. Part (i) is obvious from construction. Previous to obtain parts (ii) and (iii), we
that τ̄a ȳ = τaȳ. In fact,[τa] ∗ 1̄ = 2τ̄a , soφ−1(τ̄a) = 1/2[τa] and

τ̄aȳ = φ−1(τ̄a) ∗ ȳ = 1

2
[τa] ∗ ȳ = τaȳ.

Now,

τ̄a(x̄ȳ) = τa

(
φ−1(x̄) ∗ ȳ

) = (
τaφ

−1(x̄)
) ∗ ȳ − φ−1(x̄) ∗ (τaȳ)

= (
τaφ

−1(x̄)
) ∗ ȳ − x̄(τ̄a ȳ) = (

φ−1(φτaφ
−1(x̄)

)) ∗ ȳ − x̄(τ̄aȳ)

= (
φτaφ

−1(x̄)
)
ȳ − x̄(τ̄aȳ)
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with ȳ = 1̄ implies thatφτaφ
−1(x̄) = τ̄ax̄ + x̄τ̄a = Tτ̄a (x̄), thus (Lτ̄a , Tτ̄a ,−Lτ̄a ) is a

ternary derivation ofU(E)/KL, which is the statement in (ii). Finally,

τ̄a τ̄b − τ̄bτ̄a = τaτb − τbτa = δa,b + τ[a,b] = τ̄[a,b],
τ̄a(τ̄bτ̄c) − τ̄b(τ̄aτ̄c) − τ̄c[τ̄a, τ̄b] = τaτbτc − τbτaτc − τcτaτb + τcτbτa

= [[τa, τb], τc

] = τ̄[a,b,c]

establishes (iii). �

4. Main result

Given a Bol algebra(V , [ , , ], [ , ]), let F {V } be the free unital nonassociative algeb
on a basis ofV and

U(V ) = F {V }/ ideal
〈
ab − ba − [a, b], a(bc)− b(ac) − c[a, b]− [a, b, c],
(a, x, y) + (x, a, y)

∣∣ a, b, c ∈ V andx, y ∈ F {V }〉.
The natural embeddingV → F {V } induces a mapι :V → U(V ). By construction
(U(V ), ι) verifies the universal property:

Given a unital algebraA and a linear mapι′ :V → LNalt(A) ⊆ A a �→ a′ with
ι′([a, b, c]) = a′(b′c′) − b′(a′c′) − c′[a′, b′] andι′([a, b]) = [a′, b′] then there exists
homomorphismϕ :U(V ) → A of unital algebras such thatι′ = ϕ ◦ ι.

Theorem 9. The mapι :V → U(V ) is injective.

Proof. By Theorem 8 and the universal property of(U(V ), ι), there exists an epimorphis

ϕ :U(V ) → U(E)/KL, ι(a) �→ τ̄a.

Since the mapa �→ τ̄a is injective, then the same holds forι. �
By abuse of notation, we will identifya with ι(a), andV will be thought to be containe

in U(V ). To establish the existence of a Poincaré–Birkhoff–Witt type basis, we need
some more notation:

• a∅ = 1, aI = ai1(ai2(· · · (ain−1ain) · · ·)) ∈ U(V ) whereI = (i1, . . . , in),
• U(V )−1 = 0 andU(V )n = 〈aI | |I | � n〉 for all n � 0,
• gr(U(V )) = ⊕∞

n=0 U(V )n/U(V )n−1 is the graded algebra associated with the fil
tion U(V ) = ⋃∞

n=0 U(V )n,
• [b1, . . . , bn]n = [b1(· · · (bn−1bn) · · ·)]n = b1(· · · (bn−1bn) · · ·) + U(V )n−1 with

b1, . . . , bn ∈ V .
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Theorem 10. The elements{aI | I = (i1, . . . , in), i1 � · · · � in andn � 0} form a basis of
U(V ).

Proof. The image ofaI by the epimorphismϕ :U(V ) → U(E)/KL coming from the uni-
versal property is̄τI . Since the later are linearly independent, the same holds for the fo
Consequently, it suffices to show that the set in the statement spansU(V ). The result will
follow once we had proved that{aI + U(V )n−1 | I = (i1, . . . , in), i1 � · · · � in andn � 0}
spans gr(U(V )). Since[[La,Lb],Lc] = L[a,b,c], then

[b1, . . . , bn]n = [
Lb1 · · ·Lbn(1)

]
n

= [b1, . . . , bi+1, bi, . . . , bn]n + [
Lb1 · · · [Lbi ,Lbi+1] · · ·Lbn(1)

]
n

= [b1, . . . , bi+1, bi, . . . , bn]n + [
Lb1 · · · L̂bi L̂bi+1 · · ·Lbn[Lbi ,Lbi+1](1)

]
n

= [b1, . . . , bi+1, bi, . . . , bn]n,

whereL̂b means that the operatorLb is omitted. Therefore,[b1, . . . , bn]n does not de-
pend on the order of the elements. If by induction onn we assume that[b1, . . . , bn]n ×
[c1, . . . , cm]m = [b1, . . . , bn, c1, . . . , cm]n+m, then

[b1, . . . , bn+1]n+1[c1, . . . , cm]m
= 1

2
T[b1]1

([b2, . . . , bn+1]n
)[c1, . . . , cm]m

〈1〉= 1

2
[b1]1

([b2, . . . , bn+1]n[c1, . . . , cm]m
) + 1

2
[b2, . . . , bn+1]n[b1, c1, . . . , cm]m+1

〈2〉= [b1, . . . , bn+1, c1, . . . , cm]n+m+1,

where〈1〉 is a consequence of[b1]1 ∈ LNalt(gr(V )) (recall the product on gr(U(V ))) and
the definition of the symbols[ ]n, and〈2〉 follows from the hypothesis of induction. Thu
gr(U(V )) is associative and commutative. Since, in addition, it is generated by{[b]1 |
b ∈ V }, then the result follows. �

One important feature of the universal enveloping algebras of Lie algebras is tha
are Hopf algebras. The universal property ofU(V ) allows us to define onU(V ) a structure
of bialgebra. A straightforward computation proves that the map

V → U(V ) ⊗ U(V ), a �→ ∆(a) = a ⊗ 1+ 1⊗ a

satisfies

(1) ∆(a) ∈ LNalt(U(V ) ⊗ U(V )),
(2) ∆([a, b]) = [∆(a),∆(b)],
(3) ∆([a, b, c]) = ∆(a)(∆(b)∆(c))− ∆(b)(∆(a)∆(c))− ∆(c)[∆(a),∆(b)].
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Therefore, it induces a homomorphism of unital algebras

∆ :U(V ) → U(V ) ⊗ U(V ).

Under this mapV goes to

Prim
(
U(V ),∆

) = {
x ∈ U(V )

∣∣ ∆(x) = x ⊗ 1+ 1⊗ x
}
,

the set of primitive elements. Similarly, the mapV → F given bya �→ 0 provides a homo
morphism of unital algebras, the counit,

ε :U(V ) → F

which kills V .

Theorem 11. (U(V ), · ,1,∆, ε) is a bialgebra and, over fields of characteristic ze
Prim(U(V ),∆) = V .

Proof. Use Friedrich’s criterion as in [3]. �

5. Right Bol algebras

In [4] a finite-dimensional vector spaceV over R (the definitions also work over a
bitrary fields) with a trilinear operation(η; ξ, ζ ) is called a Lie triple system if for al
ξ, η, ζ, ν, τ ∈ V ,

(η; ξ, ξ) = 0,

(ξ;η, ζ ) + (η; ζ, ξ) + (ζ ; ξ, η) = 0,(
(ξ; ν, τ );η, ζ

)+ (
ξ; (η; ν, τ ), ζ

)+ (
ξ;η, (ζ ; ν, τ )

) = (
(ξ;η, ζ ); ν, τ

)
.

A right Bol algebra is defined as a Lie triple system with an additional bilinear sk
symmetric operationξ · η such that

(
(τ · ζ ); ξ, η

) = (τ ; ξ, η) · ζ + τ · (ζ ; ξ, η) + (
(ξ · η); τ, ζ

) + (τ · ζ ) · (ξ · η).

From a right Bol algebraV we can obtain a left Bol algebraV opp by consideringV with
the operations

[a, b] = −a · b and [a, b, c] = −(c;a, b). (8)

We define thegeneralized right alternative nucleusof an algebraA as

RNalt(A) = {
a ∈ A

∣∣ (x, y, a) = −(x, a, y) ∀x, y ∈ A
}
.
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If Aopp denotes the opposite algebra ofA, then RNalt(A) = LNalt(A
opp).

Given a right Bol algebra(V , ( ; , ), · ), we define theuniversal enveloping algebraU(V )

of V asU(V ) = U(V opp)opp. From the properties ofU(V opp) it is clear that there exists
linear injective map

ι :V → RNalt
(
U(V )

)
, a �→ a

such that

ι(a · b) = ab − ba and ι
(
(a;b, c)

) = (ab)c − (ac)b − [b, c]a

and thatU(V ) satisfies the corresponding universal property. Similar results to T
rems 10 and 11 are easily obtained.

6. Connections with Malcev algebras

As mentioned in the Introduction, for any Malcev algebra(M, [ , ]) over a field of
characteristic
= 2,3 there exist a unital algebraU(M) and a monomorphism of Malce
algebras

ι :M ↪→ Nalt
(
U(M)

)
.

Malcev algebras are examples of Bol algebras. The binary product[a, b] together with the
ternary product

[a, b, c] = [[a, b], c]− 1

3
J (a, b, c),

whereJ (a, b, c) = [[a, b], c] + [[b, c], a] + [[c, a], b], makeM a left Bol algebra [4].
Therefore, we may consider the universal enveloping algebra, that we will temporary d
note byUB(M) to avoid confusion, of this left Bol algebra.

Proposition 12. Under the above assumptions,UB(M) ∼= U(M).

Proof. The proof is based on the universal property ofUB(M) and the existence o
Poincaré–Birkhoff–Witt type bases. On the one hand,ι :M → U(M) maps M into
Nalt(U(M)) ⊆ LNalt(U(M)), andι([a, b]) = ab − ba. On the other hand,

a(bc) − b(ac) − c[a, b] = [[La,Lb],Lc

]
(1)

〈1〉= [
L[a,b] − 2[La,Rb],Lc

]
(1)

= [[a, b], c]− 2(a, b, c)
〈2〉= [[a, b], c]− 1

3
J (a, b, c)

= ι
([a, b, c]),
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where in 〈1〉 we have used that[La,Lb] = L[a,b] − 2[La,Rb] holds for anya, b ∈
Nalt(U(M)) [2], and〈2〉 follows from the identity

[[a, b], c]+ [[b, c], a]+ [[c, a], b]
= (a, b, c) − (a, c, b) + (c, a, b) − (b, a, c) + (b, c, a) − (c, b, a)

valid in any algebra [7]. Thus, by the universal property ofUB(M), there exists a ho
momorphism of unital algebrasϕ :UB(M) → U(M) with ϕ(a) = a for anya ∈ M. This
homomorphism maps the Poincaré–Birkhoff–Witt basis ofUB(M) onto the Poincaré
Birkhoff–Witt basis ofU(M), so it is an isomorphism.�
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