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APPLICATIONS OF SIMPLICIAL M-SETS
TO PROPER AND STRONG SHAPE THEORIES

L. J. HERNANDEZ PARICIO

ABSTRACT. In this paper we have tried to reduce the classical classification prob-
lems for spaces and maps of the proper category and of the strong shape category
to similar problems in the homotopy category of simplicial sets or in the homo-
topy category of simplicial M-sets, which M is the monoid of proper selfmaps
of the discrete space N of nonnegative integers.

Given a prospace (prosimplicial set) Y , we have constructed a simplicial set

Y such that the Hurewicz homotopy groups of ZY are the Grossman
homotopy groups of Y . For the case of the end prospace Y = ¢X of a space
X , we obtain Brown’s proper homotopy groups; and for the Vietoris prospace
Y = VX (introduced by Porter) of a compact metrisable space X , we have

Quigley’s inward groups. The simplicial subset ?R Y of atower Y contains, as

a simplicial subset, the homotopy limit lim® Y . The inclusion imR ¥ — 7y
induces many relations between the homotopy and (co)homology invariants of
the prospace Y .

Using the functor .@R we prove Whitehead theorems for proper homotopy,
prohomotopy, and strong shape theories as a particular case of the standard
Whitehead theorem. The algebraic condition is given in terms of Brown’s proper
groups, Grossman’s homotopy groups and Quigley’s inward groups, respectively.
In all these cases an equivalent cohomological condition can be given by taking
twisted coefficients.

The “singular” homology groups of .@R Y provide homology theories for the
Brown, Grossman and Quigley homotopy groups that satisfy Hurewicz theorems
in the corresponding settings. However, there are other homology theories for
the homotopy groups above satisfying other Hurewicz theorems.

We also analyse the notion of Z-movable prospace. For a Z-movable
tower we prove easily (without lim' functors) that the strong homotopy groups
agree with the Cech homotopy groups and the Grossman homotopy groups are
determined by the Cech (or strong) groups by the formula ¢rn, = P#x, . This
implies that the algebraic condition of the Whitehead theorem can be given in
terms of strong (Cech) groups when the condition of Z-movability is included.

We also study homology theories for the strong (Steenrod) homotopy groups
which satisfy Hurewicz theorems but in general do not agree with the corre-
sponding Steenrod-Sitnikov homology theories.
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0. INTRODUCTION

The main purpose of this paper is to reduce as far as possible the study of
proper homotopy theory and strong shape theory to notions and problems of
standard homotopy theory. To reach this aim we will use the following tools:

(1) The notion of closed simplicial model category, introduced by Quillen
[Q.1], will be used to work with categories obtained when one divides by ho-
motopy relations or when one inverts weak equivalences.

(2) We consider the category SS of simplicial sets and the category S(Sy,) of
simplicial M-sets. An M-set is a set together with the action of a monoid M .
Both categories SS, S(Sy) are provided with structures of closed simplicial
model categories.

(3) One of the most useful categories to study proper and strong shape theory
is the closed simplicial model category of prospaces.

For the proper category at infinity, the Edwards-Hastings functor & gives
a full embedding of the proper homotopy category at infinity of 75 locally
compact, g-compact spaces into the localized category of prospaces obtained
by inverting the weak equivalences considered by Edwards and Hastings in [E-
H]. There is a similar version for global proper maps and homotopies by taking
global (or augmented) prospaces. For strong shape theory, one can use the
Vietoris functor V', introduced by Porter [P.1, P.5], that gives a full embedding
of the strong shape category into the “homotopy category” of prospaces.

(4) We define “singular” functors from proper categories and procategories
to simplicial M-sets, and realization functors from simplicial M-sets to the
category of prospaces and from adequate full subcategories of simplicial M-
sets to the category of spaces and proper maps.

One of the main results of this paper is the construction of a simplicial set

?RX , associated with a pro-simplicial set X, that retains many homotopy
properties of X . The simplicial set P"X contains as a simplicial subset the
homotopy limit, lim® x ,of X.

The Hurewicz homotopy groups of lim® Y are the strong homotopy groups
of the prosimplical set Y . For the case Y = ¢X one gets the strong groups in
the proper setting, and for the case Y = VX one has the approaching groups
of Quigley [Quig, P.6].

In this paper, we prove that the Hurewicz homotopy groups of ?R Y are the
Grossman homotopy groups of the prospace Y. For Y = ¢X one has Brown’s
proper homotopy groups and for Y = VX we have the “inward” groups of
Quigley [Quig, P.6].

In the proper setting, the simplicial set ?ReX can be interpreted as the
simplicial set of sequences of singular g-simplexes converging to infinity. We

—R . .
can also look at & ¢X as the mapping space of sequences of points of X
converging to infinity provided with an adequate topology. If X is a compact
metrisable space, it can be considered up to homeomorphism as a subspace
of the pseudointerior of the Hilbert cube Q. We can then interpret ?RVX
as the simplicial set of sequences of singular g-simplexes of Q converging to
X . Nevertheless, it is also possible to interpret ?R VX as the simplicial set
Lof-SiBglats dosim plexesiOf i X neORYESgNEG10..X , which is the same as the
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simplicial set of singular g-simplexes of Q — X converging to infinity. That is,
ZVX is isomorphic to ﬁRs(Q — X) in the homotopy category.

This paper has been divided into 10 sections. The first part, §§1 through 6, is
devoted to developing the technical tools. Section 7 establishes the relationships
between simplicial M-sets and simplicial complexes, where M is the monoid
of proper selfmaps of the discrete space of natural numbers. The last part,
§§8, 9 and 10, contains applications to proper homotopy theory, prohomotopy
theory and strong shape theory.

Section 2 is devoted to analysing the closed simplicial model structure of
simplicial M-sets that will be used in this paper. In §3, we analyse realization
and singular functors for simplicial M-sets. Let A denote the standard category
whose objects are finite ordered sets of the form [¢g]={0< 1< --- < ¢} and
the morphisms are monotone maps. Let % be the category of left M-objects
in & . Associated with a functor x: A — % , we consider a realization functor
Ry: S(Su) — & and a singular functor S,: & — S(Su) . The construction of
the realization functor depends of the existence of colimits in % . One of the
categories & that we consider is the category Pro of spaces and proper maps.
The category Pro has only some colimits, and for this reason, in §3 we include
some lemmas about the existence of colimits.

If we consider the monoid M = Pro(N, N), we take as a “proper” g-simplex
a space of the form N x |A[g]]. Given a proper map ¢: N — N, we can attach
N x |8;A[q]| to Nx |A[g— 1]] in such a way that {n} x |9;A[q]| is identified with
{p(n)} x|A[lg — 1]| . Therefore if we have a simplicial M-set N, whose monoid
structure is freely generated by a finite number of simplexes, we can construct
a space R,N taking a “proper” simplex associated with each generator of N
and gluing the different “proper” simplexes in the way indicated above. The
full subcategory of this kind of simplicial M-sets is denoted by S(Sy/ff)/fd
(ff =freely generated by a finite set, fd = finite dimension). In general the
realization of a simplicial map of S(Sys) is not proper, but the realization of a
simplicial map of S(Sy/ff)/fd is proper.

The main result of §4 establishes that if N is an object of S(Sa/ff)/fd
which is cofibrant and Y is a topological space, then the set of proper homotopy
classes mo(Pro)(R,N, Y) is isomorphic to the hom-set Ho(S(Sx))(N, S,Y).
It is interesting to remark that in §7 we have proved that a locally finite simplicial
complex X which has finite dimension and a countably infinite number of
simplexes is always of the form X = R,N.

For the category proS.sS, we think of as a g-simplex, the pro-simplicial set
cAlg] which is defined by cA[q](i) = 3_;5;Alq], i € N. Similar notions of g¢-
simplex are considered for global prosimplicial sets and for the corresponding
pointed cases. Associated with these g-simplexes, there are a realization functor
R, :S(Sm,) — proSS and a singular functor S, : proSS — S(Su,.) -

In 1975, E. M. Brown [Br.1] defined the proper homotopy groups 2 e (X)
of a g-compact space X with a base ray. He also considered a functor Z:
tow Gps — Gps which carries the tower of homotopy groups, m,eX , of a tower
of neighbourhoods of X at infinity to the homotopy group Bng"(X ). For
the case ¢ =0, & is a functor from tow Set, to Set.. Here we consider new
versions of the & functor which are of the form pro Set — Sete.., proSet, —

LiS@E geegorigh: PEAKIPS appipio C3PSuppyzes r@tOwn Theyneweversions are provided with the
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additional structure of the action of a monoid (Pcx, PcS%) or a near-ring
PcL.

Using the shorter notation S = Set, S. = Set., the functor &: proS —
S#c. induces a functor SZ: SproS — S(S»..) and we have the composite

proSS £s proS 52 S(S#c+) , where F is naturally defined. The main result
of §5 establishes that SZF is isomorphic to the “singular” functor S, . That
is, Sy.. is an extension of the & functor and, for this reason, the functor S,
is also denoted by &£ .

The inverse limit functor lim: towSS — SS is related with the functor
P: towSS — S(Sxz..) in the following way: There is an element sh in the
monoid Pcx such that the simplicial subset FpX = {x € #X|xsh = x} of
elements fixed by sh is isomorphic to lim X, where X is an object in towSS'.

Section 6 contains the main technical results of this paper. It is well known
that the homotopy inverse limit, holim, can be defined as a right-derived functor
of the lim functor. We prove that the functor #: proSS — pro.S(S«..) has a
right-derived functor ZR: Ho(proSS) — Ho(S(Sx..)) . The relation above be-
tween lim and % induces the formula lim® X = F, #RX = {x € #RX|xsh =
x} where X is an object in towSS.

We summarize the results of §6 by saying that there is a pair of adjoint
functors

_7L
Ho(pro SS)‘;_R Ho(S(Szcs)) -

that can be composed with the pair of adjoint functors (given in §2)

—®Pcx

Ho(S(Szc.)) —> Ho(SS)

to obtain the new pair

—?L

Ho(pro SS) = Ho(SS).
P

A first consequence of the existence of these pairs of adjoint functors is that

the Hurewicz homotopy groups of ?RX (X is an object in proSS) are iso-
morphic to the Grossman homotopy groups of X . We also prove that n, and

P “commute”; that is, nq?RX = ﬁan . This proves Brown’s result that P
carries the towers of homotopy groups, n,eX , to the proper homotopy groups,
Bpo X . As a second consequence, we will translate some classical theorems of
standard homotopy theory to prohomotopy theory.

Section 8 is devoted to obtaining some applications to proper homotopy the-
ory. We use the functors R, and S, to transform classical theorems of standard
homotopy theory into similar theorems in the proper setting. We analyse two
Examples. In the first the proper Whitehead theorem is proved as a particular
case of the standard Whitehead theorem. We also remark that the cohomol-
ogy version of the Whitehead theorem with twisted coefficients implies a coho-
mology version in the proper setting. In the second example, we see how the
standard Hurewicz theorem ileies a Hurewicz theorem in the proper category.

License or copyright restrictions may apply to re;iatribution; see

This method also provides a prc;pps)@%agiﬂ% ?)mél}l'e T ’%g?y for the Brown proper ho-
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motopy groups. However, there are other proper homology theories that also
satisfy Hurewicz theorems for the Brown proper groups see—Remark 3 after
Theorem 7.3. In this section we also analyse the relation between the proper
singular functor, the right-derived functor of the % functor and the Edwards-
Hastings functor &. As a consequence of this relation, we obtain a partial
version of the Edwards-Hastings embedding theorem for the proper category.

In §9, we have developed some applications to prohomotopy theory. We
introduce the notion of .#-cofibrant prospace (or prosimplicial set). The class
of .#-cofibrant prospaces contains the end prospace ¢X of a finite-dimensional
simplicial complex and Porter’s Vietoris prospace V' X of a compact metrisable
space X which has finite covering dimension. Therefore any result about .#-
cofibrant prospaces has interpretations in the proper and in the strong shape
settings. In this section, we establish a Whitehead theorem for the class of .#-
cofibrant prospaces. Using the functors .~ and R, we obtain this result as
a particular case of the standard Whitehead theorem. The algebraic condition
of the theorem is given in terms of the Grossman homotopy groups. There is
also an equivalent cohomology condition.

We also introduce a notion of Z’-movability that in general is weaker than
the notion of movable given in [E-H]. We give an easy proof (without using
lim' functors) that for Z-movable towers, the strong (Steenrod) homotopy
groups are isomorphic to the Cech homotopy groups and the Grossman groups
are also determined by the formula %z, = P (Sn,). Therefore for .#-cofibrant
ZP-movable towers the algebraic condition of the Whitehead theorem can be
expressed in terms of strong (Steenrod) homotopy groups or Cech homotopy
groups.

Section 10 is devoted to obtaining some applications to strong shape theory.
Recall that the Grossman homotopy groups of the prospace V' X are the Quigley
[Qui] inward groups (see also [P.6]). Using the functor z" , the Quigley in-
ward groups are interpreted as the Hurewicz homotopy groups of the simplicial

set ?R VX . Therefore defining the homology groups of X as the “singular”

homology of Zvx , we obtain a homology theory that satisfies the Hurewicz
theorem for the Quigley inward groups. Nevertheless, in Remark (4) after Def-
inition 10.1, we suggest other homology theories for the Quigley inward groups.
In general Hq?R VX is not isomorphic to Z?H,V X, but there are other ho-
mology theories such that H “commutes” with the % functor.

It is also known that the strong (Steenrod) homotopy groups of the prospace
VX are the Quigley approaching groups. Using the functor R we have
that the Quigley approaching groups of a compact metrisable space X are the
Hurewicz homotopy groups of F;, 2RV X . Therefore we obtain a Hurewicz the-
orem if we define the homology of X as the “singular” homology of
Fy PRV X . This gives a nice homology for Quigley’s approaching groups that
is not isomorphic to the strong (Steenrod) homology groups used by Kodama
and Koyama [K-K] to obtain a Hurewicz theorem for these groups.

We finish the paper by giving a Whitehead theorem for the strong shape
category in terms of Quigley inward groups. For the case of .%-movable spaces
the algebraic condition can also be given in terms of Quigley approaching groups

Lw@whggmrﬁfp’s'may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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1. CLOSED SIMPLICIAL MODEL CATEGORIES

The tool used in this paper is the notion of closed simplicial model category.
We refer the reader to [Q.1] and [Q.2], which contain the necessary definitions,
examples, and the main properties of this structure.

Given a solid arrow diagram in a category C

A—L-x

I

B—g>Y

it is said that i has the left lifting property (LLP) with respect to p and p is
said to have the right lifting property (RLP) with respect to i if there exists a
map h: B — X such that hi= f and ph=g.

A closed model category is a category C endowed with three distinguished
families of maps, called cofibrations, fibrations, and weak equivalences, satisfy-
ing certain axioms.

These axioms were considered in [Q.1], and an equivalent but different for-
mulation was given in [Q.2].

Given a closed model category C, the homotopy category Ho(C) is obtained
from C by formally inverting all the weak equivalences (see [Q.1] and [G-Z]).

A simplicial category is a category C endowed with a functor Hom¢: C°P x
C — SS satisfying the axioms given in [Q.1]; in particular we have that
Homc(X, Y)o = C(X, Y). Associated with a simplicial category C, we have
the category moC which has the same objects as C and the hom-set defined by
noC(X,Y) = npHom¢ (X, Y), where mp Hom(X, Y) is the set of connected
components of the simplicial set Hom¢ (X, Y).

A closed simplicial model category is a simplicial category which is also a
closed model category and satisfies certain axioms, see [Q.1]. For a finite sim-
plicial set K a closed simplicial category C is provided with objects X ® K,
XK for any object X in C. Associated with these objects, there are the fol-
lowing isomorphisms:

Hom¢(X ® K, Y) 2 Homgs(K , Home(X, 1)),
Hom¢(X, YX) = Homgg(K , Home(X, Y)).

Suppose that C is a closed simplicial model category and @ denotes the
initial object and * denotes the final object. An object X is said to be cofibrant
if the unique map @ — X is a cofibration, and an object Y is said to be fibrant
if the unique map Y — x* is a fibration.

The main relation between the categories 7oC and Ho C is given through
cofibrant and fibrant objects: If X is cofibrant and Y is fibrant, then

7C(X, Y) =2 HoC(X, Y).

It is said that C is a pointed category if both the initial and final objects exist
and are isomorphic. In this case, for two objects X, Y in C, we always have
the zero map *: X — Y that defines a 0-simplex of Hom¢ (X, Y). Therefore
tepee ATt tiavegenaceral fatictore Hugens @ @sa§.S, |



SIMPLICIAL M-SETS 369

Examples. (1) The category SS of simplicial sets. Let A[n] denote the stan-
dard n-simplex, A[n] the simplicial set generated by the faces of A[n], and
V(n, k) for 0 < k < n > 0 the simplicial subset of A[n] generated by the
(n — 1)-faces 8;: A[n — 1] — A[n] with 0 < i < n and i # k. A map
f: X — Y is said to be a fibration if for all » > 0 it has the RLP with
respect to V(n, k) — A[n], 0 <k <n. Amap f: X — Y issaid to be a
trivial fibration if f has the RLP with respect to A[n] — A[n], n > 0. A
map i: A — B is said to be a cofibration (resp. trivial cofibration) if i has
the RLP with respect to any trivial fibration (resp. fibration). A map f is said
to be a weak equivalence if f can be factored as f = pi where i is a trivial
cofibration and p is a trivial fibration.

Given a simplicial set K, the object X ® K is definedtobe X®K = X xK.

The functor Homgg: SS°° x SS — SS is defined by Homgg(X, Y), =
SS(X ® A[n], Y). The object XX is defined by XX = Homgg(K, X).

The category of pointed simplicial sets SS. is also a closed simplicial model
category. If we consider the functor ( )*:SS — SS. which carries X to
X Ux, we have that ( )* is the left adjoint of the forgetful functor U: SS, —
SS. A map f is said to be a fibration (resp. weak equivalence) if Uf is a
fibration in SS (resp. weak equivalence). A map is a cofibration if it has the
LLP with respect to trivial fibrations.

For objects X in SS, and K in SS, define

XK= X x KY/((X x*)U (xx KT)).
Homgg, : S5t x SS. — SS. is defined by
HomSS. (X> Y)n = SS*(X ®A[n]3 Y)a

and XK = Homss_(K+ , X) .

(2) The category Top of topological spaces. Let R: SS — Top and S: Top
— SS be the realization and singular functors, respectively. Amap f: X - Y
in Top is said to be a fibration (weak equivalence) if Sf is a fibration (weak
equivalence) in SS. A map i: 4 — B is a cofibration if i has the LLP with
respect to trivial fibrations. Given a finite simplicial set K and a topological
space X , the objects X ® K and XX are defined by

X®K=XxRK, XX = Top(RK , X),

where RK is the realization of K and Top(RK, X) is the mapping space of
continuous maps from RK to X endowed with the compact-open topology.
The functor Homrep: Top® x Top — SS is defined by

Homrtep(X, Y), = Top(X x RA[n], Y).

The category Top, of pointed spaces also admits a closed simplicial model
structure. In this case for a given simplicial set K and a pointed space X, the
objects X ® K and XX are defined by

X®K =X x(RK)"/((X x %) U (* x (RK)*)),
XX = Top, ((RK)*, X),

where (RK )+ is the disjoint union of RK and the one-point space (x).

Llcensg orzopynglr}t resmctlons plyg st%‘unon see so//w(v)\I\tv) ;sjournal 19% Of- uséSSOCiated With a Category
, We can consider the category pro C ‘introduced by A. Grothendieck [Gro].
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A study of some properties of this category can be found in the appendix of
[A-M], the monograph [E-H], or the books [M-S] and [C-P].

The objects of pro C are functors X: I — C, where I is a small left filtering
category and the set of morphisms from X: I — C to Y:J — C is given by
the formula

proC(X, Y)=Ilimcolim C(X;, Y;).
Jj i

Edwards and Hastings [E-H] have proved that if C has the structure of a
closed simplicial model category and C satisfies the condition N (see [E-H,
page 45]), then pro C inherits a natural structure of a closed simplicial model
category. For a given finite simplicial set K and an object X = {X;} of proC,
the objects X ® K and XX are defined by

(X} ®K={X;®K}, {X;}¥={xK}.
The functor Homy,c: (pro C)° x proC — S is defined by
Hompo (X, Y), =proC(X ® A[n], Y).

2. THE CATEGORY OF SIMPLICIAL M-SETS

A monoid consists of a set M and an associative multiplication: M x M —
M, (m,m')— mm', with unit element 1 (1m =m =ml, forevery me M).
A 0-monoid M is a monoid with a zero element 0 € M (m0 =0 = Om, for
every me€ M). If C is a category and X is an object of C, then the hom-set
C(X, X) with the composition of morphisms, (g, f) — gf, has a natural
monoid structure. If C is a category with zero object, then C(X, X) is a
0-monoid.

Examples. (1) Let Pro be the category of spaces and proper maps (a continu-
ous map is proper if the inverse image of a closed compact subset is compact)
and consider the set of natural numbers N provided with the discrete topology.
The set of proper maps M = Pro(N, N) has a natural monoid structure. Let
A, B be closed subsets of a space X and assume that cl(X — 4), cl(X — B)
are compact. Given two proper maps f:i A — Y, g: B— Y, itis said that f
and g have the same germ if there exists a closed subset C of X such that
cl(X - C) is compact, CC A4, CC B and f/C =g/C. Let Pro, denote the
category of spaces and germs of proper maps. The monoid of germs of proper
maps M., = Pro,(N, N) will also be consider in this paper.

(2) Let N = NU {0} be the Alexandroff compactification of N. Taking
oo as a base _point, N becomes a pointed set. The endomorphism pointed
set Top, (N, N) has a natural 0-monoid structure. Two pointed continuous
maps f, g: N — N have the same germ at oo if there is ng € N such that
f(n) = g(n) for every n > ny. The set Top]® (N, N) of germs at oo of
continuous maps from N to N also becomes a 0-monoid.

Let M be a monoid and C a category. A left M-object X in C consists
of an object X of C and a monoid homomorphism M — C(X, X): m —
m: X — X. If M is a 0O-monoid and C is a category with zero object, we
suppose that an M-obJect X in C satisfies the additional condition 0 = 0.

HThE “EATEEOTY " WHOSE ‘Objecty ard the (1&fly M=6bjétts in C will be denoted by
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mC . By considering monoid “antimorphisms” M — C(X, X) we have the
notion of right M-object in C and the category Cyy.

Let C be a category; for each object X of C we have the monoid (or O-
monoid) M = C(X, X). If Y is an object of C, the monoid “antimorphism”

CX, X)—-Set(C(X,Y),C(X,Y)):0—0,0(f)=fp, [feClX,Y),

induces the structure of a right M-set on C(X, Y). Therefore we have a
functor C(X, —): C — Sety . If C is pointed (C has a zero object) we get a
functor C(X, —): C — Set.y . Similarly, there are functions C(—, Y): C —
mSet or C(—, Y): C — pSet. .

Examples. (1) For the category Pro and M = Pro(N, N), we have the
right M-set Pro(N, X) of sequences in X converging to infinity. Similarly
for My, = Pro (N, N) we have the right M -set Pro.(N, X). If |A[q]| de-
notes the realization of the standard g-simplex, then we also get the right M-set
Pro(N x |A[q]], X).

(2) Let s = [[;21(5L, 1) be the pseudo-interior of the Hilbert cube Q =

aoi[3L, 11, Let X be a compact subset of 5. A sequence x: N — Q con-
verges to X if for every neighbourhood U of X in Q, there is ng such that
xn € U for every n > nyg. The sets {x: N — X|x converges to X} and
{x:N— Q- X|x convergesto X} become M-sets for M = Pro(N, N). Con-
sider also sequences of simplexes x: Nx|A[g]| — Q converging to X ; that is, for
every neighborhood U of X in Q, thereis ny such that x({n} x |Alq]]) c U
for every n > ng. The sets ss;,(X) = {x: N x |A[g]| — Q|x converges to X}
and ssg(X) = {x: Nx|A[g]| = @ — X|x converges to X} become M-sets for
M =Pro(N, N) and ss(X), ss¢(X) are simplicial M-sets associated with X .

Given a 0-monoid M, the category of right M-pointed sets, Set.as, is an
algebraic category, see [Pa], by considering one 0O-ary operation to fix a base
point x and a l-ary operation m for each m € M . The relations are given by
xl=x, x0==x, (xm)n = x(mn). In the case of a monoid, we do not need
the O-ary operation and the relation x0 = . By general properties of algebraic
categories we have that Set.)s (resp., Sety) is a complete and cocomplete
category, see [Pa; page 140]. That is, the category Set.ss (Setps) has limits and
colimits. The categories of the form Set.ps, Setys enjoy very nice properties
such as the existence of exponentials and a subobject classifier. That is, these
categories are elementary topoi, see [M-M].

For these categories there is a natural forgetful functor U: Set,yr — Set.
(resp., U: aSet. — Set.) and a left adjoint functor — ® M: Set. — Set.y
defined by XO M =X x M/(X xOU* x M). An element (x,m)€ X x M
determines a unique class in X ©® M that will be denoted by x ® m. The
forgetful functor Set.ps — Set, is faithful and preserves limits, and the left
adjoint functor —©M preserves colimits. For the nonpointed case, the forgetful
functor Setjs — Set has also a left adjoint functor — ® M : Set — Sety, which
is defined by X © M = X x M . In this case we also denote an element (x, m)
by x®m . We note that X © M , the free M-set generated by X, is isomorphic
to UxexM provided with the canonical right action of M .
Leenfe@tofinbeereategory-closed-anderfmiteidimitssodemap f: X — Y is said to
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be an effective epimorphism if for any object 7" of &, the diagram of sets

. pri
Z(y,T) Lz, =8(X XX, T)
pr,

is a difference kernel. An object P of % is said to be projective if Z(P, X) i
&(P,Y) is surjective whenever f: X — Y is an effective epimorphism. A
category & has sufficiently many projectives, if for any object X, there is an
effective epimorphism P — X where P is a projective object. Assume that &
is closed under colimits; an object X is said to be small if & (X, —) commutes
with filtered colimits. A class Z of objects of % is a class of generators if, for
every object X, there is an epimorphism Q — X where Q is a sum of copies
of members of 7 .

For the case & = Set.)s (resp., Setys) the class of effective epimorphisms
is the class of set-theoretically surjective maps. Note that the category Set,ar
(resp., Setys) has a class of generators, % , with a single object, S°0 M = M
(* © M = M). For later applications we also note that M is projective and
small.

If & is a category, let SZ denote the category of simplicial objects in & .
We also have a natural functor in: & — S% which carries an object 4 to the
simplicial object in A4 defined by (in 4), = 4 and where degeneracy and face
operators are equal to the identity of 4.

Quillen [Q.1] proved that if # is closed under finite sums, X is an object
in SZ and K is a finite simplicial set, then an object X ® K exists, defined
by

(X@K)n= ) Xn,
€K,
in which the degeneracy and face operators are defined in terms of the corre-
sponding operators of X and K. If # is closed under finite limits, then dually
an object XX exists for every finite simplicial set. These have nice universal
properties; see Quillen [Q.1].

Therefore given a category % closed under finite limits and colimits, S%

becomes a simplicial category where the natural functor

Homgg: SEP x S& — SS

is defined by Homgg (A4, B), = SE (A ®A[n], B). If & is a pointed category,
we can also consider the functor Homgg: #° x S& — SS. .

In order to have a shorter notation we also use S = Set, S, = Set,, Sy =
Setys, S.ar = Set.pr. The corresponding simplicial categories will be denoted
by SS, SS., S(Su), S(S.us). We note that, for the functors in: S, — SS.,
in: Sayr — S(Seprs),and —OM: SS, — S(S.r), there are natural isomorphisms

(inX)® K)o M = (in(X ®© M) ® K,

where X is an object in S, and K is a finite simplicial set.
The following result is a particular case of [Q.1, Chapter II, §4, Theorem 4].

Proposition 1. Let & be a category closed under finite limits and under colimits
and having a set % of small projective generators. Let S% be the simplicial
LR BB 61 S Tl OB B DeRReaemiape f in SE to be a fibration



SIMPLICIAL M-SETS 373

(weak equivalence) if Hom(in P, f) is a fibration (weak equivalence) in SS for
each P of % . A map f is a cofibration if f has the left lifting property with
respect to the class of trivial fibrations. Then S% is a closed simplicial model
category.

For the case & = S,y (or & = Sy), we have that Z has only a single
object S°® M = M . Notice that for a map f of S(S.») we have that

Homgs,,)(in(S° ® M), f) = Homgs,,\(inS°® M, f)
= Homys,,)(A[0]* © M, f) = Homss, (A[0]*, /) =Uf.

Therefore we have the following closed simplicial model structure:

Definition 1. In the category of simplicial M-sets, a map f is said to be a
fibration (weak equivalence) if U f is a fibration (weak equivalence) in SS, .
A map is said to be a cofibration if f has the LLP with respect to any trivial
fibration.

Theorem 1. The category S(S.a) together with the classes of cofibrations, fibra-
tions and weak equivalences defined above has a natural closed simplicial model
category structure.

Remark. For the nonpointed case a similar result is obtained for the category
S(Sy). The corresponding fibrations and weak equivalences are defined by
using the forgetful functor S(Sy) — SS.

In the category SS., the “tensor” object X ® K and the “function” object
XX can be defined for any simplicial set K. We apply this property to prove
the following:

Lemma 1. Let f be a map of SS, .

(1) If f is a weak equivalence, then f ® M is a weak equivalence,

(2) if f is a cofibration, then f ® M is a cofibration.
Proof. (1) Let f be a weak equivalence in SS,; we are going to prove that
f®in M is a weak equivalence in SS,. By [Q.1, Chapter II, Proposition 3.5],
it suffices to prove that, for any fibrant object ¥ of SS.,[f®inM, Y] is an
isomorphism. This is obtained from the following isomorphisms:

[f®einM,Y]=nrnHom(f®inM,Y)
& go Hom(f, Hom(in M, Y)) 2 [f, Hom(in M, Y)]

and the fact that f is a weak equivalence.

The forgetful functor U: S(S.p) — SS. satisfies U(f © M)=f ® inM.
Because U(f ® M) is a weak equivalence, by Definition 1 we also have that
f ® M is a weak equivalence.

(2) Since —OM: SS. — S(S.u) is left adjoint to U: S(S.py) — SS.,and U
preserves weak equivalences and fibrations, we also have that — ® M preserves
cofibrations.

As a consequence of this lemma, we obtain an induced pair of adjoint func-
tors on the localized categories.

Theorem 2. The functions — © M and U factot through the homotopy cate-
ZOFIES TR SUER "84 "Waly PRt =" MY "HOS 8 Y S "HOTS (Suar)) is left adjoint to
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U: Ho(S(S.m)) — Ho(SS.). Moreover, — ® M preserves cofibration sequences
and U preserves fibration sequences.

Remark. If M is a monoid (without zero element), the analogues of the above
theorems are similarly obtained. If M is a group, the closed simplicial model
category S(Sys) induces a nice homotopy category Ho(S(Sy)) to study equi-
variant homotopy theory.

3. REALIZATION AND SINGULAR FUNCTORS

In this section, we analyse the construction of singular and realization func-
tors for the category of simplicial M-sets.

Recall that a monoid M can be considered as a category with one object,
with morphisms the elements of M and with composition the product in the
monoid M . Therefore the category of right M-sets can be considered as the
functor category Set™ . Thus the category S(Sys) of simplicial M-sets is the
functor category (Set™ op)Aop , which is equivalent to the category Set™ xA)%

Given a small category I, the functor category Set! * is also called the cate-
gory of presheaves on I associated with a functor X : I°°? — Set. We recall the
construction of the category of elements of X, denoted by [, X . For more de-
tails and properties of this construction, which is often called the Grothendieck
construction, we refer the reader to [M-M].

The objects of [, X are pairs (i, x) where i is an object of 7 and x is an
element of X (i). Its morphisms (i’, x’) — (i, x) are those morphisms u: i’ —
i of I for which X(u): X(i) — X(i’) satisfies X(u)x = x’. This category has
a canonical projection functor nx: [, X — I defined by nx(i, x) =1i.

The following result is proved in [M-M; Chapter I, Theorem 2]:

Theorem 1. If x: I — € is a functor from a small category I to a cocomplete
category ¥, the functor S, from € to Set!” given by

S,C: i — Z(x(i), C)

has a left adjoint functor R, : Set!” — & defined for each functor X in Set!”
as the colimit

RXX=colim< X——»I—»%).
1 x X

For the small category I = M x A, the equivalence of categories S(Sy) &

Set™*4™ carries a functor X: A% — Sety, to a functor X’: (M x A)°P — Set.
Similarly, for a given category € and a functor x: A — 4% one has the
corresponding functor x’: M x A — & . Since M only has one object *, the
objects of M x A are of the form (x, [p]). However, in the sequel, we just
write [p] for the object (x, [p]). Recall that a morphism of M x A is of the
form (m, ¢): [p] — [q], where m is an element of M and ¢ is a map of A.
Observe that (m, ¢) = (m, idg))(1ar, @) = (1a, ¢)(m, idp)) . Sometimes, we
just write m for (m, idy,;) and ¢ for (1, @) if no confusion is possible. For
a functor Y: (M x A)® — Set, we write Y([p]) = Y,, Y(m, ¢) = (m, 9)*,
y(m, idp)) = Y(m)=m* and Y(luy, ¢) = Y(p) = ¢* . Similarly for a functor

" M xA— &, we write x! instead of x’([p])».

t

Liense_or copyright restrjctions may apply to redistribution:psee httpse/www.amsorg/journal-terms-of-use
ﬁsmg this notation, we can reformulate the theorem above as follows:
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Theorem 2. If x: A — % is a functor, where € is a cocomplete category, then
the “singular” functor S, from € to S(Su) defined by

(8$xCo =€ (X, ?)

has a left adjoint (the “realization” functor) R,: S(Sy) — € defined for each
X an object in S(Sy) as the colimit

R1X=colim( X’—»MxA—»%).
MxA Ty x'

In this paper, we will consider functors y: A — »% , where % does not have
all colimits. For these categories we will analyse those X in S(Sy) for which
the colimit R, X exists. The following properties of colimits will be useful.

Given a functor L: J' — J and an object j in J, the comma category j | L
has as objects morphisms of the form u: j — Lj’. A morphism from uy: j —
Ljy to uy: j — Lj{ is a morphism v’: jj — ji which satisfies L(v")up = u;. -
A category J is called connected if, given any two objects jo, j; in J, there
is a finite sequence of arrows (both directions possible) joining jo to j .

A functor L: J' — J is final if for each j in J, the comma category j | L
is nonempty and connected. For more details concerning final functors, we refer
the reader to [M] and [C-P]. In particular we will use the following:

Proposition 1. If L: J' — J is final and F:J — €& is a functor such that
colim FL exists, then colimF exists and the canonical map colimFL —
colim F is an isomorphism.

Definition 1. Given an object X in S(Sy), it is said that dim X < n if for
g>n and y € X,, thereare p < n, x € X, and a surjective map ¢: [q] — [p]
such that y = ¢*x .

Denote by A/n the full subcategory of A determined by the objects [0], ...,
[n]. Given a functor X': (M x A)°P — Set, one defines the functor Sk, X’ as
the composite

(M x A/n)°® — (M x A)°P < Set .

It is easy to check the existence of a canonical functor I: [Sk,X’' — [X'.

Proposition 2. If X is an object in S(Sy) with dim X < n, then the functor
I: [SkyX' — [X' is final.

Proof. Let ([q], y) be an object of [ X’. The condition dimX < n implies
that the comma category ([q], y) | I is nonempty. In order to prove that
([q], y) | I is connected it suffices to apply the Eilenberg-Zilber Lemma [G-Z,
p. 26].

In this section, we work with the following notions of diagram scheme and
diagram. A diagram scheme consists of a set Dy of objects and a set D; of
arrows together with a source map s: D; — Dy and a target map ¢: D; —
D, . For instance, a small category has the structure of a scheme diagram. A
morphism F: D — D’ of scheme diagrams consists of a pair of maps Fy: Dy —
Dy and Fi: D, — Dj such that sF; = Fys, tF) = Fot. Let & be a category. A
diagram F: D — % is an operation which assigns to each object of D an object
Lef-Frorpd-toeach-arrow s srrorphisthof & This assignment commutes
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with the source and target operators. The analogues of comma category and
connected category are also defined for scheme diagrams and diagrams. Using
these notions one has:

Lemma 2. Let J be a small category and let 1: D — J be a diagram such that
I is an inclusion map. Assume that for every j in J, there is an associated mor-
phism u;: j — d;, where d; is an object in D . Suppose that these morphisms
satisfy:

(i) If j is an object in D, then u;: j — d; is a morphism in D.

(i1) Given a morphism u: jo — ji of J, the objects u;,: jo — dj, and
uju: jo— dj, arein the same connected component of jo | I.

If F: J - & is a functor and colim FI exists, then colim F exists and the
canonical map colim FI — colim F is an isomorphism.

Proof. The proof is routine and is left as an exercise.

As an application of the lemma, for some X in S(S)) with dimX <
n, we will describe a finite diagram I: D(Sk,X') — [Sk,X' which satis-
fies the conditions of Lemma 2. In this case, in order to prove the exis-
tence of colim([f X' — M x A X, &), it suffices to prove the existence of

colim(D(Sk,X') - M x A x %) . First we introduce some necessary notation.
Let Sy /ff be the full subcategory of S), determined by M-sets freely gen-

erated by finite sets. An object of Sys/ff is of the form {1, ..., n}@M = MU
---UM . Anelement x of {1, ..., n}®M will be denoted by x = (i, a) where
1<i<nand a€ M. Amorphism u: {1,...,n}eM —{1,..., m}®M is
determined by amap 7,: {1, ..., n} — {1, ..., m} and the values u(1, 1y) =
(tu(1), uy), ..., and u(n, lpy) = (t,(n), u,), where uy, ..., up € M. If X
is an object in S(S.a/ff), we have that X; = {1, ..., k;} ® M is generated
by the elements (1, 1), ..., (kg, 1ar).

Recall that in the category A we have the canonical maps ¢;: [p — 1] — [p],
oi:[p+1]1—[p], 0<i<p. The ith face ¢; is defined by ¢;(j) =, if j <1,
€i(j) = j+ 1 otherwise. The ith degeneracy o; collapses i+ 1 to i. For a
functor X: A — %, one usually writes X(¢;) =¢f =s; and X(0;) =0} =d,.

Given an object X in S(Sy ff) with dim X < n the diagram I: D(Sk,X’)
— [Sk,X', is defined as follows:

If n=0, D(SkoX'’) is given by the objects

If n>0,for ¢g=0 and 1 < i < ky, we consider the following objects and
arrows in [ Sk, X':

([1], (15 (0), solar)) ™) (1], (150 (0), 1ar))
(1ar,00)

(101, (¢, 1m))

Licenstiopy(i,htgstﬁtiognWi\pplltogdi?rib‘gorksqee’hme//\gwjmgrg/'qu;nalcyrrgofijsg q , we take the fOllOWing
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objects and arrows in [ Sk, X':

(g + 11, (15,(0), 5i1a) e (g 411, (24,(i), 1))
(1p,0))

(Iq1, (i, 1m))

(1ar,81)

([q - 1]’ (Td/(i) > dllM))

@ len)(1g = 11, (14,(), 1ar))

and for g=n, 1 <i<k,, 0<I/<n, we consider the following objects and
arrows:

([n], (i, 1a))

(lM’el)T

(In — 11, (24,(1), dilar)) M2 ([0~ 1], (14,(), 1ar)

All the objects and arrows given above define a diagram I: D(Sk,X') —
[ Sk.X'". If ([q], (i, m)) is an object in D(Sk,X'), then we have the map
u=(m,id): (4], (i, m) — (4], (i, 1)) where (q], (i, Ly)) is an ob-
ject in D(Sk,X'). It is easy to check that the family of maps u satisfies the
conditions of Lemma 2, so we obtain the following result.

Proposition 2. Let X be an objectin S(Sp/ff) with dim X < n. Ifthe colimit

colim(D(Sk,X') - M x A L %) exists, then colim([ X' — M x A x %) exists
and the two colimits are isomorphic. '

As a consequence of Proposition 2, for the case that Z has finite colimits,
there is a realization functor R,: S(Sy/ff)/fd — & where S(Sy/ff)/fd
is the full subcategory determined by objects X in S(Sy/ff) with finite di-
mension. Next section we will consider the case ¥ = Pro, where Pro is the
category of spaces and proper maps. In this case we have a natural inclusion
functor Pro — Top into the category Top of spaces and continuous maps.
Using the fact that Top has all colimits, we will apply Proposition 2 in order
to construct a “proper” realization functor R,: S(Sx/ff)/fd — Pro.

In this paper, we have to deal with “realization” functors which only are
defined on a full subcategory of S(Sas). Then it will be useful to introduce the
following notion of partial left adjoint functor.

Definition 1. Let &' be a full subcategory of a category &/ . We say that
F:' — % is a partial left adjoint to G: & — & if for any A in &' and
B in &, there is a natural isomorphism

B(FA,B)= (A4, GB).

For simplicial categories we consider the following notion of simplicial ad-

License or copyright restrictions may apply to Tedistribution; see https://www.ams.org/journal-terms-of-use
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Definition 2. Let &/ , & be simplicial categories and assume that F: &/ — % ,
G: % — & are functors. We say that F is simplicial left adjoint to G, if for
any 4 in & and B in %, there is a natural simplicial isomorphism

Homg(F A, B) = Homy (A, GB).

If &/’ is a full subcategory of ./ , we say that a functor F: &' — % is partial
simplicial left adjointto G: & — & , if forany 4 in &' and B in &, there
is a natural simplicial isomorphism

Homg(FA, B) = Homy (A4, GB).

4. REALIZATION AND SINGULAR FUNCTORS
FOR PROPER CATEGORIES AND PROCATEGORIES

In this section, we consider the realization and singular functors associated
with some covariant functors y: A — »C and introduce the various notations
that will be used later.

1. The standard realization and singular functor. Let M = {1} be the monoid
having just the unit element. For this monoid it is clear that for any category C,
umC = C = Cy. If we consider the standard covariant functor y = st: A — Top
defined by st[g] = |A[q]| , we will obtain the standard realization and singular
functors Rg: SS — Top, Sg: Top — SS. The functor Ry is simplicial left
adjoint to Sy ; that is, Homep(RsX , ¥) = Homgs(X , SitY) . In this paper the
standard realization functor Ry is denoted by R and by | |, and the standard
singular functor S by S.

2. Equivariant realization and singular functors. Given a monoid M, it can
be provided with the discrete topology and a functor Top — 3 Top can be
defined by X — M x X . This functor is left adjoint to the forgetful functor
um Top — Top. If we consider the covariant functor e = (M x (—)) - st,
A T Top W m Top

defined by e[q] = M x |A[q]|, we can apply Theorem 3.2 to obtain a realization
functor R,: S(Sy) — Top,, and a singular functor S,: Topy, — S(Sur) .

Given a finite simplicial set K and a object X of Top,,, there are objects
X ® K and XX defined by

X®K=Xx|K|, XX = x'KI,

The action of M on X ® K is defined by (x, y)m=(xm,y) for xe X, y €
|K| and m € M, and the action of M on XX is given by (pm)(y) = (¢(y))m
for p € XX, y € |K| and m € M. As above R,, S, are a pair of simplicial
adjoint functors,

HomTopM(ReX, Y) = HomS(SM)(X s SeY) .

The equivariant homotopy category is defined to be 7o(Top,,). Taking into
account the isomorphism above, it follows that

License or copyright restrictions may ﬁ%\(t{l‘f@ﬁlﬁ%kg%’ps’ﬂwg\goﬁg(rgl(lsraslo))(ex' s Se Y) .
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3. Proper realization and singular functors. If we consider the monoid M =
Pro(N, N), since the identity id: M — Pro(N, N) is a monoid homomor-
phism, it follows that N has the natural structure of a left M-set. The functor
— x |A[q]]: Pro — Pro induces a left M-set structure on N x |A[g]| = | |y |Al4]|
by considering the composite:

M — Pro(N, N) — Pro(N x |A[q]|, N x |A[q]]).
Therefore there is an induced functor
x=p:=A— yPro, plg]=Nx|Alq].
The inclusion functor I: Pro — Top induces a natural functor jI: psPro —
umTop, and we also have the composite:
x=c=pl-p:A— yPro— yTop.

Since Top has colimits, applying Theorem 3.2, we obtain the continuous
realization functor R.: S(S)) — Top and the continuous singular functor
S.: Top — S(Su) .

By the exponential law, there is a set isomorphism

Top(N x |A[q]|, X) = Top(|Al4]|, X))

where the mapping space X} has the compact open topology. It is clear that XN
has the structure of a right M-space, therefore we have the following diagram
which is commutative up to isomorphism

(¥

Top Topy,

Se Se
S(Su)

that is, ScX’ = S.(XN).
Recall that for X an object in S(Sys), the functor R.: S(Sy) — Top is
defined by

R.X = colim (/X’—-»MxALTop) .
If X is an object in S(Sy/ff)/fd, by Proposition 3.2 R.X is isomorphic to
colim(D(Sky) X' — M x A—S—Top).
Since M x A £ Top factor as M x A 7, Pro & Top and using the fact
that for any object (p[q], (i, m)) in D(Sk,X') the continuous map c'[q] =
N x |A[q]| = R.X is proper, it follows that colim(D(Sk,X') — M x A % Pro)

exists. Applying again Proposition 3.2, one has the colim(f X' — M x A L
Pro) exists. Therefore, for any X an object in S(Su/ff)/fd we can define
Ry: S(Suff)/fd — Pro by

R,,X=colim(/X’—~>MxA7Pro) .

On the other hand, observe that the set X' = Pro(N, X) is bijective to the

SUBSEE P RN S S gE ) W AT C6HRIEEE 8 X the relative topology
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induced by the compact open topology of the space X, § . It is easy to check that
we have a natural set-isomorphism
Pro(N x |Ap[q]|, X) = Top(|Alq]|, X,).

These sets have also a natural structure as right M-sets (M = Pro(N, N)), and
the isomorphism above becomes an M-set isomorphism. Therefore we have the
following diagram of functors which is commutative up to natural isomorphism:

)

Pro Topyy

S(Sm)

The pair of adjoint functors R.: S(Sy) — Top, S.: Top — S(Sys) possesses
the following properties (a)-(c).

(a) S. preserves “function” functors: for a finite simplicial set K and an
object X of Top,,, we have

Se(XK) 2 Sp((XKNY) = S (XK = (S XX = (S X)X
(b) R, preserves “tensor” functors. Let X be an object of S(Sy) and let
Y be a topological space. Then
Top(R X ® K, Y)= Top(R.X, YX) = S(Sy)(X, S.(YX))
= S(SM)(X, (SY)*) = S(Sm)(X ®K, S.Y)
~ Top(R( X ®K),Y).
By the Yoneda lemma, it follows that R, X ® K = R.(X ® K) . This implies that
R, is simplicial left adjoint to S ; that is,
Homrep(R:X , Y) = Homgs,,) (X, S.Y).

(¢) Rp: S(Sm/ff)/fd — Pro preserves “tensor” functors. This follows be-
cause R, = R. on the full subcategory S(Su/ff)/fd . Observe that the “ten-
sor” functor of Top (see §1, Example (2)) induces a “tensor” functor on the
subcategory Pro of spaces and proper maps. Notice that we only consider “ten-

sor” functors associated with finite simplicial sets. Using this tensor produce
one can define a functor Homp,: Pro°® x Pro — SS by

Homp,, (X, Y);, =Pro(X ® Alg], Y).

In this way Pro becomes a simplicial category, and the standard proper homo-
topy category is defined to be my(Pro).

Because R,: S(Sym/ff)/fd) — Pro preserves “tensor” functors, we have
the following isomorphisms:

Hompro(R, X, ¥)g = Pro(R,X ® Al4], ¥) = Pro(R,(X & Al4)). ¥)
= S(Su)(X ® Alq], S,Y) = Homgs,,) (X, SpY ).
This implies that we have a simplicial isomorphism
Hompm(RpX, Y) = Homs(sM)(X . Sp Y)

and R,: S(Sy/ff)/fd — Pro is a partial simplicial left adjoint functor for
LeGseror PSSy pr v Phies Peitictot's/ Ry xSy induce the following adjointness
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on the categories 7o(Pro) and 7mo(S(Sx)). If X is an object of S(Su/ff)/fd
and Y an object of Pro, then

mo(Pro)(Rp X , Y) = mo(S(Sm)) (X, SpY).
The last properties give the following results:

Theorem 1. The proper realization functor R,: S(Su/ff)fd — Pro is simpli-
cial partial left adjoint to the proper singular functor S,: Pro — S(Su) .

Theorem 2. If X is a cofibrant object of S(Syu/ff)/fd and Y an object of
Pro, then

70(Pro)(RyX , ¥) = Ho(S(Si))(X, S,¥). |
Proof. Let U: S(Sy) — SS denote the forgetful functor. Notice that

U(S,Y) = US(Y}) = SV

is a fibrant object of SS. By the definition of fibration in S(Sy), see Definition
2.1, it follows that S,Y is fibrant in S(Sys). Therefore we have

mo(Pro)(R, X, Y) = mo Hompro(Rp X , Y) = 1o Homgys,, ) (X, S, Y)
= Ho(S(Sm))(X, SpY).

The last isomorphism follows from the fact that X is cofibrant and S,Y is
fibrant.

4. Realization and singular functors for pro-spaces. Let C be a category with
countable sums (coproducts). Using the sum of C, we can define a functor
¢: C - proC as follows. If X is an object of C, cX: N — C is defined by

(CX)i= I_JXa

j2i

where N is consider in this case with its left filtering category structure. The
standard “inclusions” of the coproduct define the natural map (cX);y; — (cX);.
Recall that the objects of the category (proC, C) are promorphisms of the
form Y — B, where Y: I — C is an object in proC and B: 1= {0} - C
is a constant object. To determine a promorphism Y — B it suffices to give
amap ¢:1— I and a morphism f,): Y,0) — Bo. Since cX: N — C is an
objectin proC and (cX)o is a constant object, the maps ¢: 1 = N, ¢(0) =0,
and id: (cX)g) — (cX)o determine a promorphism cgX: cX — (cX)o; that
is, an object in (proC, C). This defines a global (or argumented) functor
cg: C — (proC, C). If it is necessary to distinguish the two functors we shall
use the notation co: C — proC and c,: C — (proC, C) otherwise we just
write c.

Consider the following functors.

(a) The functor xo.: A — p. (ProSS).

The functor ¢: S§ — proSS gives an object cA[0] in proSS, and we
can consider the monoid M, = proSS(cA[0], cA[0]) which is isomorphic
to Pro, (N, N). As in subsection 3, cA[0] has a natural structure as a left
M.-object. The functor — ® A[g]: proSS — proSS induces left M.-object
structures on cA[O]®A[g

, €S on. = cALq! so there is a functor x.: A — jr_(proSS),
Ligense of copyright rt ctigns pply to_rex ion; see http: f7 ams.org/jourpal-terms-of-use . . . R
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R, :S(Sm.) — proSS which is simplicial left adjoint to the corresponding
singular functor S, : proSS — S(Su..) - '

(b) The global functor xg: A — s (proSS, SS).

Using the global version of the ¢ functor, ¢c;: SS — (proSS, SS), and the
monoid M = (proSS, §S)(cgA[0], c,A[0]) which is isomorphic to Pro(N, N),
we have an induced functor xg: A — 5(proSS, SS). Associated with the func-
tor x,, there are a realization functor R,,: S(Sy) — (proSS, §§) and a sin-
gular functor Sy, : (proSS, SS) — S(Su) that induce a simplicial adjunction
isomorphism

Hom(pross,ss)(Rng, Y) = HomS(SM)(X, ng Y) .

(c) The functor x3,: A — p: (proSS.).

Recall that for a simplicial set K, K LUA[0] is denoted by K*. Using the
functor c: SS. — proSS., we get the object cA[0] and we can consider the
monoid M?, = proSS.(cA[0]*, cA[0]*) which is isomorphic to TopZ®(N, N).
As a consequence of Theorem 3.2, we also have a natural adjunction isomor-
phism

Hompmss_ (RKSOX s Y) = HomS(SM;o)(X, SXGO Y) .

(d) The functor xz: A — a;(proSS., SS.).
TheA mgnoid M; = (proSS., SS.)(cgAl0]", (cgA[0]*) is isomorphic to
Top, (N, N). As in the cases above, we have a functor
Xg: A — m;(proSSs, SS.)
and a simplicial isomorphism
Homyoss. ,55.)(Ry; X, Y) = HomS(SMg,)(X, Sy Y).

5. BROWN’s # FUNCTOR AND THE SINGULAR FUNCTOR proSS — S(Su)

In 1975, E. M. Brown [Br.1] gave a definition of a proper fundamental group
Bro(X) of a og-compact space X with a base ray. He also defined a functor
P towGps — Gps that gives the relation between the tower of fundamental
groups, 7 eX , of a tower of neighbourhoods of X at infinity and the proper
fundamental group. This relation is given by PmieX = Bx(X). In this
section we extend this definition to other categories and study the relation with
the singular functor proSS — S(Sus).

Let C denote one of the following categories:

Set = (sets),

Set. = (pointed sets),

Gps = (graphs),

Ab = (abelian groups) .

The small projective generators of these (algebraic) categories will be denoted
by *, S°, Z, Z,, respectively.

Since C has sums, we have the functor ¢: C — proC defined by cX: N —
C, (cX)i=;5; X . Sometimes, we will also consider the global (or augmented)
version ¢: C — (proC, C).

Let G denote the small projective generator of C and let #cG denote the

endomorphism set
License or copyright restrictions may apply to redistributio@gWSll_vaIaBS(\:g/(nérG!-terEﬁ)Jse
= N R



SIMPLICIAL M-SETS 383

If C =Set and G = *x, Pc*x has a monoid structure. Notice that FPcx =
pro SS(cA[0], cA[0]) = Pro(N, N). In the pointed case, C = Set,, G = SO,
the endomorphism set admits the structure of a 0-monoid, see §2, and we have
that PcS° = pro SS, (cA[0]*, cA[0]*) = Top>®(N, N).

If C = Gps, G = Z, the endomorphism set has a natural near-ring structure,
see [Mel, Pilz]. Finally for C = Ab, G = Z,, the endomorphism set FcZ,
becomes a ring isomorphic to the ring of locally finite matrices modulo the ideal
of finite matrices, see [F-W.1, F-W.2].

Let C.c denote one of the following categories:

If C = Set, G = %, then Setw., is the category of right Pcx-sets. If
C =Set,, G =259, then Set,».s0 is the category of right ZcS%-pointed sets.

If C =Grp, G =2, then Grpg, is the category of right FcZ-groups. This
category is also known as the category of right near modules over the near-ring
PcZ, see [Mel, Pilz].

If C =Ab, G =1Z,, then Abg., is the category of right FcZ;,-abelian
groups that is usually called the category of right % cZ,-modules.

If we consider the global (or augmented) functor ¢ = ¢;: C — (proC, C),
we will get the endomorphism set F,c,G = (proC, C)(c,G, c,G) that will
also be denoted by %;cG and the corresponding category Ca,cG -

Given an object X of proC, it is easy to check that pro C(cG, X) is an
object of Cx.g. Therefore we have a functor

P proC — Cap.g

defined by #X =proC(cG, X).

The full subcategory of proC determined by objects indexed by natural
numbers is usually denoted by tow C. We say that an object X of proC is
nitely generated if there is an effective epimorphism Q — X where Q is a
finite sum of copies of ¢G.

We summarize some properties of the & functors in the following results,
see [He.1].

Theorem 1. The functor P: pro C — Cp.g satisfies:

(i) the restriction P : tow C — Cap.g is faithful,

(ii) the restriction P: tow C/fg — Cap. i* also full, where tow C/fg is the
Sull subcategory of tow C of finitely generated towers.

Theorem 2. The functor P: proC — Cg.c has a left adjoint functor £ : Ca. g
— proC.

Remark. There are similar results for the category (proC, C) of global pro-
objects in C and the category Cg, G .

Since the forgetful functor U: Cs.; — C has a left adjoint function
- 0PLcG: C — Cxp.g , we have the pairs of adjoint functors

£ e
pl'OC—;Cch 7’ C

and the composites .Z = .Z (- ® PcG), P = UP give a new pair of adjoint
functors

<z

—
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Notice that Z: proGps — Gps is the functor defined by Brown and denoted
in his paper [Br.1] by & .

Remark. 1t is easy to check that G = £ (G 6 LPcG) =2 L (LcG) = ¢cG and
Zf = cf for any morphism f : G — G. Therefore .2 = ¢ on the full
subcategory of C obtained from G by considering finite colimits of copies of
G.

Given a left filtering small category I, the equivalence of categories (CT)A ~
(C%)! induces a natural functor F: proSC — SproC defined by (FX),(i) =
(X(i))q, where X is an object in proSC. On the other hand the functors
& Cp.g — proC and £: proC — Cxp.; induce functors S.Z: SCxp.g —
SproC and S&: SproC — SCx.; . Next we analyse the relation between the
& functor and the singular functor S,_: proSC — S(Cx.;) defined in §4.4.

The relation between these functors is given in the following:

Theorem 3. The following diagram is commutative up to natural isomorphism:

proSC £ SproC

Syeo %

S(Cacq) -
Proof. We are going to use the fact that the functor ¢: C — proC agrees with
2 in some cases (see the Remark above). We also consider several functors
of the form in: & — S%, where (inX), = X and the face and degeneracy
operators are equal to the identity of X . We have the following isomorphisms:
(SyeeX)g = ProSC(xolgl, X)
pro SC(c(in G ® Alq]), X)
proSC(cin G ® Alq], X)
SproC(F(cinG®Alq]), FX)
~ SproC(FcinG ® Algq], FX)
~ SproC(incG ® Alq], FX)
~ Spro C(in.ZG ® Alq], FX)
= Spro C(in.Z (G © LcG) ® Alq], FX)
=~ Spro C(SZ in(G © LPcG) ® Alq], FX)
=~ Spro C(SZ(in(G © #cG) ®Alq], FX)
> §S(Sw.c)(In(G © LcCG) @ Alg], SPFX)
= (SPFX),.

R IR

(1

The isomorphism (1) follows from the fact that cin G ® Alq] is a finite-dimen-
sional pro-object. Let S<,& denote the category of g-truncated simplicial
objects in % ; that is, functors (A/q)°® — & where A/q is the full subcategory
of A determined by the objects [0], [1], ..., [g]. It is not hard to check that

proSC(cinG ® A[g], X) = proS<,C(cinG ® A[q], X)
(2) =S¢, proC(F(cinG ® Alq]), FX)
License or copyright restrictions may apply to redistribution; see https://pgwsu’nﬁtil%gotui{ﬁtlrséoiﬁeG ® A[q]) R FX) .
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The isomorphism (2) is a consequence of the theorem of C. V. Meyer [Mey]
that says that pro(CP) is equivalent to (proC)? if D is a finite category and
C has finite limits.

Remark. As a consequences of Theorem 3, we observe that the singular functor
Sy, 1s calculated dimensionwise by the & functor. In this way, the functor
Sy.. can be considered as an extension of the functor &#: proC — Cx.; . For
this reason, in the sequel, the functors Sy , Sy, , Sy , Sy; will be denoted by
& and the corresponding realization functors R, , Ry, , Ry , Ry: by Z.

The forgetful functors Set, — Set, Gps — Set. and Ab — Gps have left
adjoint functors denoted by

( )*: Set — Set., f: Set, — Gps, ab: Gps — Ab.

We consider the induced functors

pro( )*: proSet — pro Set. ,
pro f: proSet. — proGps,
pro(ab): proGps — proAb .

and the induced monoid homomorphisms
pro Set(c. , ¢.) — pro Set, (¢S, ¢S°) — pro Grp(cZ, c¢Z) — proAb(cZ, , c¢Z,).

Using the isomorphism Pro. (N, N) & pro S(c., c.), the proper map sh: N
— N, sh(i) =i+ 1, i € N, defines an element of proS(c., c¢.). The monoid
homomorphisms above determine new canonical elements in the other monoids.
Any one of these elements will be denoted by sh and will be called the shift
operator.

For C any of the categories with which we are working, we define a functor
Fp: Cp6 — C by

FpX ={x € X|xsh=x}.

It is easy to check the functor diagram

P

tow C Cac

lim Fsh

is commutative up to natural isomorphism, where lim is the standard inverse
limit. We can also prove the following result.

Theorem 4. The diagram

tow SC = S(Ca¢q)

lim Fsh

SC

LESnCOmmtatives Wam tnaimlrall]: fmmamhmml_journal-terms»of»use
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Proof. By Theorem 3, & is isomorphic to S#F . It is clear that Slim &
SFpSZ . Since the diagram

towSC———F————*StowC

lim Slim
SC
is commutative, we have that

FyP = FySPF = SF4SPF = Slim F = lim .

Remark. The functors lim: proSC — SC, #: proSC — S(Cx.s),and Fy:
S(Cx.g) — SC have left adjoint functors.

6. DERIVED FUNCTORS OF .¥ AND #

In this section we analyse the properties of the pair of adjoint functors . =
Rys : S(S.pcs0) = ProSS., P = Sy. : proSS. — S(S,»cs0) With respect to
the closed model structures of these categories. In the category proSS. we
consider the structure given by Edwards and Hastings [E-H], and the category
S(S,2cs0) is provided with the structure given in §2.

Recall that if &7’ is a full subcategory of &7 , we say that a functor F: &' —
Z is a partial left adjoint to the functor G: & — & if forany 4 of &’ and B
of Z there is a natural isomorphism % (FA, B) 2%/ (A, GB). If &/, & are
simplicial categories and this isomorphism extends to a simplicial isomorphism
Homg(F A, B) 2 Homy (A, GB), it is said that F is a partial simplicial left
adjoint functor to G.

Lemma 1. The restriction of the functor c¢: SS. — proSS. to the full sub-
category of finite simplicial sets is a partial simplicial left adjoint functor to
P=UP: proSS, — SS..
Proof. For a finite simplicial set X, we have the isomorphisms
Homyoss. (¢ X, Y) = Hompyo ss, (cA[0]* ® X, Y)
= Homygs, (X , Hompy s, (cA[0]F, Y)) 2 Homgs, (X, V).

Lemma 2. The functor P: proSS. — S(S.z.s0) satisfies the following condi-
tions:

(1) If p: E — B is a fibration in proSS. in the Edwards-Hastings sense,
then Pp is a fibration in S(S,z.s0) -

(2) Let p: E — B be a level morphism in towSS. (p = {pi: E; — B;|i € N})
such that each p;: E; — B; is a fibration in SS.. Then Pp is a fibration in
S(Suaeso) -

Proof. By Definition 2.1, %p is a fibration in S(S,z.s0) if and only if UZp =
Pp is a fibration in SS, . By Lemma 1, ¢ is partial left adjoint to &: proSS.
— S5, . Therefore the existence of a lift in the commutative diagram

Vin, k) —PE

L
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is equivalent to the existence of a lift in the corresponding commutative diagram

cVin,k)—=E

l

cA[n]——B

In case (1), the lift exists because proSS,. is a closed model category and
cV(n, k) — cA[n] is a trivial cofibration. For case (2), taking into account that
the bonding morphisms of ¢V (n, k), cA[n] are injections, limcV(n, k) =
@ = limcA[n], cV(n, k) — cA[n] is a levelwise morphism and that for each
i>0; p;: E— B; is a fibration, it is easy to find a lift in the diagram above.

In the following lemma, for a given closed model category & we use Quillen’s
notation %; to denote the full subcategory of fibrant objects. We are also going
to use the following notation and results: Let SSY denote the category of
functors N — SS. and natural transformations. Given an object Y: N — SS,,
consider N* = {1} UN and define Y*: N* - §S, by Y =« and Y =Y,
if i > 0. For an injective increasing map ¢: N — N, define 9: N — N+ by
?(j)=-11if j< @) and 9(j) =i if p(i) <j < (p(i+ 1). Now we define

an object Y*¢p: N — S§S, by (Y*p); = YJ( i There is a natural morphism

Y - Y*¢, and tow SS. is equivalent to the category of left fractions Z~!SSN
associated with the family of morphisms of the form Y — Y*¢ (see [G-Z]). As
a consequence of this fact we have that

Homyoy ss+ (X, Y) = colim, Homggx (X, Y*9).

A more detailed description of these results is contained in [He.1].
We also have the functor ¢: SS. — SSY defined as usual by (cX); = || i>i X

and the functor p: SSY — S, defined by pY = [[; Y:. It is easy to check
that ¢ is left adjoint to p.

These results are applied to prove the second part of the following lemma
that will be useful to find the relation between the proper singular functor and
the right-derived functor of the & functor.

Lemma 3. The functor &: proSS. — S(S,z.s0) satisfies the following condi-
tions:

(1) If f is a weak equivalence in (proSS.),, then P f is a weak equivalence
in S(S.acs0). Moreover, & f is a homotopy equivalence in S(S,z.s0) .

(2)If f={fi: Xi = Y;} is alevel map such that for each i >0, f;: X; = Y;
is a weak equivalence in SS. and X;, Y; are fibrant in SS., then Pf isa
weak equivalence in S(S,z.s0) .

Proof. (1) Since (proSS.); = (proSS.).s and f is a weak equivalence, it

follows that f is a homotopy equivalence. Because Z: proSS. — S(S,z.s0)

induces a functor 7my(proSS.) — 7mo(S(S.z.50)), We get that LS is also a

homotopy equivalence. Therefore & f is a weak equivalence in S(S,z.50) .

(2) In order to prove that Zf: X — LY is a weak equivalence it suffices

to show that UL f: UL X — ULY is a weak equivalence. Since for each

i >0, X;, Y; are fibrant, applying (2) of Lemma 2, one has that #X, L#Y

“are ABrAhT I ST “%'%;‘gﬁ‘)s‘r'b"l“ﬁéieéfﬁf‘%”wvymk"’”a' UZPY* are fibrant in SS, and we
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obtain the following isomorphisms:

|Alq)/Alq], UZ f] = mo Homss, (Alq)/Alq], UZf)
no Homgs, (A[g]/Alg], colim, p(f™¢))
mp colim, Homgs, (A[g]/Al4], p(f*9))
mo colim, p(Homss, (Alg]/Alg], f*9(j)))
= colim, po Homss, (Alq]/Ald], f5;))
colim,, p[Alq]/Alq], £5;)
where we have taken into account that

UPX = Homy,ss, (cA[0]", X)
Homy,w ss. (cA[0]*, X)
colim, Homggn (cA[0]*, X*p)
colim, Homgg, (A[0]*, p(X*9))
colim, p(X*¢)

R

R

IR

R IR

IR

and that for maps a similar expression is obtained.
Finally, since each [A[g]/Alq], fg( 1 is an isomorphism, we obtain that

[Alq]/Alg], UL ] is an isomorphism. Therefore UZf is a weak equiva-
lence, and by the definition of weak equivalence in S(S,x.50) it follows that
Pf is also a weak equivalence in S(S,p.50) .

Remark. Since Z: S(S,p.50) — proSS. is left adjoint to #: proSS. —
S(S,2cs0) and proSS., S(S,z.s0) are closed model categories, it is easy to
check that . preserves cofibrations. Since . is simplicial left adjoint to &,
we also get that .%° carries a weak equivalence between cofibrant objects into
a weak equivalence.

Notice that Lemma 2, Lemma 3 and the remark after Lemma 3 prove that the
functors .Z: S(S,z.50) — proSS,* and Z: proSS. — S(S,z.s0) satisfy the
conditions of Theorem 4.3 of [Q.1, Chapter I]. Therefore we have the following:

Theorem 1. The functor £ : S(S,pq50) — proSS. induces a left-derived functor
ZL: Ho(S(S,2.50)) — Ho(proSS.) and P: proSS. — S(S.zcs0) induces
a right-derived functor #R: Ho(proSS,) — Ho(S(S,z.s0)) Such that Lt is
left adjoint to PR. Moreover, FL preserves cofibration sequences and PR
preserves fibration sequences.

Recall that by Theorem 2.2 we also have the following pair of adjoint functors
-oM
Ho(S(S.scs0)) —— Ho(SS,).

The composition of the two pairs of functors gives a new pair of adjoint functors
Kz ZL(— ® M): Ho(SS.) — Ho(proSS.) and P = UPR: Ho(pro SS.)
— Ho(S'S.). Therefore we have:

Corollary 1. The functor & = #(— ® M): SS. — proSS. has a left-derived
SR GO P s EUO( S b HOLDED S8 Wi/ P 2 PIOSS, — SS. has a
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right-derived functor 7z, Ho(pro SS.) — Ho(SS.) such that Z" s left ad-

.. —R —L . —R .
joint to . Moreover £ preserves cofibration sequences and P prescribes
fibration sequences.

Notice that for a finite simplicial set X , we have that
Ho(proSS,)(Z X, Y) = Ho(SS.)(X , " Y).
It is easy to check that ¢: SS. — proSS. preserves cofibrations then
Ho(pro SS.)(cX, Y) = Ho(proSS.)(cX, Y').

where Y — Y’ is a weak equivalence and Y’ is a fibrant object in proSS, .
Since cX is cofibrant and Y’ is fibrant, we have

Ho(pro SS.)(cX, Y') = mp(proSS.)(cX, Y').
Applying Lemma 1, we see that
mo(proSS,)(cX, Y') = my(SS.)(X , PY')
> 70(SS.)(X, P Y) = Ho(SS.) (X, PY).
Therefore as a consequence of these isomorphisms, we have the following:

Theorem 2. Let Ho(SS.)/f be the full subcategory of Ho(SS.) determined by
finite simplicial sets. Then c: Ho(SS.)/f — Ho(pro SS.) is a partial left adjoint

—R —L
to & : Ho(proSS,) — Ho(SS.). The functors ¥ and c¢ agree up to natural
isomorphism on the subcategory Ho(SS.)/f; moreover, ¢ preserves cofibration
sequences associated with a map between finite simplicial sets.

Corollary 2. The diagram

Ho(pro SS.) 2 Ho(SS.)

is commutative up to natural isomorphism, where m, denotes the standard qth
homotopy group and Gn;;" denotes the qth Grossman homotopy group, defined

by ¢ng°(X) = Ho(pro SS.)(cS?, X), §7 = Alq)/Alq].
Proof. By Theorem 2 above, c is partial left adjoint to z" , SO

G7%°(X) = Ho(pro SS.)(cS?, X) = Ho(SS.)(S?, " X) & n,(Z" X).

Theorem 3 (Brown). The diagram

tow 7,

Ho(tow S'S,) tow Gps

Gn;’" P
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is commutative up to natural isomorphism, where tow n, is the natural prolon-
gation of the functor m, to the category of towers.
Proof. We use again the fact that tow SS, can be obtained as a category of
left fractions of the category SSY (see the notation given before Lemma 3 and
[He.1]). We have
G2 (X) = Ho(tow SS.)(cS?, X)

= 1o Homyow ss, (¢S, RX)

= o colim, Homggn (¢S?, (RX)"9)

& 7o colim, Homgsy (S, p((RX)"9))
colim, mo Homggn (S, p((RX)*9))

IR

& colim, 7, (p((RX)"¢))
= colimy, p((ny(RX))* @) = colim, p((ngX)" @)
= UL town, X Q?town‘,X

where 7,(RX) = {mg(RX(i))|i > 0} = {my(X(i))]i >0} =m X .

In Theorem 5.4, we have seen that the functors Z: towSS, — S(S,%cs0)
and lim: towSS. — SS. are related by the functor Fg: S(S,5.50) — SSs in
such a way that lim = F3% . The following result gives an induced relation
between the right-derived functor lim® = holim of the lim functor and the
right-derived functor £R of the & functor. We refer the reader to [E-H] for
the definition and properties of the functor holim: Ho(towSS.) — SS..

Theorem 4. The functor holim = lim®: Ho(towSS,) — Ho(SS.) can be fac-

tored as
R

Ho(tow SS.) lim Ho(SS,)

PR Fan
7o(S(Sugcso))

Proof. We have proved that £: (towSS.); — S(S,z.s0) sends weak equiva-
lences into simplicial homotopy equivalences. Since Fy, preserves finite limits,
it follows that F,, preserves homotopy relations defined by cocylinders (Y2[1).
Therefore Fy, induces a functor Fg: mo(S(S,2.50)) — HO(SSy) .

Given an object X in towSS., we have that

(1
FpPRX = Fp PRX = limRX = holim X,

where (1) is a consequence of Theorem 5.4 and we have used the definition of
holim given by Edwards and Hastings [E-H, page 133].

7. SIMPLICIAL COMPLEXES AND SIMPLICIAL M -SETS

In this section we consider noncompact simplicial complexes X satisfying
the following three conditions.
(1) X is locally finite. Each point x € X has a neighbourhood U which

has points in common with onlx a finite number of simplexes.
Licens opykight gestrictiops may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(3) X has a countably infinite number of simplexes.

A simplicial complex of this type is homeomorphic to a subspace of some
Euclidean space R™ which is the union of countably many simplexes of dimen-
sions O through n. Two simplexes have empty intersection or they meet in a
common face, and the countable family of simplexes is locally finite. A simpli-
cial complex is said to be n-dimensional if it contains at least one n-simplex but
none of higher dimension. A simplicial complex X is said to be n-dimensional
at infinity if for every finite subcomplex K of X, there is at least an n-simplex
of X — K and none of higher dimension. In this section, simplicial complex
means a simplicial complex satisfying conditions (1), (2) and (3).

Recall the functor R,: (Sy/ff)/fd — Pro defined in §4.3, where M =
Pro(N, N). In this section for each simplicial complex X, we construct a
simplicial M-set, N, in (Sa/ff) such that R,N = X . The simplicial M-set
N satisfies that for each dimension ¢ > 0, N, is (ff), a free M-set over a
finite set. The condition fd means that N has finite dimension, that is, there
is n such that for ¢ > n every simplex of N, is degenerate. The simplicial
M-set N will be proved to be cofibrant in the closed model structure of S(Syy).

Let X be a simplicial complex (satisfying (1), (2), and (3)) such that both
the dimension of X and the dimension of X at infinity are equal to n. We can
define a simplicial M-set, N, associated with X as follows: Define Ny = M,
N = soM UM , where soM is a copy of M and U denotes the sum of M-sets.
Fora k with 0 < k < n, define

Ny = Sp_1Sk—2-"-SoM U ( |_| Sip_y " -S,'OM)

k>ik_2>"'>i020

uuf | saseM)ul | soM|un,
k>i>ip>0 k>ip>0

where any s; ---s;,M is a copy of M. For k > n, N, is similarly defined
except that the last M is removed.

The degeneracy operators of N are defined using the identity of M . Given
M or a copy of M of the form s;_,---s;,;M with k > i,_; >--->ip >0
and k > i > 0, we use the relations s;s; = s;415; if i < j to find a copy
Si,_+1°-Si--8i;M such that i,_y+1>--->i>-.->iy. Then s; is defined
from s;_,---s5i;M to s;_,11---S;i---8;,M by the “identity” map.

To define the face operator we consider two cases: If we have a copy of
M of the from s; ---s;;, M or if we have M. In the first case we use the
relations d;s; = s;_1d; if i < j, disj =id if i = j or i = j+ 1, and
disj = sjdi_, if i > j+1 to transform an expression of the form d;s;, - - siy M

into an expression of the form s _, ---sj, M. Then the restriction of the face
operator d; to s;,---5;, M is defined by the “identity” map from s;, ---s;,M to
Sj_ySjgM .

Now we have to define the face operators for the term of N, (1 < k < n)

- equal to M. It is in this step where we use the combinatorial structure of the
simplicial complex X .

Given a simplicial complex X (satisfying (1), (2), and (3)) such that the

dimension of X and the dimension of X at infinity are equal to »n, firstly, an

‘enumerationcan-bechosen for thie ountableserof O-simplexes of X, EJ, EY,
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EY, etc. This enumeration induces a unique order to the finite set of vertices
of each k-simplex E¥ of X . Therefore for each k-simplex E*X of X the
different faces doEX, d\E*, ..., d E* are well defined. We also choose an
enumeration for the countable set of 1-simplexes of X, the countable set of
2-simplexes, etc, and finally for the countable set of n-simplexes.

If 0<k<n, 0<i<k,foreach / € N the face diE," is equal to some
E;JI . This defines a proper map ¢;: N — N that is, an element ¢; € M . The
restriction of the face operator d; applies the term M of N, into the term M
of Ni_;. Since M is a right M-set freely generated by 1 € M, it suffices to
define dol =@0, ---» dkl = @k -

The simplicial M-set N satisfies that R,N = X , where R,: (Sy/ff)/fd —
Pro is the realization functor defined in §4.3. The reason for this is that the
space X admits the following inductive construction. We start with a “proper”
0-simplex N x |A[0]|. We attach a “proper” 1-simplex to obtain the 1-skeleton,
and continue in this way to obtain the n-skeleton of X . On the other hand,
if we look at the definition of R,N and take into account Proposition 3.2,
we have to consider the diagram D(Sk,N) (see §3). In this case, because
sjly = 1y we can again reduce D(Sk,N) to a diagram that contains exactly
the necessary instructions to attach each face N x |9;A[g]| of the “proper” g-
simplex N x |A[q]] .

Notice that the realization functor satisfies

Ry(Alg]l © M) =N x |A[q]| = | | |Al4]|,
N

Ry(Algl @ M) = N x |A[q]] = |_||Al4]].
N

For the case when both the dimension of X and the dimension of X at
infinity are equal to n, we have constructed a simplicial M-set, N, such
that R, N = X . For the general case we have dimX = m > n, where n is
the dimension of X at infinity. We note that there are finitely many simplexes
of dimension greater than n. Using the construction above we can find a sim-
plicial M-set, N’, such that R,N’ = sk, X . In order to attach the simplexes
of dimension greater than n, for each ¢ > n, we are going to construct a
simplicial M-set A;[q] such that R,A;[g] = |A[g]|U (LI7*° %) . Now instead of
attaching |A[q]| by using a map |A[q]| — sk,—; X, we attach |A[q]| U (L} )
by using a proper map |A[g]| U (LI}7* *) — sk, X .

We note that if Y is a simplicial M-set, we have the following isomorphisms:

Homgs,,)(Alg] ® M, Y) = Homgs(Alg]l, UY) = UY,,

where U is right adjoint to —® M . Therefore each element y € Y, determines
amap f,: A[gl® M — Y . Recall that for each simplicial set Z, we have that
(ZoM),2Z,0M = Z;,x M, and an element (z, m) of Z, ®© M is also
denoted by z ® m. If i; denotes the identity of [¢q] and sh: N — N is an
element of M defined by sh(i) = i + 1, we have that the element i; © sh
of (Alg] ® M), determines a map f; osm: Alg] © M — Alg] © M. We also
consider the restriction of f; osn to the corresponding (g — 1)-skeletons that will
be denoted by sk,_1(fi,osn) - On the other hand the final map *: A[g] — A[0]
Linducesa maps » QM © Afg)@ M [0} Mina Usingshis notation, the simplicial
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M-set Ai[q] is determined by the pushout

Alglo M 22X Aj0j0 M
o
Alg]® M — Ay[q]

and similarly one also has the pushout
Alglo M =22 Al0j0 M
skq-.(f.-,,oml l
Algleo M — Ay[q]
It is easy to check that

+00
RyAi[q] = |Alg]| U (I_l ) :

1

X . +00

RyA1lg] = |Alg]lL (I_l *) .
1
If we suppose that we have a simplicial M-set N’ such that R,N' = sk, X .
Because there are finitely many simplexes with dimension greater than n, we
can consider pushouts of the form N” = N’ U; ,, Ai[p] to obtain finally the
desired N.
Notice that the simplicial M-set N has the following skeletal structure:

skeNcskikNc---CcskyNC---Csk, N,

where if [/ < n, sk; N is obtained from sk;_; N by a pushout of the form

Alllo M —>sk,_| N

l

All]6 M —>sk; N

where the map A[/]J®M — sk; N is determined by the adjoint isomorphisms by
the identity 1 of M considered as an element of the term M of (sk; N); = N;.
If [ >n, N, is obtained from N,_; by a pushout of the form

L-lﬁnite Al[l] —sk;_| N

Ufinite A1[/] ——sk; N

Since A[/] — Ay[7] is a retract of A[I] OM — A[l]® M , which is a cofibration,
it follows that A;[/] — A[/] and A[l]® M — A[l] ® M are cofibrations in
S(Sy). Therefore N is a cofibrant object in S(Sas). It is also clear that N is
“an object of (Sy/ff)/fd.
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Theorem 1. For any simplicial complex X , there is an object N in (Sy/ff)/fd
which is cofibrant in S(Sy) and such that R,N = X .

We are going to analyse the relationship between the proper realization func-
tor R,: S(Sy/ff)/fd — Pro and the realization functor # = R s : S(Si) —
(proSS, SS). Consider the Edwards-Hastings embedding

¢: Pro — (proTop, Top)

and the restrictions ¢: Pro, — (pro Top, Top) and ¢: PC — (proTop, Top),
where Pro, is the full subcategory of Pro determined by locally compact, -
compact Hausdorff spaces and PC is the full subcategory of Pro, determined
by spaces that admit a triangulation as a simplicial complex satisfying the con-
ditions (1), (2) and (3) at the beginning of the section.

Edwards and Hastings [E-H; Proposition 6.2.7] proved that the induced func-
tors

¢: no(Pros) — Hosi(pro Top, Top),
&: mo((Prog)e) — Hosi(pro Top)

are full embeddings, where mo(Pro,) and 7((Pro,s).,) are defined dividing by
proper homotopies and germs of proper homotopies and Hog(pro Top, Top),
Hog (pro Top) are obtained by the inversion of the weak equivalences of
(proTop, Top) (resp., proTop) of the closed model structure defined by Ed-
wards and Hastings [E-H] on these procategories and induced by the Strom
closed model structure of Top.

If one considers the closed simplicial model structure of Top defined by
Quillen [Q.1], using the Edwards-Hastings method there are induced closed sim-
plicial model structures on the categories (proTop, Top) and proTop. Let
Hog(proTop, Top), Hog(proTop) denote the corresponding localized cate-
gories. Using these new closed model structures, there are also full embeddings

e: mo(PC) — Hog(pro Top, Top),
£: (10(PC)oo) — Hog(pro Top),

if we consider the restriction of & to spaces that admit a triangulation as a
simplicial complex.
The standard realization and singular functor

R
Top S SS
N

induce equivalences of categories
R
Hogp(pro Top, Top) - Ho(proSS, SS),

R
Hog(pro Top)— Ho(pro S.S).
Q s

Therefore we also have the full embeddings
Se: ng(PC) — Ho(proSS, SS),

Se: 1p((PC)s) — Ho(proSS).

The next proposition relates the proper realization functor R,: (Sy/ff)/fd
Leetpep R THE TeATZATIBH FuTetsr 234 S{S)7 ) m5(pro S5, SS).
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Proposition 1. Let X be an object of PC and let N be a simplicial M-set
associated with X by the construction given in this section (R,N = X). Then
ZN s isomorphic to SeX in the category Ho(proSS, SS).

Proof. Let X be a simplicial complex and assume that the set of vertexes of
each simplex of X is provided with a fixed order. We can define a simplicial
set sX by

(sX)q = {f:|Alq]] — X|f is a simplicial, order-preserving map} .

It is well known that sX — SX is a weak equivalence in SS. Therefore if X
is an object of PC provided with an enumeration for the countable set of its
vertexes and X = X(0) D X(1) D --- is a decreasing sequence of subcomplexes
such that X(i + 1) c Int X(i), i > 0, and (X (i) = @, we have that s¢’X —
SeX is a weak equivalence in (proSS, SS), where s¢’X = {sX(i)}.

Assume that X is an object in PC with dim X = m and the dimension of
X atinfinity is equal to n (m > n). Suppose that X is provided with the corre-
sponding enumerations for the countable sets of 0-simplexes, 1-simplexes, ... ,
and n-simplexes. Then for 1 </ < n we have the following pushouts:

R,(A[l1 o M) = Uy |A[l]] —ski_1 X

Rp(A[l] OM)= |__|N |A[/]] ——sk; X
andfor n<I!<m

Llﬁnite RpAl [1— sk X

Ugnite RoA1[]] ——sk; X

The “functor” s¢’ preserves these colimits and we have, in (proSS, SS), the
pushouts

se'(Ry(All] © M)) — se (sk;_; X)

l l

se'(Rp(A[l]© M)) ——sé/(sk; X), 1<l<n,

&' (snie Rp(Arl11)) —= s&/(sky_y X)
5&' (Ugnite Rp(A1111)) ——> s¢'(sk; X), n<l<m.

The left adjoint .Z: S(Sy) — (proSS, SS) preserves colimits, so for the
simplicial M-set N we have the sequence

License or copyright rﬁatt‘gﬁomwpatg?i%ku;iowse&mgs:llw.ayrgﬂ;na?tvrr&»of;qs? C 3Skm ~ .CZN
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and the pushouts
ZAlllo M)—Z(sl,_|N)

l l

LA o M) — Z(sk N), 1<l<n,

Z (Usnite A1) —> ZL(sk1_y N)

| |

Z (Usnire A1ll]) ——Z(sk; N), n<l<m.

But we have

Z(Alllo M) 2se(R,(Alllo M), Z(All]e M) = Se'(R,(All] o M)),
ZL(AN) 2 se'(RpyA[1]), L (AIl1]) = se' (RpA[1]).

Then by induction it follows that .%(skg N) = s¢’ skg X , L (sk; N) = s¢’sk; X,
...,and finally LN = s¢’X . Therefore SeX is isomorphic in Ho(proSS, SS)
to Z(N), where N isan object of (Sy/ff)/fd which is cofibrant in S(Sys).

8. APPLICATIONS TO PROPER HOMOTOPY THEORY

Associated with the monoid M = Pro(N, N), we have introduced the proper
realization functor R,: (Sy/ff)/fd — Pro and the proper singular func-
tor S,: Pro — S(Su). Given an object N of S(Su/ff)/fd and a space
Y, by Theorem 4.1 we have that 7mo(Pro)(R,N,Y) = no(S(Sm))(N, S,Y).
If N is also a cofibrant object in S(Sy), then Theorem 4.2 implies that
mo(Pro)(R, N, Y) = Ho(S(Su))(N, S,Y). Consequently, in some cases, the
problem of computing sets of proper homotopy classes is translated from the
proper homotopy category mo(Pro) to the category of fractions Ho(S(Sys)) .

We note that the definition of the functor S, is given by sequences of singular
simplexes converging to infinity. Therefore the use of the functors R, and S,
will be more convenient for spaces which are first countable at infinity. For
more general spaces we have to use nets instead of sequences, and the category
S(Spr) would have to be modified to one of the form S(S,) where £ is
a category of “proper maps” between directed sets. In any case, many of the
more important applications of the proper homotopy theory are concerned with
noncompact spaces which are first countable at infinity.

An important class of these latter spaces are the simplicial complexes con-
sidered in §7. Recall that PC denotes the category of proper maps between
spaces that admit a simplicial decomposition with a countably infinite num-
ber of simplexes; we also assume that this triangulation is locally finite and
has finite dimension. By Theorem 7.1, a simplicial complex X of PC is of
form X = R,N, where N is an object of S(Sy/ff)/fd which is cofibrant in
S(S»a). Then it follows that

no(Pro)(X, Y) = mo(Pro)(R,N, Y) = Ho(S(Sm))(N, S,Y).

In order to define the proper homotopy groups of a space X, we choose a
BESE SRYETER™ B MY L HVEIEIHE TS AN Y~ Associated with X, one has



SIMPLICIAL M-SETS 397

the simplicial M-set S,X, and the forgetful functor U: S(Sx) —»__SS gives
the simplicial set S,X = US,X . Notice that ¢ is a O-simplex of S,X. We
consider the following definition of proper homotopy groups ?7,;(X, o).

Definition 1. Let X be a space and o: N — X a proper map. Then the gth
proper homotopy group is defined by

Pry(X, o) :=m,(SpX, 0).

Remarks. (1) For the category Pro,, of germs of proper maps and the monoid
M, = Pro.(N, N), we have similar notions and results. For instance, we can
consider the proper homotopy groups at infinity ?z3°(X, o) of a space X and
base sequence o . :

(2) E. M. Brown [Br.1] define the proper homotopy groups Bn;’°(X , a) of
a space X with a proper base ray a: [0, +o0) — X . If S? denotes the g-
sphere and x is a base point of S%, we can consider the Brown g-sphere
BS9 = ([0, oo) x {*}) U (NxS9). It is easy to check that the inclusion Nx§? —
([0, 00) x {*}) U (N x S9) induces a group isomorphism 7,: Bng°(X, a) —
Pre(X, a/N). We note that if @, o’: [0, co) - X are two proper rays such
that a/N = o//N, we have the group isomorphism 6 .= na‘,lna: an(X, a) —
B e (X, o). However, two different choices of base ray can lead to noniso-
morphic progroups. We refer the reader to Siebenmann’s thesis [Sie.1]. He
considers a space X (an infinite cylinder with an infinite string of circles) and
two proper maps «, a; : [0, co) — X that lead to nonisomorphic pro-groups

G =towm (e(X, a)) Ztown (e(X,a’))=G".

Siebenmann shows that for o, limG is a cyclic infinite group, and for o',
lim G’ is a trivial group. Recall that if we consider the functor &: tow Grp —
Grpg,yz , for the progroups G, G’ we have the group isomorphisms:

limG = {x € #G|xsh = x},
limG = {x' € PG'|x'sh=x"}.

Therefore, as a consequence of Siebenman’s example we obtain that F#G is
not isomorphic to PG’ in the category Grpg,.z (notice that any morphism in
Grpg.z has to “commute” with the shift operator sh).

On the other hand, by Theorem 6.3, one has canonical isomorphisms

PG2BrP(X, ), PG =BrX,d).

In the Siebenmann example we have that the group isomorphism 6 does not
preserve the action of sh, hence 8 is not a morphism of the category Grpgz,z -

Now we obtain the following version of the Whitehead theorem in the proper
setting.

Theorem 1. Let f: X — Y be a proper map between simplicial complexes (that
is, f is a morphism of PC). Then f is a proper homotopy equivalence if and
only if Pr,(f):Pnq(X, 0) = Pry,(Y, fa) is an isomorphism for all ¢ > 0 and
for every base sequence o .

Proof. Let Z be a object in PC. By Theorem 7.1, there is an object N in
SES3r S ¥ e whikty ttofibratie i S(Syy#id-stich that Z =~ R,N. Using
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Theorem 7.2, we obtain the following commutative diagram:

no(Pro)(R,N , X) = Ho(S(Sm))(N, S, X)

ﬂl (Spf ).l

7o(Pro(R,N , Y)) = Ho(S(Sy))(N, S,Y)

By the definition of ?7,, one has that S,f = US,f is a weak equivalence
in SS. Taking into account the definition of weak equivalence in S(Sys), we
have that S,f is a weak equivalence. Therefore (S,f). is an isomorphism
in the diagram above, and this implies that f, is also an isomorphism. This
follows for any Z = R, N, and by the Yoneda lemma one obtains that f is an
isomorphism in 7y(Pro); that is, f is a proper homotopy equivalence.

Remarks. (1) A similar version of this paper Whitehead theorem can be proved
for germs of proper maps and the proper homotopy groups at infinity 7z2° .

(2) Siebenmann [Sie.2], Farrel-Taylor-Wagoner [F-T-W], Edwards-Hastings
[E-H] and Bassendoski [Bas] have proved different versions of the proper White-
head theorem. There are also other versions of the Whitehead theorem
for prospaces and prosimplicial sets that can be applied to proper homotopy.
Extremiana-Herndndez-Rivas [E-H-R.1] gave a version that only uses strong
(Steenrod) proper homotopy groups. Baues [Ba.2] and Ayala-Dominguez-
Quintero have given a Whitehead theorem for spaces with a base tree.

(3) Let # =?n;(X) and assume that there is an action of 7 on an abelian
group A. One can define proper cohomology of X with twisted coefficients
by PHI(X ; A) := H%(S,X; A). It is clear that the cohomology version of the
standard Whitehead theorem implies a similar version for the proper category.

The following result gives the relation between the proper singular functor,
the right-derived functor of the & functor, and the Edwards-Hasting functor.

Theorem 2. Let Pro, be the full subcategory of Pro determined by locally com-
pact, o-compact Hausdorff spaces. Then the diagram

7o(Prog) Se Ho(proSS, SS)

Ho(S(Sm))

is commutative up to natural isomorphism.

Proof. Let X be an object in Pro, . From the topological properties of X , we
infer that eX = {X;|i € N}. Therefore SeX = {SX;}. Using the properties
of the model structure of (towSS, SS), one has a levelwise map {fi: SX; —
(RSeX);} such that RSeX is a fibrant object, and for each i > 0, SX; and
(RSeX); are fibrant objects, and f; is a weak equivalence. We can now apply
Lemma 6.3, to obtain that

PSeX = P(SeX;} — P(RSeX) = PRSeX
egeq SRR STV A SHCR = At 1§ AP IO ORpHISIT 1 “Ho (S (Sar)) -
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On the other hand, one has the isomorphisms

(PSeX), = (proSS, SS)(Z(Alg] ® M), SeX)
= (proTop, Top)(|cAlg]l, eX)
(proTop, Top)(e(N x |A[g]]), eX)
= Pro(N x |A[q]|, X) = (SpX)q.

1R I

Therefore #SeX is isomorphic to S,X and S,X — PRSeX is an isomor-
phism in Ho(S(Sys)) .

A partial version of the Edwards-Hastings embedding theorem can be ob-
tained as a corollary.

Corollary 1. Let X be an object in PC . Then
no(Pro)(X, Y) = Ho(pro SS, SS)(SeX, SeY)

for any space Y in Pro,.

Proof. By Theorem 7.1 there is an object N in S(Sp) such that R,N = X
and

7o(Pro)(X, Y) & Ho(S(Sx))(N, S,Y).

By the above theorem, S,Y is isomorphic to #RSeY in Ho(S(Su)), so one
has

Ho(S(Sy))(N, S,Y) = Ho(S(Sy))(N, PRSeY)
~ Ho(proSS, SS)(ZN, SeY).

In the last isomorphism, we have taken into account that N is cofibrant in
S(S»y). Applying Proposition 7.1, one has that £ N is isomorphic to SeX .
Therefore

o(Pro)(X, Y) = Ho(proSS, SS)(SeX , SeY).

Different homology theories can be defined in order to have Hurewicz the-
orems. If one considers the following definition, we have that the standard
Hurewicz theorem implies a proper Hurewicz theorem. Recall that §pX de-
notes the simplicial set US, X , where U: S(Sy) — SS is the forgetful functor
and S, is the proper singular functor.

Definition 2. Let X be a space. The gth proper homology group of X is defined
by PHy(X) := Hy(S,X).

Theorem 3 (Proper Hurewicz theorem). Let X be a noncompact space and
suppose that X is properly 0-connected (Pnyo(X, 6) = * for some base sequence
o). Then there is a homomorphism Pr,(X) — PH,(X) for each q > 0 such
that:

(1) For g =1, Pn(X) - PH (X) is up to isomorphism the natural epimor-
phism from a group to its abelianization. The first proper homology group is
isomorphic to the abelianization of the proper fundamental group.

(2) If X is properly (n — 1)-connected, n >2 (Pny(X)=0 for g<n-1),
then the Hurewicz homomorphism Pn,(X) — PH,(X) is an isomorphism and

Lidénen tirloéwa rﬁch%HT’}a_y_?;{JRfo)redEgibaw; é?b'mmhrjsmj;oumal-terms»of»use
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Remarks. (1) If X is a space and «: [0, +00) — X a base ray, such that o is
a “proper cofibration”, then the pushout

e[0, +00) — =

]

eX e'X
defines an object ¢’X of (proTop,, Top,) and ¢X — &X is a weak equiv-
alence in (proTop, Top). Then ?RSeX — PSe'X is a weak equivalence

in SS, and we have that nq(,?RSsX ) nq(ﬁRSs’X ). The proper homotopy
groups satisfy

Pry(X) = mg(SpX) = 1y (P SeX) = ny (P Se'X) = P(pron,, ng)(e' X).

That is, the functor 7, commutes with the & functor.

(2) The functor H, does not commute with the & functor. Take X ob-
tained from the semiopen interval [0, +oo) by attaching one 1-sphere at each
nonnegative integer. In this case, the natural map

PHy(X) - P((proH,, H))e'X)

is not an isomorphism.
(3) We can also consider the following functor

Proi,proSS’ SS) —f> (proSA4, SA) ﬁk‘* S(Azcz) U—)SA >

which induces another proper homology theory that also satisfies a Hurewicz
theorem. In this case, the functor H, “commutes” with % .

(4) Otherwise useful proper invariants are the strong (Steenrod) homotopy
groups of a rayed space that can be defined by 7,(F,#Re'X) orby n, lim® &’ X
see [H-P.1, H-P.2]. Other alternative definition can be seen in [Ce]. A proper
homology theory for these groups, that satisfy the Hurewicz theorem, can be
defined by H,(FZRe’'X). Other Hurewicz theorems for the strong homotopy
groups are proved in [E-H-R.2].

9. APPLICATIONS TO PROHOMOTOPY THEORY

In this section, in order to prove new versions of standard theorems for the
homotopy category Ho(proSsS.), we will use the pair of adjoint functors

ipL
Ho(S(S. gcso))i Ho(pro SS.).

Definition 1. An object X of proSS, issaid to be .&-cofibrant if X is isomor-
phic in Ho(pro SS.) to some .G, where G is a cofibrant object in S(S, p.s0) .
If G is cofibrant and dim G < k, then X is said to be .&- k-cofibrant.

There are many versions of the Whitehead theorem in prohomotopy theory.

On one side, there are theorems that give algebraic conditions to ensure that a
morphism of proHo(Top) is an isomorphism—see for instance [Rau] and [M-
S]. On the other side, there are theorems of the same type for a morphism of
Lickbo(prosTepors hermonographrof dwards-and-Hastings [E-H] and the papers
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of Grossman [Gr.1, Gr.2, Gr.3] include some versions of the last type for maps
between towers that satisfy additional conditions on (co) dimension or mov-
ability. Here we prove a slightly different version of the Whitehead theorem
for .Z-cofibrant objects. In general, an .Z-cofibrant object is not necessarily
isomorphic to a tower. The algebraic condition of our result is given in terms
of Grossman homotopy groups or equivalent cohomology conditions:

Theorem 1. Let X, Y be .Z-cofibrant objects in proSS, andlet u: X - 'Y
be a map in Ho(proSS.). If #Ru is an isomorphism in Ho(S(S,z.s0)), then
u is an isomorphism in Ho(proSsS,).

Proof. 1f suffices to prove that for any cofibrant object G of S(S(z.s0)) the
induced map

u.: Ho(proSS.)(ZG, X) — Ho(proSS.)(Z¥G, Y)

is an isomorphism. Because .ZL is left adjoint to #R | this condition is equiv-
alent to showing that

(PRu)s: Ho((Ssge50))(G, PRX) = Ho((Sve50))(G , PRY)

is an isomorphism. This follows because 2Ry is an isomorphism by hypothe-
sis.

Consider a simplicial g-sphere, for instance S¢ = A[g + 1], and recall that
Z(81® PcS% = ¢S9. Given an object X in proSS., the gth Grossman
homotopy group

“13°(X) = Ho((Syzc50))(S? © LS, PRX)

~ Ho(SS,)(S7, P X) = n, (P X).

A pro-pointed simplicial set is said to be (Grossman) O-connected if Sn°(X)
is trivial.
Corollary 1. Let X, Y be Z-cofibrant objects in proSS, and assume that
X and Y are O-connected (°n = 0). If u: X — Y is a morphism in
Ho(pro SS.), then u is an isomorphism if and only if an;°X - an;°Y is
an isomorphism for all ¢ > 1.
Proof. By Theorem 1, u is an isomorphism if and only if &Ry is an isomor-
phism. It is easy to check that %Ry is an isomorphism in Ho(S(S,x.s0)) if
and only if Py = UZRy is an isomorphism in Ho(SS,). We note that the
simplicial sets ?Rz\; and ?RY are O-connected. Therefore this is equivalent
to saying that 7, u is an isomorphism for g > 1. Since nqﬁRu =%nu,
we get the algebraic condition of the corollary.

Remark. We can define the cohomology of a prosimplicial set X with twisted
coefficients in 4 by H(X; A) := H"(?RX ; A), where A4 is a m-module and
n= an;"X . It is clear that we can give a cohomology version of the Whitehead
theorem for .#-cofibrant objects.

Recall that the natural “inclusion” Ho(SS) — Ho(pro SS) is left adjoint to
the homotopy limit lim®: Ho(pro SS) — Ho(SS), and for the case of towers

. R . . .
lim® factors as lim® = Fp PR . We also have similar functors and properties
Lmie Tmyrﬁbrfﬂfw %gel}/ to redistribution; see https://www.ams.org/journal-terms-of-use
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Given an object X in proSS., the gth strong homotopy group of X is
defined by Sm,(X) = nq(limR X). If X is a tower we have that nq(limR X)=
ng(FnPRX). The Cech homotopy groups of X are defined by #,(X) =
limn, X, where n,X denotes the progroup pron,X. If X is a tower then
f(X) = limn, X & FpPr,X = FgpnaPRX. Then the homotopy groups
n,PRX determine the Cech homotopy groups 74(X) (the homotopy group
n,PRX is provided in a natural way with a shift operator sh).

For any object X in proSS., we have the natural map lim®*X - X in
pro SS. . Consider the following notion.

Definition 2. An object X in proSS, is said to be P-movable if the induced
map Z*limR X — P X is a weak equivalence in SS. .

Proposition 1. Let X be an object of towSS, and assume that X is P-
movable. Then
(i) The Cech homotopy groups #t,(X) are isomorphic to the strong homotopy
groups Smy(X).
(ii) The strong homotoiy groups determine the Grossman homotopy groups by
the formula ®7(X) = P(Sny(X)).
Proof. To prove (i), consider the following isomorphisms:
y(X) = limn, X & FpPrgX & Fyn, PRX
& Fpm, PRUImR X = FpP(n, lim® X) = 1, lim® X = Sz, (X).
Part (ii) follows from the isomorphisms
Cn20(X) = 1y(P X) & ng(F limR X) = Py limR X = P(Sny(X)).

Now we obtain the following Whitehead theorem for Z-movable prosimpli-
cial sets.

Corollary 2. Let X, Y be objects in towSS. and assume that X, Y are £-
cofibrant and P-movable. Suppose also that X and Y are #-O-connected. If
u: X — Y is a morphism in Ho(proSS.), then the following conditions are
equivalent:

(i) u is an isomorphism in Ho(pro SS.).

(il) 74(X) — #4(Y) is an isomorphism for all q > 1.

(iii) Sm(X) — Sny(Y) is an isomorphism for all ¢ > 1.
Proof. Since X, Y are Z-movable, we infer by the proposition above that
#,(X) = Smy(X) and similarly for Y. Because Sm,(X) is isomorphic to
Sn,(Y), by the proposition above it follows that

2 (X) X P (S X) 2 P(Sn,Y) = n(Y), g>1.

G

Applying Corollary 1 we have that condition (iii) implies that u is an isomor-
phism.

Remarks. (1) Let X be a topological space and a: [0, +00) — X be a “proper”
cofibration. In Remark (1) after Theorem 8.3 we have considered the pointed
prosimplicial set Se/(X, ). We say that X is Z-movable at infinity if
gL CRonyg s ol Al TR oA ot seruetiee o Proposition 1, we have that
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for a space X which is Z-movable at infinity, the strong (Steenoord) homo-
topy group

Ste(X , @) = mo(Prog)((S7 x [0, +00), * x [0, +00)), (X, a))
is isomorphic to the proper Cech group

Therefore we also have the following proper Whitehead theorem: Let (X, «)
and (Y, B) be two “well rayed” simplicial complexes (objects in PC) and let
f:(X,a)— (Y, B) bethe germ of a proper map. Assume that (i) X, Y have
finite dimension, (ii) X, Y are Z7-movable at infinity, and (iii) X, Y have
one Freudenthal end. Then f is a proper homotopy equivalence at infinity if
and only if 7#,(f): #,(X, a) — #4(Y, B) is an isomorphism for ¢ > 1.

A Whitehead theorem involving only strong (Steenrod) proper homotopy
groups was proved in [E-H-R.1].

(2) If we define the H.%-homology groups of a prosimplicial set X by

HZ%4(X) = H,,(.?RX ), we also have a homology theory that satisfies the Hure-
wicz theorem for the Grossman homotopy groups. We will analyse this case in
the following section for the prosimplicial set V' X associated with a compact
metrisable space X .

(3) Many of the notions and theorems of this section can also be obtained
for the nonpointed case proSsS, and the corresponding global (augmented)
categories (proSS, SS), (proSS., SS.).

10. APPLICATIONS TO STRONG SHAPE THEORY

First we recall the definitions of the Cech nerve CX of a space X and the
Vietoris nerve V' X that was introduced by Porter [P.1].

Given a space X, consider the directed set covX. An element of covX
is an open covering Z of X. If %, 77 € cov X, it is said that 77 refines
% (Z >%) if forany V € 7 there is some U € Z such that V' c U. Given
a space X and an open covering %, (CX)g, denotes a simplicial set such
that a typical n-simplex is given by (U, ..., U,) where Uy, ..., U, € Z and
Usn---NU, # @. The correspondence X — {(CX)y|U € covX} defines a
functor C: Top — proHo(SS).

If Z is an open covering of the space X , the Vietoris nerve of %, (VX)g,
is the simplicial set in which an n-simplex is an ordered (n+ 1)-tuple (xo, ...,
Xn+1) of points contained in an open set U € Z . One important difference
with the Cech nerve is that if 2 refines % there is a canonical map (V' X)y —
(VX)y in SS, whereas in the case of the Cech nerve the corresponding map
(CX)» — (CX)g has to be considered only in Ho(SS).

Using the Vietoris functor V': Top — proSS, one can define the category
StSh(Top) of strong shape of topological spaces by taking as objects the topo-
logical spaces, and for two spaces X, Y the hom-set StSh(X, Y) is defined
by

StSh(X, Y) = Ho(proSS)(VX, VY),

where proSS is provided with the closed model structures given by Edwards
arid Hustings [ EYHTY Weéshalbealso e the Dswket theorem [E-H, page 125],
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which asserts that for an open covering % of a topological space the Vietoris
nerve (V' X)y is isomorphic to the Cech nerve (CX)y in the category Ho(SS).

It is not difficult to check that if X is a compact metrisable space, then
there is a cofinal sequence... , %, Z, , %y of open coverings in cov X . There-
fore CX = {(CX)y|% € covX} is isomorphic to C'X = {(CX)y|i € N}
in proHo(SS) and VX = {(VX)y|#% € covX} is isomorphic to V'X =
{(VX)g|i € N} is proSS and in Ho(proSS).

Recall that if X is a compact metrisable space we can assume (up to homo-

morphism) that X is a subspace of s = [[12(5L, 1), the pseudo-interior of
the Hilbert cube Q = [[;27[=}, 1]. Consider the open neighbourhoods of X

in Q

NX ={U|X c U, U is an open subset of Q}
as an object of proTop. Since X is a compact space, there is a cofinal sequence
of neighbourhoods N’'X = {U;|X C U; i € N} such that NX is isomorphic to
N'X in proTop. Applying the singular functor we get SNX = {SU|U € NX},
which is isomorphic to ¥ X in Ho(proSS). It is also interesting to remark that
the natural inclusion

N°X ={U;-X|XCU;, ieNyC{UJXCU;, ieN}=N'X

is an isomorphism in Ho(pro Top) and therefore SN'X and SN“X are iso-
morphic in Ho(pro SS).

Notice that by considering the functor Ho(tow SS) — tow Ho(SS) and the
Dowker theorem we have that, for a compact metrisable space X, C'X and
V'X are isomorphic in tow Ho(SS). If we choose representative maps of the
bounding maps of C’X , we obtain an object C” X in the category towSS, and
by Theorem 5.2.9 of [E-H] we also have that C”X and V’X are isomorphic
in Ho(tow-SS). Therefore, for a compact metrisable space the objects VX,
SNX, V'X, SNX, SN“X, C"X are isomorphic in Ho(proSS).

Recall that in the Example (2) of §2, we introduced the simplicial M -sets
ss(X) and ss(X) for a compact subset X of the pseudo-interior of the Hilbert
cube. The following result gives a geometric interpretation of the simplicial M-
set 2RV X .

Proposition 1. Let X be a compact subset of the pseudo-interior of the Hilbert
cube. Then PRV X, ss(X), and ss¢(X) are isomorphic in Ho(S(Sy)), where
M =Pro(N, N).

Proof. Since V' X is isomorphic to SNX, then
PRV X = PRSNX = PRSN'X = PRSNX .

The objects SN'X = {SU;|i € N} and SN“X = {S(U; — X)|i € N} are such
that for each i € N, SU; and S(U;— X) are fibrant in SS. By Lemma 6.3, we
infer that PRSN'X is isomorphic to #SN'X and #RSN’“X is isomorphic
to ASN°X in the category Ho(S(Sy)). Now it is easy to check that ZSN'X
is isomorphic to ss(X) and LSN’°X is isomorphic to ss°(X) in the category
S(Swu) .-

Remark. From the definition of ss¢(X) and S,(Q—X), itis clear that ss¢(X) =

LS%B{B@CQW“ t)eftrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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To define invariants for the strong shape category, consider the following
functors:

St Sh(C M) — >~ Ho(pro SS) -Z5> Ho(S(Sy)) L Ho(SS),

where StSh(CM) is the strong shape category for compact metrisable spaces
and M is the monoid Zcx. Recall that we also use the notation U#R = 7z .

We also note that a base point * of a compact metrisable space determines a
. —R
base point of # VX .

Definition 1. The 7.%-homotopy groups of a pointed compact metrisable space
are defined by

12 (X) = ng(P VX)

and the H.%-homology groups of X (nonpointed) by
HZ(X) = H(Z"V X).

Remarks. (1) The nZ-homotopy groups n?(X ) are isomorphic to the “in-
ward” groups 97}(X) of Quigley [Quig, P.6].

(2) Notice that 7 and & commute; that is, nqﬁR VX = Pnr,VX, where
ngV X denotes the homotopy progroup prom, VX .

(3) In general H and & do not commute; that is, HqﬁR VX% PHVX,
where H,V X denotes the pro-abelian group pro H,V X .

(4) To define homology theories, we can consider functors into a category of
simplicial objects in an abelian category. For instance, the free abelian functor
f: Set — Ab induces natural functors f: SS — S4, f: proSS — proS4,
where SA is the category of simplicial abelian groups. We also have the free
functor f: S(Swcs) — S(Sacz), where S(Ax.z) denotes the category of sim-
plicial objects in Az (Ab = A). Therefore we have the following simplicial
objects to define homology of a prosimplicial set X :

(a) fJULRX in S4, '

(b) UfPRX in S4,

(c) UPRfX in SA4,

(d) fPRX in Sz,

(e) PRFX in Sz,

(f) fX in proSA4.

For the cases (c) and (e) we have that H and & commute. The homology
in cases (d) and (e) has a natural structure as a ZcZ-module. Recall that #cZ
is the ring of locally finite matrices modulo the ideal of infinite matrices, see
[F-W].

An immediate consequence of the definition is that the H.Z-homology sat-
isfies the Hurewicz theorem for the inward groups of Quigley.

Theorem 1. Let X be a compact metrisable space and assume that X is 2n!-0-
connected (°n{(X) = 0). Then there is a canonical homomorphism 2r}(X) —
HZ(X) such that

SR T R R S XY IS T dbeNidkization of Cri(X).
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(2)If X is al-(n—1)-connected, n > 2 (thatis, 9nl(X)=0, g<n=-1),
then nl(X) — HY(X) is an isomorphism and ©xl  (X) — HZ (X) is an
epimorphism.

Proof. 1t suffices to apply the standard Hurewicz theorem to the simplicial set
—R
PFPVX.

Remark. There are other homologies that satisfy Hurewicz theorems for the
inward groups of Quigley. For instance, consider the HZ f-homology groups,
] —R
HYI(X) = H(Z" fX).
It is also interesting to analyse the family of invariants obtained when one
considers the commutative diagram

Ho(tow SS)
limR

Ho(pro SS) x> o(S(Sn)) e Ho(SS)

For a compact metrisable space the prosimplicial set V' X is isomorphism to
a tower of simplicial sets; then holim VX = lim® VX = F,#RV X . That is,
imR VX is a sub-simplicial set of 2V X . The inclusion imR VX c Z VX
induces many relations between the homotopy invariants of lim® VX and the

invariants of 2 VX .

Definition 2. The nFZ-homotopy groups of a pointed metrisable space are
defined by
757 (X) = nq(Fn PRV X)

and the HF.%-homology groups of X (nonpointed) by
HI?(X) = Hy(FpPRV X).

Remarks. (1) The nF2-homotopy groups 7:},r Z(X) are isomorphic to the ap-
proaching groups Qn;‘(X ) defined by Quigley [Quig, P.6].

(2) The functors n, and Fy do not commute. These are spaces X such
that 1, Fu PRVS 2 Fyn, PRV X . Notice that Fpn,PRVX = FpPr,VX =
limngV X is isomorphic to the Cech homotopy group 74(X). Therefore the
Fn%-homotopy groups of X, nf’ (X) = FpngPV X are up to isomorphism
the Cech homotopy groups.

(3) We can consider the following simplicial objects, in different abelian cat-
egories, associated with a prosimplicial set X .

(@) fFpPR = flim® X in S4,

(b) FhfPRX in SA4,

(¢) FpPRFX =1im® fX in SA.

The HF f-homology groups (or Hlim f) Hngf(X) = Hy(FaPRfX) are
the strong (or Steenrod) homology groups SH,(X); see [E-H, page 208], [Co]
and [P.4]. We can also consider F. % H-homology groups ¥ Hy(X) = FnPH, X
& lim H, X = limpro H,X = H,(X) which are isomorphic to the Cech homol-
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There are theorems of Hurewicz type for the approaching groups Qn;,‘ (X)
of Quigley and the strong (Steenrod) homology groups $H,(X); see the paper
of Kodama and Koyama [K-K]. We can also prove that the HF.%-homology
groups satisfy a Hurewicz theorem for the approaching groups of Quigley.

Theorem 2. Let X be a compact metrisable space and assume that X is 2nA-
0-connected (that is, 2n§(X) = 0). Then there is a canonical homomorphism
2rA(X) - HF?(X) such that

(1) for g =1, a{(X) — HF?(X) is a abelianization of 9n{(X), and

(2) if X is 9n4-(n— 1)-connected, n > 2 (that is, 2nf(X)=0, ¢g<n-1),
then 9ni(X) — HIZ(X) is an isomorphism and n, (X)) —» ZEZ(X) is an
epimorphism.
Proof. This is a particular case of the standard Hurewicz theorem.

If Xis a compact metrisable space, then VX is isomorphic to C”X in
Ho(pro SS). If the covering dimension of X is finite, then C” X is isomorphic
to a tower of finite simplicial sets of dimension less than or equal to the covering
dimension of X . It is not hard to check that a tower of finite simplicial sets of
dimension < n (for some n) is an .Z-cofibrant object in the sense of Definition
9.1. Therefore if X is a compact metrisable space and X has finite covering
dimension we have that VX is an .Z-cofibrant object. As a consequence of
the Whitehead theorem proved in §9, we obtain the following version of the
Whitehead theorem for the strong shape category.

Theorem 3. Let X, Y be compact metrisable spaces with finite covering dimen-
sion. Assume also that X and Y are 9n!-O-connected (°n} = 0). A strong
shape morphism f: X — Y (thatis,amap f:VX — VY in Ho(proSS)) is
a strong shape isomorphism if and only if f.: 9nl(X) — 2rl(Y) is an isomor-
phism for ¢ > 1.

Remarks. (1) For a compact metrisable space X, let = = 2n{(X) be the fun-
damental inward group and let 4 be a n-module. Define the cohomology of
X with twisted coefficient in 4 by HI(X; A) = HG(?RVX; A). Then in
Theorem 3 we can give the following equivalent condition:

(i) fo: 2nl(X) - Crl(Y) is an isomorphism, and

(i) f*: HI(Y; A) — H9(X; A) is an isomorphism for ¢ > 0 and any
twisted coefficients A4 .

(2) The functors Fyp PR and A can be used to transform many notions
and results of standard homotopy theory into strong shape notions and results.
We have just included some canonical examples about Hurewicz and Whitehead
theorems.

Definition 3. A compact metrisable space X is said to be P-movable if VX
is Z-movable (see Definition 9.2).

An immediate consequence of Corollary 9.2 is the following Whitehead the-
orem

Theorem 4. Let X and Y be compact metrisable spaces and assume that X and
Y have finite covering dimension and that X and Y are P-movable. Suppose
also that X, Y are #-O-connected (=g = 0). If f: X — Y is a strong shape
“rreorpRiSieTHE YOHEWING CONATtIOnS dre eguiTvalent
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(i) f is a strong shape isomorphism,
(if) 74(X) — #4(Y) is an isomorphism for ¢ > 1,
(i) 2nA(X) — Cn(Y) is an isomorphism for q > 1.
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