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J. M. Pérez-Izquierdo∗∗
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ABSTRACT

We show that the graded group associated to the dimension filtration on a

loop acquires the structure of a Sabinin algebra after being tensored with

a field of characteristic zero. The key to the proof is the interpretation

of the primitive operations of Shestakov and Umirbaev in terms of the

operations on a loop that measure the failure of the associator to be a

homomorphism.

1. Introduction

Let G be a group and

G = G1 ⊲ G2 ⊲ G3 ⊲ · · · ,

its lower central series. Then the graded group
⊕

Gi/Gi+1 ⊗Q is a Lie algebra

with the Lie bracket induced by the commutator on G. Its universal enveloping

algebra can be identified with the algebra associated to the filtration of the

group ring QG by the powers of its augmentation ideal [9].
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In this note we generalize these facts to arbitrary loops. It will be convenient

to speak of dimension series rather than the lower central series. For groups,

both series give rise to the same Lie algebra. However, while there are several

inequivalent ways of defining the lower central series for loops, the definition of

the dimension series extends to loops without any change.

Now it has become clear that appropriate generalization of Lie algebras to the

non-associative context are the Sabinin algebras (called “hyperalgebras” in [4]

and [8]). Sabinin algebras were initially introduced in [7] as tangent algebras to

local loops. Later, Shestakov and Umirbaev proved that in any (not necessarily

associative) bialgebra the set of primitive elements has the structure of a Sabinin

algebra [8]. In fact, it was shown in [6] that any Sabinin algebra can be described

as the set of primitive elements of some bialgebra.

Our constructions shed some light on the nature of the primitive operations

introduced by Shestakov and Umirbaev in [8]. It turns out that the primitive

operations in the free non-associative algebra are induced by the associator

deviations (in the sense of [5]) in the free loop.

In the appendix we show how the methods of this paper can be applied to the

associative case. We obtain a new point of view on the lower central series for

groups; this helps to clarify the analogy between the operations of Shestakov–

Umirbaev and iterated commutators.

2. Dimension subloops

A set L is called a loop if it is equipped with a multiplication L × L → L

satisfying

(a) for all a, b ∈ L there exist unique x and y such that ax = b and ya = b;

(b) there exists e ∈ L such that ea = ae = a for all a ∈ L.

The property (a) allows to speak of left and right division. These are binary

operations defined by b(b\a) = a and (a/b)b = a respectively. In general, one

cannot speak of inverses in loops; in particular, it may happen that a\x = b1x

and a\y = b2y with b1 6= b2. A homomorphism of loops is a map that respects

the multiplication.

Given a set V , the free loop F (V ) is defined by its universal property;

namely, that any map of the set V into a loop L can be uniquely extended to

a loop homomorphism F (V ) → L. Elements of F (V ) can be represented by

non-associative words formed from elements of V and the unit e by applying

the multiplication and both divisions. A non-associative word is reduced if

it does not contain multiplications or divisions by e, or subwords of the types
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(ab)/b, b\(ba), (a/b)b, b(b\a), b/(b\a) and (a/b)\b. For each element of F (V )

there exists the unique reduced word representing it. We refer to [1] and [2] for

more details on loops.

Let L be a loop, R a commutative unital ring, and RL the loop ring of L

over R. Denote by IL the augmentation ideal, that is, the kernel of the map

RL → R that sends
∑

aixi with ai ∈ R and xi ∈ L to
∑

ai. The ideal IL (or

simply I) is spanned over R by elements of the form x−1 with x ∈ L. Let ImL

be mth power of I, that is, the submodule of RL spanned over R by products

of at least m elements of I with any arrangement of the brackets.

Lemma 1: Let u ∈ Im and a ∈ L. Then au, u/a and a\u all lie in Im.

Proof: First, au = (a − 1)u + u ∈ Im. Next, u/a · ((a − 1) + 1) ∈ Im implies

u/a ∈ I as u/a · (a − 1) is in I. This, in turn, implies u/a ∈ I2 etc. The same

argument works for a\u.

Definition: The nth dimension subloop of L over R is the intersection

Dn(L,R) = L ∩ (1 + In).

We shall sometimes write Dn instead of Dn(L,R).

The set Dn is indeed a subloop of L. Let a = 1 + u, b = 1 + v with u, v ∈ In.

Clearly, ab is in Dn. To see that a/b belongs to Dn take x = a/b − 1. Then

1 + u = (1 + x)(1 + v) and x = (u − v)/b ∈ In. In the same manner one shows

that Dn is closed with respect to the left division.

It is clear that the dimension subloops are fully invariant subloops of L since

the augmentation ideal is mapped into itself by any endomorphism of RL.

3. The main theorem

In this section we shall assume that R = k is a field of characteristic zero. We

shall denote by D (or DL) the graded vector space

⊕
Dn(L,k)/Dn+1(L,k) ⊗ k

and by I (or IL) the graded algebra
⊕

InL/In+1L.

By a bialgebra we shall understand a unital, not necessarily associative

algebra A equipped with a non-trivial algebra homomorphism δ: A → A ⊗ A.

The homomorphism δ is referred to as comultiplication. An element x ∈ A is

called primitive if

δ(x) = 1 ⊗ x + x ⊗ 1.
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For any loop L the graded algebra I has a non-trivial comultiplication

I → I ⊗ I. Indeed, the loop algebra kL has a comultiplication δ that sends g

in L to g ⊗ g. Under δ the element g − 1 is sent to

(g − 1) ⊗ 1 + 1 ⊗ (g − 1) + (g − 1) ⊗ (g − 1)

and, hence, there is an induced comultiplication on the algebra
⊕

In/In+1.

There is an inclusion map of D into I given by sending x ∈ DnL to x−1 ∈ InL.

The image of the class of g − 1 is primitive for any g ∈ L.

The main result in this article is:

Theorem 2: The image of D in I coincides with the subspace of primitive

elements in I.

The set of the primitive elements of any bialgebra has the structure of a

Sabinin algebra [8]. In fact, if the bialgebra in question is primitively generated,

it can be identified with the universal enveloping algebra of the Sabinin algebra

of its primitive elements [6]. For any loop the algebra I is primitively generated

since it is generated by the classes of g − 1 ∈ I. Therefore, Theorem 2 can be

re-stated as follows:

Theorem 3: The graded vector space D is a Sabinin algebra whose universal

enveloping algebra is I.

For groups, Theorem 3 was first proved by Quillen [9]. Quillen’s result involves

the Lie algebra associated to the lower central series rather than the dimension

series; however, for groups these are isomorphic.

4. The dimension subloops of a free loop

Let xi ↔ x′
i be a bijection between two sets of variables V and V ′. Denote

by R[[V ′]] the R-algebra of formal power series in m non-associative variables

x′
1, . . . , x

′
m. The power series that start with 1 are readily seen to form a loop

R0[[V
′]] under multiplication.

Definition: The Magnus expansion is the homomorphism of the free loop

F (V ) on the generators x1, . . . , xm into R0[[V
′]] that sends the generator xi to

the power series 1 + x′
i.

We denote the Magnus expansion of x ∈ F (V ) by M(x). It follows from the

definition that

M(xi\1) = 1 − x′
i + x′

i

2
− x′

ix
′
i

2
+ x′

i(x
′
ix

′
i

2
) − · · ·
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and

M(1/xi) = 1 − x′
i + x′

i

2
− x′

i

2
x′

i + (x′
i

2
x′

i)x
′
i − · · · .

The elements of F (V ) whose Magnus expansion has no terms of non-zero

degree less than n form a normal subloop of F (V ). These subloops, in fact, are

precisely the dimension subloops:

Lemma 4: The Magnus expansion of x ∈ F (V ) begins with terms of degree n

if and only if x ∈ Dn(F (V ),R) and x /∈ Dn+1(F (V ),R).

The Magnus expansion can be extended linearly to the loop ring RF (V ). It is

clear that the Magnus expansion of any element of IF (V ) has no term of degree

zero, and, therefore, the expansion of any element of IkF (V ) starts with terms

of degree at least k. The converse is established with the help of the Taylor

formula for free loops.

Define ui ∈ I by ui = xi − 1. We shall call the ui monomials of degree

1 in RF (V ). A monomial of degree k in RF (V ) is a product (with any

arrangement of the brackets) of k monomials of degree 1.

Lemma 5 (The Taylor formula): Given a positive integer n, any x ∈ F (V ) can

be uniquely written as

x = 1 +
∑

j≤n,α

aj,αµj,α + r,

where µj,α are monomials of degree j, aj,α are elements of R and r ∈ In+1F (V ).

Let us first establish the existence of such formula for n = 1. For all the

generators xi it is obvious. Assume now that the set of such x ∈ F (V ) that

x−1 cannot be written as a linear combination of the ui modulo I2, is non-empty.

Let w be a reduced word of minimal possible length (number of operations used

to form the word) representing such x. If w = ab with a, b reduced words then

w − 1 = ab − 1 = ((a − 1) + 1)((b − 1) + 1) − 1 ≡ (a − 1) + (b − 1)mod I2

and we come to a contradiction since a and b are of smaller length then w.

Assume that w = a/b with a, b reduced words. Clearly, (a(1 − b))(1 − b) ∈ I2.

By Lemma 1

((a(1 − b))(1 − b))/b = a/b − a(1 − (b − 1))

is also in I2, hence

w − 1 = a/b − 1 ≡ a(1 − (b − 1)) − 1 ≡ (a − 1) − (b − 1)mod I2



110 J. MOSTOVOY AND J. M. PÉREZ-IZQUIERDO Isr. J. Math.

and we have a contradiction again. Similarly, w cannot be of the form b\a;

hence w − 1 is a linear combination of the ui modulo I2 for all w.

Now, since elements of the form g − 1 span I, it follows that any r ∈ Ik is of

the form

r =
∑

α

ak,αµk,α + r̃

where r̃ ∈ Ik+1F (V ); this establishes the existence of the Taylor expansion with

the remainder in In+1F (V ). The coefficients ai,α are uniquely defined as the

Magnus expansion of a monomial µ in RF (V ) starts with the monomial µ′,

obtained from µ by replacing each ui with x′
i. This proves Lemma 5. Lemma 4

follows immediately from Lemma 5.

5. Primitive operations and associator deviations

Let A be a bialgebra over a field of characteristic zero. Assume that A is

generated by a set S of its primitive elements. Then the space of all primitive

elements of A is the minimal vector subspace of A that contains S and is closed

with respect to the commutators and the primitive operations pr,s defined by

Shestakov and Umirbaev in [8].

Let x′
i, y′

j and z′ be variables from the set V ′. Denote by R(V ′) the free

non-associative algebra generated by V ′.

Let x′ = (· · · (x′
1x

′
2) · · ·)x

′
r and y′ = (. . . (y′

1y
′
2) . . .)y′

s where r, s ≥ 1. Specify-

ing the products x′ and y′ together with the numbers r and s is equivalent to

giving the sequences x′
i and y′

i. The operations

pr,s(x
′
1, . . . , x

′
r; y

′
1, . . . , y

′
s; z

′) = pr,s(x
′; y′; z′)

are defined by the formula

(x′y′)z′ − x′(y′z′) =
∑

x′
(1)y

′
(1) · pα,β(x′

(2); y
′
(2); z

′)

where the sum is taken over all decompositions of the sequences x′
1, . . . , x

′
r and

y′
1, . . . , y

′
s into complementary subsequences

x′
(1) = (. . . (x′

i1
x′

i2
) . . .)x′

ip
, x′

(2) = (. . . (x′
ip+1

x′
ip+2

) . . .)x′
ir

and

y′
(1) = (. . . (y′

j1
y′

j2
) . . .)y′

jq
, y′

(2) = (. . . (y′
jq+1

y′
jq+2

) . . .)y′
js

.

For example, if r = s = 1 the operation p1,1(x
′
1; y

′
1; z

′) is just the associator

(x′
1, y

′
1, z

′) = (x′
1y

′
1)z

′ − x′
1(y

′
1z

′).
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Also,

p2,1(x
′
1, x

′
2; y

′
1; z

′) = (x′
1x

′
2, y

′
1, z

′) − x′
1(x

′
2, y

′
1, z) − x′

2(x
′
1, y

′
1, z),

p1,2(x
′
1; y

′
1, y

′
2; z

′) = (x′
1, y

′
1y

′
2, z

′) − y′
1(x

′
1, y

′
2, z

′) − y′
2(x

′
1, y

′
1, z

′).

Consider the map

M̃: RF (V ) → R(V ′)

defined by taking the lowest-degree term of the Magnus expansion. Our method

of proving Theorem 2 consists in finding operations in the free loop F (V ) which

correspond to the operations pr,s in the free algebra under the above map.

Such operations were introduced in [5] under the name of associator devi-

ations. Associator deviations (or simply deviations) are functions from Ln+3

to L where L is an arbitrary loop and n is a non-negative integer called the

level of the deviation. There exists one deviation of level zero, namely the loop

associator

(a, b, c) = (a(bc))\((ab)c).

In general, there are (n + 2)!/2 associator deviations of level n. Given n > 0

and an ordered set α1, . . . , αn of not necessarily distinct integers satisfying

1 ≤ αk ≤ k + 2, the deviation (a1, . . . , an+3)α1,...,αn
is defined inductively by

(a1, . . . , an+3)α1,...,αn
:= (A(aαn

)A(aαn+1))\A(aαn
aαn+1),

where A(x) stands for (a1, . . . , aαn−1, x, aαn+2, . . . , an+3)α1,...,αn−1
. In particu-

lar, there are three deviations of level one:

(a, b, c, d)1 = ((a, c, d)(b, c, d))\(ab, c, d),

(a, b, c, d)2 = ((a, b, d)(a, c, d))\(a, bc, d),

(a, b, c, d)3 = ((a, b, c)(a, b, d))\(a, b, cd).

Let us write Pm,n(a1, . . . , am, b1, . . . , bn, c) for the deviation

(a1, . . . , am, b1, . . . , bn, c)1, . . . , 1︸ ︷︷ ︸
m−1

,m + 1, . . . , m + 1︸ ︷︷ ︸
n−1

.

Proposition 6: In a free loop generated by x1, . . . , xm, y1, . . . , yn and z

M(Pm,n(x1, . . . , xm, y1, . . . , yn, z))

= 1 + pm,n(x′
1, . . . , x

′
m; y′

1, . . . , y
′
n; z′) + O(n + m + 2)
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where O(n + m + 2) consists of terms of degree at least n + m + 2, each term

containing all the variables x′
i, y

′
i and z′ at least once.

A similar statement holds for the commutators:

Proposition 7: In a free loop generated by x1 and x2, the Magnus expansion

of the loop commutator (x2x1)\(x1x2) is of the form

1 + x′
1x

′
2 − x′

2x
′
1 + O(3)

where O(3) consists of terms of degree 3 and more, each term containing x′
1 and

x′
2 at least once.

To prove Proposition 7 note that

(1 + x′
1 + x′

2 + x′
2x

′
1)M((x2x1)\(x1x2)) = 1 + x′

1 + x′
2 + x′

1x
′
2.

Denote by mk the terms of degree k in the Magnus expansion of (x2x1)\(x1x2).

Then, if k > 2 we have

mk + (x′
1 + x′

2)mk−1 + (x′
2x

′
1)mk−2 = 0.

It follows that if mk−1 contains both variables, mk also does. Calculation shows

that m2 = x′
1x

′
2 − x′

2x
′
1 and Proposition 7 follows.

The proof of Proposition 6 is more complicated; it is given in the next section.

Here we show how Proposition 6 implies Theorem 2.

First, let us establish Theorem 2 for finitely generated free loops. Consider

the filtration on k(V ′) by be subspaces of elements of degree at least i. The

graded algebra associated to this filtration is clearly k(V ′) itself. The map M̃,

when restricted to IF (V ), becomes a homomorphism of algebras. It maps the

generators xi − 1 of IF (V ) to the generators x′
i of the algebra k(V ′). Since

k(V ′) is free, M̃ gives an isomorphism between IF (V ) and k(V ′).

Now, assume that all primitive elements of IF (V ) of degree less than k are

contained in D; this is certainly true for k = 2. Any primitive element of degree

k is a linear combination of terms of the form pα,β(u1, . . . , uα; v1, . . . , vβ ; w) and

[u, v] where u, v, ui, vi, w are primitive elements of IF (V ) of degree smaller than

k. Without loss of generality we can assume that these elements belong to
⊕

Di/Di+1 ⊂ DF (V ) ⊂ IF (V );

this implies that there exist û, v̂, ûi, v̂i and ŵ in the loop F (V ) such that

M̃(û) = u and similarly for v, ui, vi and w. Now, by Proposition 6

M̃(Pα,β(û1, . . . , ûα; v̂1, . . . , v̂β ; ŵ) = pα,β(u1, . . . , uα; v1, . . . , vβ; w).
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Also, by Proposition 7

M̃((v̂û)\(ûv̂)) = [u, v],

and, hence, any primitive element of degree k also belongs to D.

Now, let L be an arbitrary loop. Any primitive element u of IL can be ob-

tained from a finite number of elements (say, m) of the form gi − 1 ∈ IL/I2L

with gi ∈ L, by applying commutators, the pα,β’s and taking linear combina-

tions. Consider the homomorphism of the free loop F (V ) on m generators to L

that sends the generators of F (V ) to the gi. It is clear that u is the image of a

primitive element w ∈ IF (V ) under the induced map IF (V ) → IL. However,

since w is in the image of DF (V ) inside IF (V ) we see that u is in the image of

DL inside IL.

6. Proof of Proposition 6

Given a subset S′ ⊆ V ′, we shall say that a monomial in k[[V ′]] is balanced

(with respect to S′) if it contains each element of S′ at least once. For S ⊆ V ,

we shall say that an element φ ∈ F (S) is balanced (with respect to S) if every

non-zero term in M(φ) − 1 is balanced with respect to S′.

Lemma 8: Given a balanced φ ∈ F (S), x ∈ S (so φ = φ(x)) and y ∈ V \S then

the expression

φ(x, y) = (φ(x)φ(y))\φ(xy) ∈ F (S ∪ {y})

is balanced with respect to S ∪ {y}.

Proof:

M(φ(xy)) − 1 = (M(φ(x)) − 1) + (M(φ(y)) − 1) + M ′

where M ′ is an (infinite) sum of balanced monomials. Hence,

M(φ(x, y)) − 1 = (M(φ(x))M(φ(y)))\(M ′ − (M(φ(x)) − 1)(M(φ(y)) − 1)).

It follows that all the monomials contained in M(φ(x, y)) − 1 with non-zero

coefficients are balanced. Indeed, all of the monomials in the lowest-degree

term of M(φ(x, y)) − 1 are balanced since every monomial in

M ′ − (M(φ(x)) − 1)(M(φ(y)) − 1)

is balanced. It follows that all the other terms of M(φ(x, y)) − 1 are balanced

since they are expressed via the lowest-degree term with the help of a recurrent

relation.
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Given f ∈ k[[V ′]], let LS′(f) be the part of f which contains all the variables

in S′ with multiplicity one, but no variables in V ′\S′. Similarly, given φ ∈ F (V ),

LS(φ) will stand for LS′(M(φ)).

Lemma 9: Let S ⊆ Ŝ ⊆ V with |S| ≥ 2, x ∈ S and y ∈ V \ Ŝ. Given

φ = φ(x) ∈ F (S) balanced, φ(x, y) as above and w ∈ F (Ŝ) then

L
Ŝ∪{y}(φ(w, y)) = L

Ŝ∪{y}(φ(wy)).

Proof: First we decompose S = {x}⊔S0 (⊔ denotes disjoint union), M(φ(x)) =∑
I AI(x) with I the multidegree of AI(x) on S′

0 and M(φ(x, y))=
∑

K AK(x, y).

With this notation we have that

AM (xy) =
∑

I+J+K=M

(AI(x)AJ (y))AK(x, y).

Hence,

AM (x, y) = AM (xy) − AM (x) − AM (y) −
∑

I+J+K=M;

I,J,K 6=M

(AI(x)AJ (y))AK(x, y)

and, since φ(x) and φ(x, y) are balanced,

A(1,...,1)(x, y) = A(1,...,1)(xy) − A(1,...,1)(x) − A(1,...,1)(y).

Therefore, using that L
Ŝ′∪{y′}(A(1,...,1)(w)) = 0 and L

Ŝ′∪{y′}(A(1,...,1)(y)) = 0,

we get

L
Ŝ∪{y}(φ(w, y)) = L

Ŝ′∪{y′}(A(1,...,1)(w, y))

= L
Ŝ′∪{y′}(A(1,...,1)(wy)) = L

Ŝ∪{y}(φ(wy))

as desired.

Now we are in the position to prove Proposition 6. It follows from Lemma 8

that Pm,n(x1, . . . , xm, y1, . . . , yn, z) is balanced with respect to the set

S = {x1, . . . , xm, y1, . . . , yn, z}.

Therefore it suffices to show that

LS(Pm,n(x1, . . . , xm, y1, . . . , yn, z)) = pm,n(x′
1, . . . , x

′
m; y′

1, . . . , y
′
n; z′).

Set x′ = ((x′
1x

′
2) · · ·)x

′
m, y′ = ((y′

1y
′
2) · · ·)y

′
n, and, similarly, x = ((x1x2) · · ·)xm

and y = ((y1y2) · · ·)yn. As a corollary of Lemma 9 we have

LS(Pm,n(x1, . . . , xm, y1, . . . , yn, z)) = LS((x, y, z)).
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Since (xy)z = x(yz) · (x, y, z), we have

LS((xy)z)) =
∑

S1⊔S2=S

LS1
(x(yz))LS2

((x, y, z))

with the convention L∅(·) = 1. The right–hand side of this equality is

x′(y′z′) +
∑

S1⊔S2=S\{z}

LS1
(xy)LS2⊔{z}((x, y, z))

since z′ appears in any term of positive degree of M((x, y, z)). Moreover, setting

p̂(x′
i1

, . . . , x′
ik

, y′
j1

, . . . , y′
jl

, z′) = L{x′
i1

,...,x′
ik

,y′
j1

,...,y′
jl
}(M((x, y, z)))

and p̂(1, ·, z′) = p̂(·, 1, z′) = p̂(1, 1, z′) = 0, we obtain

(x′y′)z′ − x′(y′z′) =
∑

S1⊔S2=S\{z}

LS1
(xy)LS2⊔{z}((x, y, z))

=
∑

(x′
(1)y

′
(1))p̂(x′

(2), y
′
(2), z

′),

which shows that the operators p̂ agree with the primitive operations of Shes-

takov and Umirbaev since they satisfy the same recurrence and initial condi-

tions. Therefore,

LS((x, y, z)) = p̂(x′
1, . . . , x

′
m, y′

1, . . . , y
′
n, z′) = pm,n(x′

1, . . . , x
′
m; y′

1, . . . , y
′
n; z′).

7. Miscellaneous remarks

1. All the results of this paper can be stated without change for left loops

(binary systems with left division and a two-sided unit) since the definition of

the associator deviations does not involve right division.

2. If all elements of a loop L satisfy some identity, then the bialgebra I satisfies

a “linearized” version of the same identity. In particular, if L is Moufang loop,

DL is readily seen to be a Malcev algebra. Similarly, if L is a Bol loop, DL is

Bol algebra.

3. Our results are stated only over fields of characteristic zero since the neces-

sary general results from the theory of non-associative algebras are only avail-

able for such fields. In particular, the notions corresponding to Lie rings and

restricted Lie algebras are not yet axiomatized. It is clear, however, that the

direct sum
⊕

Di(L,R)/Di+1(L,R) always has a rich algebraic structure. Using

the same argument as in the proof of Lemma 8 one sees that
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• [Dp, Dq] ⊂ Dp+q;

• (Dp, Dq, Dr) ⊂ Dp+q+r;

• (Dp1
, . . . , Dpn

)α1,...,αn−3
⊂ Dp1+···+pn

for all combinations α1, . . . , αn−3.

Therefore,
⊕

Di(L,R)/Di+1(L,R) carries multilinear operations induced by

the commutator and the associator deviations, and all these operations respect

the grading.

4. For groups, the dimension filtration is closely related to the lower central

series. In particular, the Lie algebras over the field of rational numbers, associ-

ated to both filtrations, are isomorphic. This is no longer true for general loops,

at least if one uses Bruck’s definition of lower central series [1]. Instead, the

dimension filtration is related to the commutator-associator filtration [5]; this

connection will be discussed elsewhere.

5. A series closely related to the dimension series for loops (with R a finite

field) has appeared in [3] under the name of subtree series. In particular, the

subtree series for the loop F/Dn(F,R), where F is a free loop, is exactly the

dimension series. The connection between the subtree-counting process of [3]

and the dimension series becomes clear if one notices that the Magnus expansion

of a word in a free loop that is formed using only multiplications, is just the

sum of all its subwords.

8. Appendix. Deviations in groups

The appearance of deviations in nilpotency theory may seem to be a specific

feature of the non-associative case. In fact, the usual lower central series for

groups can be constructed using deviation-like operations. These deviations are

defined using the function f(x) = x2 instead of the associator.

Namely, let the x2-deviation be the function

{a, b}1 = b−2a−2(ab)2.

The two x2-deviations of the second level are defined as

{a, b, c}11 = {b, c}−1
1 {a, c}−1

1 {ab, c}1

and

{a, b, c}12 = {a, c}−1
1 {a, b}−1

1 {a, bc}1.

In general, given n > 0, called level and an ordered set α1, . . . , αn of not neces-

sarily distinct integers satisfying 1 ≤ αk ≤ k, the deviation {a1,. . . ,an+1}α1,...,αn
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is defined inductively by

{a1, . . . , an+1}α1,...,αn
:= A(aαn+1)

−1A(aαn
)−1A(aαn

aαn+1),

where A(x) stands for {a1, . . . , aαn−1, x, aαn+2, . . . , an}α1,...,αn
.

Let G be an arbitrary group and n — a positive integer.

Proposition 10: The subgroup of G generated by all x2-deviations of level

n coincides with γn+1G — the n + 1st term of the lower central series of G.

The x2-deviations of the form {a1, a2 . . . , an+1}11···1 are sufficient to generate

γn+1G.

Notice that for n = 2 this is rather obvious since the group commutator of a

and b is equal to {b−1ab, b}1.

It is sufficient to prove Proposition 10 for the case when G is finitely generated

and free. For free groups the dimension series coincides with the lower central

series and one can use the Magnus expansion. An analogue of Lemma 8 is

valid in the associative setup, so every x2-deviation of level n belongs to γn+1G.

Proposition 6 is replaced by the following statement:

(1) M({x1, x2, . . . , xn, z}11···1) = 1 + [. . . [[z′, x′
1], x

′
2], . . . , x

′
n] + O(n + 2).

This formula implies that the groups γiG/γi+1G are generated by the classes

of the deviations of the form {a1, . . . , ai}1···1. Moreover, the subgroups gen-

erated by deviations of such form are normal, being verbal subgroups; hence,

Proposition 10 follows.

The formula (1) can be proved in the same fashion as Proposition 6 and we

do not repeat the argument. The key point is the identity

(2) z′x′ − x′z′ =
∑

x′
(1)qα(x′

(2); z
′)

where x′ = x′
1x

′
2 · · ·x

′
n, the sum is taken over all decompositions of the sequence

x′
1x

′
2 · · ·x

′
n into two complementary subsequences whose products are x′

(1) and

x′
(2) respectively and qk(x′

1x
′
2 · · ·x

′
k; z′) is the iterated commutator

[. . . [[z′, x′
1], x

′
2], . . . , x

′
k].

This identity shows that the iterated commutators in associative algebras can be

defined in the same way as the Shestakov–Umirbaev operations, starting with

the commutator instead of the associator.
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To establish (2), use induction on n. Let x′
∗ = x′

1x
′
2 · · ·x

′
n−1, and assume that

for x′
∗ the identity (2) holds. Then the right-hand side of (2) can be written as

∑
x′
∗(1)[q(x

′
∗(2); z

′), x′
n] +

∑
x′
∗(1)x

′
nq(x′

∗(2); z
′) + x′

∗[z
′, x′

n]

= [z′, x′
∗]x

′
n + x′

∗[z
′, x′

n] = [z′, x′].
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[6] J. M. Pérez-Izquierdo, Algebras, hyperalgebras, nonassociative bialgebras and

loops, Advances in Mathematics, to appear.

[7] L. Sabinin, P. Mikheev, Infinitesimal theory of local analytic loops. (Russian),

Doklady Akademii Nauk SSSR 297 (1987), 801–804; translation in Soviet Math-

ematics Doklady 36 (1988), 545–548.

[8] I. Shestakov and U. Umirbaev, Free Akivis algebras, primitive elements, and

hyperalgebras, Journal of Algebra 250 (2002), 533–548.

[9] D. Quillen, On the associated graded ring of a group ring, Journal of Algebra 10

(1968), 411–418.


