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APPLICATIONS OF SIMPLICIAL Af-SETS
TO PROPER AND STRONG SHAPE THEORIES

L. J. HERNANDEZ PARICIO

Abstract. In this paper we have tried to reduce the classical classification prob-

lems for spaces and maps of the proper category and of the strong shape category

to similar problems in the homotopy category of simplicial sets or in the homo-

topy category of simplicial Af-sets, which M is the monoid of proper selfmaps

of the discrete space N of nonnegative integers.

Given a prospace (prosimplicial set) Y , we have constructed a simplicial set

& Y such that the Hurewicz homotopy groups of & Y are the Grossman

homotopy groups of Y . For the case of the end prospace Y = eX of a space

X , we obtain Brown's proper homotopy groups; and for the Vietoris prospace

Y = VX (introduced by Porter) of a compact metrisable space X , we have

Quigley's inward groups. The simplicial subset & Y of a tower Y contains, as

a simplicial subset, the homotopy limit lim7* Y . The inclusion lim* Y —► 3" Y

induces many relations between the homotopy and (co)homology invariants of

the prospace Y.

Using the functor &> we prove Whitehead theorems for proper homotopy,

prohomotopy, and strong shape theories as a particular case of the standard

Whitehead theorem. The algebraic condition is given in terms of Brown's proper

groups, Grossman's homotopy groups and Quigley's inward groups, respectively.

In all these cases an equivalent cohomological condition can be given by taking

twisted coefficients.

The "singular" homology groups of £P Y provide homology theories for the

Brown, Grossman and Quigley homotopy groups that satisfy Hurewicz theorems

in the corresponding settings. However, there are other homology theories for

the homotopy groups above satisfying other Hurewicz theorems.

We also analyse the notion of ^-movable prospace. For a ^-movable

tower we prove easily (without lim1 functors) that the strong homotopy groups

agree with the Cech homotopy groups and the Grossman homotopygroups are

determined by the Cech (or strong) groups by the formula anq = 3"7tq . This

implies that the algebraic condition of the Whitehead_theorem can be given in

terms of strong (Cech) groups when the condition of ^"-movability is included.

We also study homology theories for the strong (Steenrod) homotopy groups

which satisfy Hurewicz theorems but in general do not agree with the corre-

sponding Steenrod-Sitnikov homology theories.
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364 l. j. hernandez paricio

0. Introduction

The main purpose of this paper is to reduce as far as possible the study of

proper homotopy theory and strong shape theory to notions and problems of

standard homotopy theory. To reach this aim we will use the following tools:

(1) The notion of closed simplicial model category, introduced by Quillen

[Q.l], will be used to work with categories obtained when one divides by ho-

motopy relations or when one inverts weak equivalences.

(2) We consider the category SS of simplicial sets and the category S(Sm) of

simplicial M-sets. An M-set is a set together with the action of a monoid M.

Both categories SS, S(Sm) are provided with structures of closed simplicial

model categories.

(3) One of the most useful categories to study proper and strong shape theory

is the closed simplicial model category of prospaces.

For the proper category at infinity, the Edwards-Hastings functor e gives

a full embedding of the proper homotopy category at infinity of T2 locally

compact, er-compact spaces into the localized category of prospaces obtained

by inverting the weak equivalences considered by Edwards and Hastings in [E-

H]. There is a similar version for global proper maps and homotopies by taking

global (or augmented) prospaces. For strong shape theory, one can use the

Vietoris functor V, introduced by Porter [P.l, P.5], that gives a full embedding

of the strong shape category into the "homotopy category" of prospaces.

(4) We define "singular" functors from proper categories and procategories

to simplicial M-sets, and realization functors from simplicial Af-sets to the

category of prospaces and from adequate full subcategories of simplicial M-

sets to the category of spaces and proper maps.

One of the main results of this paper is the construction of a simplicial set
_D

9° X, associated with a pro-simplicial set X, that retains many homotopy

properties of X. The simplicial set 3P X contains as a simplicial subset the

homotopy limit, lim^ X , of X .

The Hurewicz homotopy groups of lim^ Y axe the strong homotopy groups

of the prosimplical set Y. For the case Y = eX one gets the strong groups in

the proper setting, and for the case Y = VX one has the approaching groups

of Quigley [Quig, P.6].

In this paper, we prove that the Hurewicz homotopy groups of 3° Y are the

Grossman homotopy groups of the prospace Y . For Y = eX one has Brown's

proper homotopy groups and for Y = VX we have the "inward" groups of

Quigley [Quig, P.6].

In the proper setting, the simplicial set & eX can be interpreted as the

simplicial set of sequences of singular g-simplexes converging to infinity. We
_D

can also look at & eX as the mapping space of sequences of points of X

converging to infinity provided with an adequate topology. If X is a compact

metrisable space, it can be considered up to homeomorphism as a subspace
_p

of the pseudointerior of the Hilbert cube Q. We can then interpret 3° VX

as the simplicial set of sequences of singular g-simplexes of Q converging to

X. Nevertheless, it is also possible to interpret & VX as the simplicial set

of singular tf-simplexes of Q - X converging to X, which is the same as theLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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simplicial set of singular ^-simplexes of Q - X converging to infinity. That is,
_p _p
3?  VX is isomorphic to 3° e(Q - X) in the homotopy category.

This paper has been divided into 10 sections. The first part, §§1 through 6, is

devoted to developing the technical tools. Section 7 establishes the relationships

between simplicial M-sets and simplicial complexes, where M is the monoid

of proper selfmaps of the discrete space of natural numbers. The last part,

§§8, 9 and 10, contains applications to proper homotopy theory, prohomotopy

theory and strong shape theory.

Section 2 is devoted to analysing the closed simplicial model structure of
simplicial M-sets that will be used in this paper. In §3, we analyse realization

and singular functors for simplicial M-sets. Let A denote the standard category

whose objects are finite ordered sets of the form [q] = {0 < 1 < • • • < q} and
the morphisms are monotone maps. Let m ̂  be the category of left Af-objects

in ^. Associated with a functor x '• A —* m%? , we consider a realization functor

Rx: S(Sm) —► ^ and a singular functor Sx: W —► S(Sm) ■ The construction of

the realization functor depends of the existence of colimits in W. One of the

categories W that we consider is the category Pro of spaces and proper maps.

The category Pro has only some colimits, and for this reason, in §3 we include

some lemmas about the existence of colimits.

If we consider the monoid M — Pro(N, N), we take as a "proper" ^-simplex

a space of the form N x \A[q]\. Given a proper map <p: N —► N, we can attach

N x |<9,A[<7]| to N x \A[q - 1]| in such a way that {«} x |9,A[^]| is identified with
{(/>(n)} x \A[q- 1]|. Therefore if we have a simplicial Af-set N, whose monoid

structure is freely generated by a finite number of simplexes, we can construct

a space RPN taking a "proper" simplex associated with each generator of N

and gluing the different "proper" simplexes in the way indicated above. The

full subcategory of this kind of simplicial M-sets is denoted by S(SM/ff)/fd
(ff = freely generated by a finite set, fd = finite dimension). In general the

realization of a simplicial map of S(Sm) is not proper, but the realization of a

simplicial map of S(S\f/ff)/fd is proper.
The main result of §4 establishes that if N is an object of S(Sju/ff)/fd

which is cofibrant and Y is a topological space, then the set of proper homotopy

classes ji0(Pxo)(RpN, Y) is isomorphic to the hom-set Ho(S(SM))(N, SPY).
It is interesting to remark that in §7 we have proved that a locally finite simplicial

complex X which has finite dimension and a countably infinite number of

simplexes is always of the form X = RPN.

For the category pro SS, we think of as a ^-simplex, the pro-simplicial set

cA[q] which is defined by cA[q](i) = ^,>( A[#], i e N . Similar notions of q-

simplex are considered for global prosimplicial sets and for the corresponding

pointed cases. Associated with these ^-simplexes, there are a realization functor

RXoo: S(SMoo) -» pxo SS and a singular functor SXoo: pxoSS -» S(SMoo) ■

In 1975, E. M. Brown [Br.l] defined the proper homotopy groups Bnqa(X)

of a ct-compact space X with a base ray. He also considered a functor &:

tow Gps —► Gps which carries the tower of homotopy groups, nqeX, of a tower

of neighbourhoods of X at infinity to the homotopy group Bnqx>(X). For

the case q = 0 ,_&> is a functor from tow Set, to Set». Here we consider new

versions of the & functor which are of the form pro Set —* Set^c», pro Set* —►

Set^c^o,  pro Gps —> Gps^>cZ , etc.   The new versions are provided with theLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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additional structure of the action of a monoid (£Pc*, 3°cS°) or a near-ring

&cZ.
Using the shorter notation 5 = Set, S* = Set,, the functor &: pro S —>

S#>c* induces a functor S35: SpxoS —> S(S&>C*) and we have the composite
E- COO

pro55 -* SpxoS -> S(S&>ct), where F is naturally defined. The main result

of §5 establishes that S3PF is isomorphic to the "singular" functor SXao . That

is, SXoo is an extension of the 9° functor and, for this reason, the functor SXoo

is also denoted by & .
The inverse limit functor lim: tow SS —► SS is related with the functor

&: tow SS —> S(S^>ct) in the following way: There is an element sh in the

monoid 3sc* such that the simplicial subset F&X = {x e ^X|xsh = x} of

elements fixed by sh is isomorphic to lim X, where X is an object in tow SS.

Section 6 contains the main technical results of this paper. It is well known

that the homotopy inverse limit, holim, can be defined as a right-derived functor

of the lim functor. We prove that the functor &: pro SS —» pxoS(S&>c*) has a

right-derived functor 3°R: Ho(pxo SS) —► Ho(S(S&ct)). The relation above be-

tween lim and & induces the formula lim* X = F^3°RX = {xe 9>RX\x sh =

jc} where X is an object in tow SS.
We summarize the results of §6 by saying that there is a pair of adjoint

functors

srL

Ho(pro SS)^=> Ho(5(5>„)).

that can be composed with the pair of adjoint functors (given in §2)

Ho(S(S^c,)) t=f Ho(SS)

to obtain the new pair

Ho(proS5)^Ho(55).

A first consequence of the existence of these pairs of adjoint functors is that
_p

the Hurewicz homotopy groups of & X (X is an object in pxo SS) are iso-

morphic to the Grossman homotopy groups of X. We also prove that nq and
_ _D _ _

&> "commute"; that is, nq3° X £ ^TiqX. This proves Brown's result that &>

carries the towers of homotopy groups, nqeX, to the proper homotopy groups,

BnqK'X. As a second consequence, we will translate some classical theorems of

standard homotopy theory to prohomotopy theory.

Section 8 is devoted to obtaining some applications to proper homotopy the-

ory. We use the functors Rp and Sp to transform classical theorems of standard

homotopy theory into similar theorems in the proper setting. We analyse two
Examples. In the first the proper Whitehead theorem is proved as a particular

case of the standard Whitehead theorem. We also remark that the cohomol-

ogy version of the Whitehead theorem with twisted coefficients implies a coho-

mology version in the proper setting. In the second example, we see how the

standard Hurewicz theorem implies a Hurewicz theorem in the proper category.

This method also provides a proper homology theory for the Brown proper ho-
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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motopy groups. However, there are other proper homology theories that also

satisfy Hurewicz theorems for the Brown proper groups see—Remark 3 after

Theorem 7.3. In this section we also analyse the relation between the proper

singular functor, the right-derived functor of the & functor and the Edwards-
Hastings functor e. As a consequence of this relation, we obtain a partial

version of the Edwards-Hastings embedding theorem for the proper category.

In §9, we have developed some applications to prohomotopy theory. We

introduce the notion of ^-cofibrant prospace (or prosimplicial set). The class
of Jz^-cofibrant prospaces contains the end prospace eX of a finite-dimensional

simplicial complex and Porter's Vietoris prospace VX of a compact metrisable
space X which has finite covering dimension. Therefore any result about 2?-

cofibrant prospaces has interpretations in the proper and in the strong shape

settings. In this section, we establish a Whitehead theorem for the class of 5C-

cofibrant prospaces. Using the functors 2'L and £PR , we obtain this result as

a particular case of the standard Whitehead theorem. The algebraic condition

of the theorem is given in terms of the Grossman homotopy groups. There is

also an equivalent cohomology condition.

We also introduce a notion of ^-movability that in general is weaker than

the notion of movable given in [E-H]. We give an easy proof (without using

lim1 functors) that for ^-movable towers, the strong (Steenrod) homotopy

groups are isomorphic to the Cech homotopy groups and the Grossman groups

are also determined by the formula Gnq = 3°(snq). Therefore for J?-cofibrant

^-movable towers the algebraic condition of the Whitehead theorem can be

expressed in terms of strong (Steenrod) homotopy groups or Cech homotopy

groups.

Section 10 is devoted to obtaining some applications to strong shape theory.

Recall that the Grossman homotopy groups of the prospace VX are the Quigley

[Qui] inward groups (see also [P.6]). Using the functor & , the Quigley in-

ward groups are interpreted as the Hurewicz homotopy groups of the simplicial
_p

set & VX. Therefore defining the homology groups of X as the "singular"

homology of & VX, we obtain a homology theory that satisfies the Hurewicz

theorem for the Quigley inward groups. Nevertheless, in Remark (4) after Def-

inition 10.1, we suggest other homology theories for the Quigley inward groups.
_p _j.

In general Hq^ VX is not isomorphic to &Hq VX , but there are other ho-

mology theories such that H "commutes" with the 3° functor.

It is also known that the strong (Steenrod) homotopy groups of the prospace

VX are the Quigley approaching groups. Using the functor 3°R, we have

that the Quigley approaching groups of a compact metrisable space X are the

Hurewicz homotopy groups of Fsh9sR VX. Therefore we obtain a Hurewicz the-

orem if we define the homology of X as the "singular" homology of

Fsh3°R VX. This gives a nice homology for Quigley's approaching groups that

is not isomorphic to the strong (Steenrod) homology groups used by Kodama

and Koyama [K-K] to obtain a Hurewicz theorem for these groups.

We finish the paper by giving a Whitehead theorem for the strong shape

category in terms of Quigley inward groups. For the case of ^-movable spaces

the algebraic condition can also be given in terms of Quigley approaching groups

or Cech groups.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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1. Closed simplicial model categories

The tool used in this paper is the notion of closed simplicial model category.

We refer the reader to [Q.l] and [Q.2], which contain the necessary definitions,

examples, and the main properties of this structure.

Given a solid arrow diagram in a category C

A^-^X

i p

B^r+Y

it is said that i has the left lifting property (LLP) with respect to p and p is

said to have the right lifting property (RLP) with respect to i if there exists a

map h: B -» X such that hi = f and ph = g.
A closed model category is a category C endowed with three distinguished

families of maps, called cofibrations, fibrations, and weak equivalences, satisfy-

ing certain axioms.

These axioms were considered in [Q.l], and an equivalent but different for-

mulation was given in [Q.2].

Given a closed model category C, the homotopy category Ho(C) is obtained

from C by formally inverting all the weak equivalences (see [Q.l] and [G-Z]).

A simplicial category is a category C endowed with a functor Homc: Cop x

C —> SS satisfying the axioms given in [Q.l]; in particular we have that

Homc(A', Y)0 = C(X, Y). Associated with a simplicial category C, we have

the category n0C which has the same objects as C and the hom-set defined by

71qC(X , Y) = 7toHomc(-Y, Y), where noHoxn(X, Y) is the set of connected

components of the simplicial set Homc(^, Y).
A closed simplicial model category is a simplicial category which is also a

closed model category and satisfies certain axioms, see [Q.l]. For a finite sim-
plicial set K a closed simplicial category C is provided with objects X <g> K,

XK for any object X in C. Associated with these objects, there are the fol-

lowing isomorphisms:

Homc(* <8>K,Y)* Hoxnss(K, Homc(X, Y)),

Homc(X, YK) » Komss(K, YLoxnc(X, Y)).

Suppose that C is a closed simplicial model category and 0 denotes the

initial object and * denotes the final object. An object X is said to be cofibrant

if the unique map 0 —> X is a cofibration, and an object Y is said to be fibrant

if the unique map Y —► * is a fibration.

The main relation between the categories n^C and Ho C is given through

cofibrant and fibrant objects: If X is cofibrant and Y is fibrant, then

ti0C(X, r)^HoC(*, Y).

It is said that C is a pointed category if both the initial and final objects exist

and are isomorphic. In this case, for two objects X, Y in C, we always have

the zero map *:X-tf that defines a 0-simplex of Homc(A', Y). Therefore

we also have a natural functor Home: Cop x C —> SS*.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Examples. (1) The category SS of simplicial sets. Let A[«] denote the stan-

dard ^-simplex, A[«] the simplicial set generated by the faces of A[n], and
V(n, k) for 0 < k < n > 0 the simplicial subset of A[n] generated by the

(n - l)-faces <9,: A[« - 1] —> A[n] with 0 < i < n and i # k. A map
/: X -* Y is said to be a fibration if for all n > 0 it has the RLP with
respect to V(n, k) -* A[n], 0 < k < n. A map /: X -> Y is said to be a

trivial fibration if / has the RLP with respect to A[n] -> A[n], n > 0. A
map i: A —> B is said to be a cofibration (resp. trivial cofibration) if i has

the RLP with respect to any trivial fibration (resp. fibration). A map / is said

to be a weak equivalence if / can be factored as f - pi where i is a trivial

cofibration and p is a trivial fibration.

Given a simplicial set K, the object X®K is defined to be X®K = XxK.
The functor Hom55: SSop x SS -> SS is defined by Homss(X, Y)n 2

SS(X ® A[«], Y). The object XK is defined by XK = Yioxnss(K, X).
The category of pointed simplicial sets SS* is also a closed simplicial model

category. If we consider the functor ( )+: SS -> SS* which carries X to

X U *, we have that ( )+ is the left adjoint of the forgetful functor U: SS* —>

SS. A map / is said to be a fibration (resp. weak equivalence) if Uf is a

fibration in SS (resp. weak equivalence). A map is a cofibration if it has the

LLP with respect to trivial fibrations.

For objects X in SS* and K in SS, define

X®K^X x K+/((X x *) U (* x K+)).

Horn.?.?,: Ss°p x SS* -+ SS* is defined by

Hom^. (X,Y)n=SS*(X®A[n],Y),

and XK = Homss.(K+,X).
(2) The category Top of topological spaces. Let R: SS —► Top and S: Top

—► SS be the realization and singular functors, respectively. A map /:I-tf

in Top is said to be a fibration (weak equivalence) if Sf is a fibration (weak

equivalence) in SS. A map /: A —► B is a cofibration if i has the LLP with

respect to trivial fibrations. Given a finite simplicial set K and a topological
space X , the objects X <g> K and XK are defined by

X®K = XxRK,        XK = Top(RK, X),

where RK is the realization of K and Top(RK, X) is the mapping space of

continuous maps from RK to X endowed with the compact-open topology.
The functor HomTop: Topop x Top —> SS is defined by

HomTop(X, Y)n = Top(^r x RA[n], Y).

The category Top, of pointed spaces also admits a closed simplicial model

structure. In this case for a given simplicial set K and a pointed space X, the

objects X ® K and XK are defined by

X®K = Xx (RK)+/((X x *) u (* x (.RAT)),

X* = Top, ((tfAy,*),

where (RK)+ is the disjoint union of RK and the one-point space (*).

(3) The category pro C of pro-objects in C. Associated with a category
C, we can consider the category pro C introduced by A. Grothendieck [Gro].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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A study of some properties of this category can be found in the appendix of

[A-M], the monograph [E-H], or the books [M-S] and [C-P].
The objects of pro C axe functors X: I —> C, where / is a small left filtering

category and the set of morphisms from X: I —> C to Y: J —* C is given by

the formula

pro C(X, Y) = lim colim C(Xt, Y,).
j i

Edwards and Hastings [E-H] have proved that if C has the structure of a

closed simplicial model category and C satisfies the condition N (see [E-H,
page 45]), then pro C inherits a natural structure of a closed simplicial model

category. For a given finite simplicial set K and an object X = {Xj} of pro C,

the objects X ® K and XK are defined by

{Xi}®K = {Xi®K},     {Xt }K = {Xf}.

The functor HomproC: (pro C)op x pro C —> SS is defined by

HomproC(X, Y)n = pro C(X ® A[«], Y).

2. The category of simplicial M-sets

A monoid consists of a set M and an associative multiplication: M x M -*

M, (m, m') —> mm', with unit element 1 (1 m = m — m 1, for every m e M).

A 0-monoid M is a monoid with a zero element 0 € M (wO = 0 — 0m, for

every m e M). If C is a category and X is an object of C, then the hom-set

C(X, X) with the composition of morphisms, (g, f) —> gf, has a natural

monoid structure. If C is a category with zero object, then C(X, X) is a

0-monoid.

Examples. (1) Let Pro be the category of spaces and proper maps (a continu-

ous map is proper if the inverse image of a closed compact subset is compact)

and consider the set of natural numbers N provided with the discrete topology.

The set of proper maps M = Pro(N, N) has a natural monoid structure. Let

A, B be closed subsets of a space X and assume that cl(X - A), cl(X - B)

axe compact. Given two proper maps f:A—*Y, g: B —* Y, it is said that /
and g have the same germ if there exists a closed subset C of X such that

cl(X-C) is compact, C c A, C c B and f/C = g/C. Let PrOoo denote the
category of spaces and germs of proper maps. The monoid of germs of proper

maps Mqo = PrOoo(N, N) will also be consider in this paper.

(2) Let N = NU {oo} be the Alexandroff compactification of N. Taking

oo as a base point, N becomes a pointed set. The endomorphism pointed

set Top,(N, N) has a natural 0-monoid structure. Two pointed continuous

maps /, g: N -> N have the same germ at oo if there is «o € N such that

/(") = g(n) for every n > n0. The set Top^(N,N) of germs at oo of

continuous maps from N to N also becomes a 0-monoid.
Let M be a monoid and C a category. A left M-object X in C consists

of an object X of C and a monoid homomorphism M -> C(X, X): m -»
m: X —> X. If M is a 0-monoid and C is a category with zero object, we

suppose that an M-object X in C satisfies the additional condition 6 = 0.

The category whose objects are the (left) M-objects in C will be denoted by
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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mC . By considering monoid "antimorphisms" M —> C(X, X) we have the
notion of right M-object in C and the category Cm ■

Let C be a category; for each object X of C we have the monoid (or 0-
monoid) M = C(X, X). If Y is an object of C, the monoid "antimorphism"

C(X,X)->Set(C(X,Y),C(X,Y)):<p-+$,<p(f) = f(p,       feC(X,Y),

induces the structure of a right M-set on C(X, Y). Therefore we have a
functor C(X, -): C -* SetM . If C is pointed (C has a zero object) we get a
functor C(X, —): C -* Set*M ■ Similarly, there are functions C(-, Y): C -»

mSet or C(- , 7): C -> MSet,.

Examples. (1) For the category Pro and M = Pro(N,N), we have the

right M-set Pro(N, X) of sequences in X converging to infinity. Similarly

for Moo = PrOoo(N, N) we have the right Moo-set Pro^N, X). If \A[q]\ de-
notes the realization of the standard (/-simplex, then we also get the right M-set
Pro(Nx|A[<,]|,X).

(2) Let s = Iln^("^ > n) t>e the pseudo-interior of the Hilbert cube Q =

Ut^dir' «] • k^ X be a compact subset of 5. A sequence x: N —> Q con-
verges to X if for every neighbourhood U of X in Q, there is «o such that

xn e U for every n > no. The sets {x: N —> X\x converges to X} and

{x: N -► Q-X\x converges to X) become M-sets for M = Pro(N, N). Con-
sider also sequences of simplexes x: Nx|A[^]| —> Q converging to X; that is, for

every neighborhood U of X in Q, there is «o such that x({n} x \A[q]\) c U

for every n > «0 • The sets 55?(X) = {x: N x \A[q]\ —► Q\x converges to X}

and ssq(X) = {x: N x \A[q]\ —► Q - X\x converges to X} become M-sets for

M = Pro(N, N) and ss(X), ssc(X) axe simplicial M-sets associated with X.
Given a 0-monoid M, the category of right M-pointed sets, Set*M, is an

algebraic category, see [Pa], by considering one 0-ary operation to fix a base
point * and a 1-ary operation m for each m e M. The relations are given by
xl = jc, xO — *, (xm)n = x(mn). In the case of a monoid, we do not need

the 0-ary operation and the relation xO — * . By general properties of algebraic
categories we have that Set*M (resp., SeW) is a complete and cocomplete

category, see [Pa; page 140]. That is, the category Set,^f (Set.*/) has limits and
colimits. The categories of the form SeW, Set^ enjoy very nice properties
such as the existence of exponentials and a subobject classifier. That is, these
categories are elementary topoi, see [M-M].

For these categories there is a natural forgetful functor U: Set*M -* Set,

(resp., U: A/Set, -» Set,) and a left adjoint functor - © M: Set, -* Set,M
defined by X © M = X x M/(X x 0 U * x M). An element (x, m) € X x M
determines a unique class in X © M that will be denoted by x ® m. The

forgetful functor Set,M —► Set, is faithful and preserves limits, and the left

adjoint functor -®M preserves colimits. For the nonpointed case, the forgetful
functor SetM -* Set has also a left adjoint functor - © M: Set -» Set^f which
is defined by X © M = X x M. In this case we also denote an element (x, m)

by x<Dm . We note that X®M, the free M-set generated by X, is isomorphic
to UjtejrM provided with the canonical right action of M.

Let W be a category closed under finite limits. A map /il-tf is said toLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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be an effective epimorphism if for any object T of W, the diagram of sets

r ^L
&{Y, T) -£-» <g[X, T)=tW(X xX,T)

P^ Y

is a difference kernel. An object P of W is said to be projective if W(P, X) -+

W(P, Y) is surjective whenever /: X —> Y is an effective epimorphism. A

category W has sufficiently many projectives, if for any object X, there is an

effective epimorphism P —> X where P is a projective object. Assume that W

is closed under colimits; an object X is said to be small if %?(X, -) commutes

with filtered colimits. A class ^ of objects of W is a class of generators if, for

every object X, there is an epimorphism Q —> X where Q is a sum of copies
of members of ^.

For the case *£? = Set,M (resp., Setm) the class of effective epimorphisms

is the class of set-theoretically surjective maps. Note that the category Set,Af

(resp., %etM) has a class of generators, %, with a single object, S° © M = M

(* ® M = M). For later applications we also note that M is projective and
small.

If f is a category, let SW denote the category of simplicial objects in W.

We also have a natural functor in: W —* SW which carries an object A to the

simplicial object in A defined by (in A)q = A and where degeneracy and face

operators are equal to the identity of A .

Quillen [Q.l] proved that if W is closed under finite sums, X is an object

in SW and A" is a finite simplicial set, then an object X ® K exists, defined
by

(X®K)n= J2X">
o€K„

in which the degeneracy and face operators are defined in terms of the corre-

sponding operators of X and K. If ^ is closed under finite limits, then dually

an object XK exists for every finite simplicial set. These have nice universal

properties; see Quillen [Q.l].

Therefore given a category §? closed under finite limits and colimits, SW

becomes a simplicial category where the natural functor

Homsr: SWop x SW -> SS

is defined by Hom5^(^, B)„ = SW(A ® A[n], B). If & is a pointed category,
we can also consider the functor Hom^^: Wop x SW —► SS*.

In order to have a shorter notation we also use S = Set, S* = Set,, Sm —

SetM , S*M = Set*M ■ The corresponding simplicial categories will be denoted

by SS, SS*, S(SM), S(S*M) ■ We note that, for the functors in: S* -► SS*,
in: S*m -* S(S*m) , and -©M: SS* -» S(S*M), there are natural isomorphisms

((in*) ® K) © M ^ (in(JT © M)) ® K,

where X is an object in S* and A is a finite simplicial set.

The following result is a particular case of [Q.l, Chapter II, §4, Theorem 4].

Proposition 1. Let W be a category closed under finite limits and under colimits

and having a set % of small projective generators. Let SW be the simplicial

category of simplicial objects in W. Define a map f in SW to be a fibrationLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(weak equivalence) if Hom(inP, f) is a fibration (weak equivalence) in SS for

each P of %. A map f is a cofibration if f has the left lifting property with

respect to the class of trivial fibrations. Then SW is a closed simplicial model

category.

For the case ^ = S*m (or W - Sm) , we have that % has only a single

object S° ®M = M. Notice that for a map / of S(S*M) we have that

HomS{S.M)(in(S° ® M), /) et HomS(5.„)(in,S0 ®M,f)

2 Hom5(5.M)(A[0]+ (DM, f) S Hom5s,(A[0f ,f) = Uf.

Therefore we have the following closed simplicial model structure:

Definition 1. In the category of simplicial M-sets, a map / is said to be a

fibration (weak equivalence) if Uf is a fibration (weak equivalence) in SS*.

A map is said to be a cofibration if / has the LLP with respect to any trivial
fibration.

Theorem 1. The category S(S*m) together with the classes of cofibrations, fibra-

tions and weak equivalences defined above has a natural closed simplicial model

category structure.

Remark. For the nonpointed case a similar result is obtained for the category

S(Sm) ■ The corresponding fibrations and weak equivalences are defined by

using the forgetful functor S(Sm) —* SS.
In the category SS*, the "tensor" object X ® K and the "function" object

XK can be defined for any simplicial set K. We apply this property to prove

the following:

Lemma 1. Let f be a map of SS*.
(1) If f is a weak equivalence, then f © M is a weak equivalence,

(2) if f is a cofibration, then / © M is a cofibration.

Proof. (1) Let / be a weak equivalence in SS*; we are going to prove that
/©inM is a weak equivalence in SS*. By [Q.l, Chapter II, Proposition 3.5],

it suffices to prove that, for any fibrant object Y of SS*, [f ® inM, Y] is an
isomorphism. This is obtained from the following isomorphisms:

[/ ® in M, Y] = n0 Hom(/ ® in M, Y)

a 7c0Hom(/, Hom(inM, Y)) Si [/, Hom(inM, Y)]

and the fact that / is a weak equivalence.

The forgetful functor U: S(S*M) -* SS* satisfies U(f 0 M) = / ® inM.
Because U(f © M) is a weak equivalence, by Definition 1 we also have that

/ © M is a weak equivalence.

(2) Since -©M: SS* -> S(S*M) is left adjoint to U: S(S*M) -* SS*, and U
preserves weak equivalences and fibrations, we also have that - © M preserves
cofibrations.

As a consequence of this lemma, we obtain an induced pair of adjoint func-

tors on the localized categories.

Theorem 2. The functions - © M and U factot through the homotopy cate-
gories in such a way that - © M: Ho(5'5',) -+ Ho(S(S+m)) is left adjoint to
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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U: Ho(S(S*m)) -» Ho(S5',). Moreover, - ® M preserves cofibration sequences

and U preserves fibration sequences.

Remark. If M is a monoid (without zero element), the analogues of the above

theorems are similarly obtained. If M is a group, the closed simplicial model

category S(Sm) induces a nice homotopy category Ho(S(Sm)) to study equi-
variant homotopy theory.

3. Realization and singular functors

In this section, we analyse the construction of singular and realization func-
tors for the category of simplicial M-sets.

Recall that a monoid M can be considered as a category with one object,

with morphisms the elements of M and with composition the product in the

monoid M. Therefore the category of right M-sets can be considered as the

functor category Set^"". Thus the category S(SM) of simplicial M-sets is the

functor category (SetAf°P)A°P, which is equivalent to the category Set(A/xA)°P.

Given a small category /, the functor category Set7°P is also called the cate-

gory of presheaves on I associated with a functor X: I°p -» Set. We recall the
construction of the category of elements of X, denoted by /7 X. For more de-

tails and properties of this construction, which is often called the Grothendieck
construction, we refer the reader to [M-M].

The objects of JjX axe pairs (i, x) where i is an object of / and x is an

element of X(i). Its morphisms (/', x') -» (i, x) axe those morphisms u: i' —>

i of / for which X(u): X(i) —> X(i') satisfies X(u)x = x'. This category has

a canonical projection functor nx'. JjX ~* I defined by nx(i, x) = i.

The following result is proved in [M-M; Chapter I, Theorem 2]:

Theorem 1. If x '■ J —> & is a functor from a small category I to a cocomplete

category W, the functor Sx from W to Set7"" given by

SxC:i^W(X(i),C)

has a left adjoint functor Rx: Set/0P —► W defined for each functor X in Set7""

as the colimit

RXX = colim ( f X —— / —* <g\ .

For the small category / = M x A, the equivalence of categories S(Sm) —

Set(A/xA)°» carries a functor x: A°p -» Seto to a functor X':(Mx A)op -♦ Set.

Similarly, for a given category ^ and a functor X- & —* m^ one has the

corresponding functor %': M x A —* W . Since M only has one object *, the
objects of M x A are of the form (*, [p]). However, in the sequel, we just

write [p] for the object (*, [p]). Recall that a morphism of M x A is of the
form (m, tp): [p] —> [q], where m is an element of M and tp is a map of A.

Observe that (m, q>) = (m, id[<?])(lM, <p) = (1a/, <p)(m, id[pj). Sometimes, we

just write m for (m, id^j) and tp for (\m,<P) if no confusion is possible. For
a functor Y: (M x A)op -» Set, we write Y([p]) = Yp , Y(m ,<p) = (m, tp)*,
y(m, id[p]) = Y(m) = m* and Y(\M, tp) = Y(tp) = tp*. Similarly for a functor

/':¥xA-»?,we write x'p instead of x'([P]) ■
Using this notation, we can reformulate the theorem above as follows:
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Theorem 2. If x- A -> M^ is a functor, where W is a cocomplete category, then

the "'singular" functor Sx from %? to S(SM) defined by

(SxC)p = %(x'p,&)

has a left adjoint (the "realization" functor) Rx: S(Sm) -» & defined for each
X an object in S(Sm) as the colimit

RXX = colim ( /      X'-► M x A —► W ] .
\JMxA *x' X' J

In this paper, we will consider functors x '■ A —► m %> , where ^ does not have

all colimits. For these categories we will analyse those X in S(Sm) for which

the colimit RXX exists. The following properties of colimits will be useful.

Given a functor L: J' -> J and an object j in J, the comma category j I L

has as objects morphisms of the form u: j —► Lj'. A morphism from uq: j —>

Lj'0 to «i: j -* Lj[ is a morphism v': j'0 —> j[ which satisfies L(v')uq = U\.

A category / is called connected if, given any two objects jo, j\ in J, there

is a finite sequence of arrows (both directions possible) joining y'n to j\ .

A functor L: J' -> J is final if for each j in J, the comma category j [ L

is nonempty and connected. For more details concerning final functors, we refer
the reader to [M] and [C-P]. In particular we will use the following:

Proposition 1. If L: J' —> J is final and F: J —» W is a functor such that
colim FL exists, then colim F exists and the canonical map colim FL -+

colim F is an isomorphism.

Definition 1. Given an object X in S(Sm) > it is said that dimX < n if for

q > n and y e Xq , there are p < n , x e Xp and a surjective map <p: [q] -+ [p]
such that v = <p*x .

Denote by A/n the full subcategory of A determined by the objects [0], ... ,
[n]. Given a functor X': (M x A)op -» Set, one defines the functor Sk„X' as

the composite
(M x A/«)op —► (M x A)op —;-> Set .

It is easy to check the existence of a canonical functor /: / Sk„X' —> / X'.

Proposition 2. If X is an object in S(Sm) with dimX < n, then the functor

T. jSknX'^ JX' is final.

Proof. Let ([q], y) be an object of J X'. The condition dimZ < n implies
that the comma category ([q], y) | I is nonempty. In order to prove that

{[Q] j v) I / is connected it suffices to apply the Eilenberg-Zilber Lemma [G-Z,

p. 26].

In this section, we work with the following notions of diagram scheme and

diagram. A diagram scheme consists of a set Do of objects and a set D\ of
arrows together with a source map s: D\ -» A) and a target map t: D\ -»

Do. For instance, a small category has the structure of a scheme diagram. A
morphism F: D —> D' of scheme diagrams consists of a pair of maps Fn: Dq —►

D'0 and F,: Dx -> D', such that sFi = F05, tFx = F0f. Let f be a category. A
diagram F: £> —► g7 is an operation which assigns to each object of D an object
of ^ and to each arrow of D a morphism of W. This assignment commutesLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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with the source and target operators. The analogues of comma category and

connected category are also defined for scheme diagrams and diagrams. Using
these notions one has:

Lemma 2. Let J be a small category and let I: D —» J be a diagram such that

I is an inclusion map. Assume that for every j in J, there is an associated mor-

phism Uj: j —> dj, where dj is an object in D. Suppose that these morphisms

satisfy:
(i) If j is an object in D, then Uj: j —► dj is a morphism in D.

(ii) Given a morphism u: jo —► j\ of J, the objects Uj0: jo —> djB and

Ujx u: jo —> djl are in the same connected component of jo 11.
If F: J —> ff is a functor and colim FI exists, then colim F exists and the

canonical map colim FI —> colim F is an isomorphism.

Proof. The proof is routine and is left as an exercise.

As an application of the lemma, for some X in S(Sm) with dimX <

n, we will describe a finite diagram I: D(SknX') -» J Sk„X' which satis-
fies the conditions of Lemma 2. In this case, in order to prove the exis-

tence of colim(/Z' -» M x A -^ ff), it suffices to prove the existence of

colim(D(SknX') —> M x A —> ff). First we introduce some necessary notation.

Let Sm/ ff be the full subcategory of Sm determined by M-sets freely gen-

erated by finite sets. An object of Sm/'ff is of the form {1, ... , n}®M = Mu
• • -LlM. An element x of {1, ... , n}®M will be denoted by x = (i, a) where

1 < i < n and a e M. A morphism u: {I, ... , n}®M —> {1, ... , m} ©M is
determined by a map xu: {1,..., n) —► {1,... , m} and the values u(\, 1 m) =

(t„(1), «i), ... , and u(n, \M) = (xu(n), u„), where u\, ... , un e M. If X

is an object in S(S*m/ff), we have that Xq = {1, ... , kq) © M is generated
by the elements (1, Im),■■■■> (kq, Im) •

Recall that in the category A we have the canonical maps e,: [p - 1] -> [p],

Oi'- [P + 1] -> If] > 0 < /' < p . The /th face e, is defined by e,(j) = j if j < i,
Cj(j) = 7 + 1 otherwise. The /th degeneracy cr, collapses / + 1 to /. For a

functor X: Aop -> ^, one usually writes X(e{) = e* = 5, and X(at) = a* = dt.

Given an object X in S(SMff) with dimX < n the diagram 7: D(SknX')
-+ J SknX', is defined as follows:

If n = 0, D(SkoX') is given by the objects

([0],(1, lM)),...,([0],(/co, 1a/))-

If « > 0, for q = 0 and 1 < / < /co , we consider the following objects and

arrows in J SknX':

([1], (T*(i),a&l*))  (So1^ ([1], (tS0(/), Im))

([0],(/,1m))

For 0<^<«,  l</</c?,0<7<^,0</<^,we take the followingLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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objects and arrows in J Sk„X':

([« + 1], (MO, sjlu))    {Sjl^i])     ([q + 1], (xSj(i), lM))

([«],(!■,  lAf))

([*-l], (MO, <//!*))  (rf,1^^--'l)     ([«-1], (Mi), Im))

and for # = « , 1 < / < k„ , 0 < / < n , we consider the following objects and
arrows:

([«],(/, 1a/))

(i«,«()

([»-i],(Mi'),rf/W)) W1*^,,) ([»-i],(Mi),iif))

All the objects and arrows given above define a diagram /: D(Sk„X') —►

JSknX'. If ([#], (/, m)) is an object in D(5'/c„X'), then we have the map

u = (m,id[q]): ([q], (i, m)) -> ([q], (/, 1M)) where ([q], (/, Im)) is an ob-

ject in D(SknX'). It is easy to check that the family of maps u satisfies the

conditions of Lemma 2, so we obtain the following result.

Proposition 2. Let X be an object in S(SM/ff) with dimX < n. If the colimit

co\im(D(SknX') -^MxA^ff) exists, then colim(/ X' -+ MxA^ff) exists
and the two colimits are isomorphic.

As a consequence of Proposition 2, for the case that ff has finite colimits,

there is a realization functor Rx: S(SM/ff)/fd -> ff where S(SM/ff)/fd
is the full subcategory determined by objects X in S(SM/ff) with finite di-

mension. Next section we will consider the case ff = Pro, where Pro is the

category of spaces and proper maps. In this case we have a natural inclusion

functor Pro —> Top into the category Top of spaces and continuous maps.

Using the fact that Top has all colimits, we will apply Proposition 2 in order

to construct a "proper" realization functor Rx: S(Sm/ ff)/fd -* Pro.

In this paper, we have to deal with "realization" functors which only are

defined on a full subcategory of S(Sm) ■ Then it will be useful to introduce the

following notion of partial left adjoint functor.

Definition 1. Let j/' be a full subcategory of a category j/ . We say that

F: sf' -» 38 is a partial left adjoint to G: 38 -► sf if for any A in sf' and
B in 38 , there is a natural isomorphism

38(FA,B)^srf(A,GB).

For simplicial categories we consider the following notion of simplicial ad-
junction.
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Definition 2. Let j/ , 38 be simplicial categories and assume that F: sf —> 38 ,
G: 38 —> sf are functors. We say that F is simplicial left adjoint to G, if for

any A in s/ and 2? in <^, there is a natural simplicial isomorphism

Horn^F^, B) =■ Hom^(^, GB).

If sf' is a full subcategory of stf , we say that a functor F: st/' ^> 38 is partial

simplicial left adjoint to C7: ̂ -> j/ , if for any A in $/' and 5 in 38 , there
is a natural simplicial isomorphism

Homa(FA, B) != Horrv (A, GB).

4. Realization and singular functors
for proper categories and procategories

In this section, we consider the realization and singular functors associated

with some covariant functors j;:A->mC and introduce the various notations

that will be used later.

1. The standard realization and singular functor. Let M = {1} be the monoid

having just the unit element. For this monoid it is clear that for any category C,

MC — C = Cm ■ If we consider the standard covariant functor / = st: A —> Top
defined by st[<jf] = |A[#]|, we will obtain the standard realization and singular

functors R%x: SS —► Top, Sit: Top —> SS. The functor Rst is simplicial left

adjoint to Sst; that is, HomTop(A'stA', Y) = Homss(X, SstY). In this paper the

standard realization functor itst is denoted by R and by | |, and the standard

singular functor Sst by S.

2. Equivariant realization and singular functors. Given a monoid M, it can

be provided with the discrete topology and a functor Top —► mTop can be

defined by I-t¥xI. This functor is left adjoint to the forgetful functor

m Top —» Top. If we consider the covariant functor e = (Mx(-))-st,

A —► Top-► m Top
st Mx(-)

defined by e[q] = Mx \A[q]\, we can apply Theorem 3.2 to obtain a realization

functor Re: S(Sm) —* TopM and a singular functor Se: TopM -> S(SM) ■

Given a finite simplicial set K and a object X of TopM , there are objects

X ® K and XK defined by

X®K = Xx\K\,        XK = Xm.

The action of M on X ® K is defined by (x, y)m = (xm, y) for x e X, y 6

\K\ and m e M, and the action of M on XK is given by (<pm)(y) = (<p(y))m
for <p G XK , y € | A" | and m e M. As above Re, Se axe a pair of simplicial

adjoint functors,

Horn-Top^***, Y) =■ Hom5(5M)(X, 5,7).

The equivariant homotopy category is defined to be 7Co(Topm) • Taking into

account the isomorphism above, it follows that

7to(TopM)(ReX, Y) * 7t0(S(SM))(X, SeY).
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3.   Proper realization and singular functors.   If we consider the monoid M =

Pro(N, N), since the identity id: M -+ Pro(N, N) is a monoid homomor-

phism, it follows that N has the natural structure of a left M-set. The functor

- x \A[q]\: Pro -» Pro induces a left M-set structure on N x \A[q]\ = |JN |A[#]|

by considering the composite:

M -► Pro(N, N) -> Pro(N x \A[q]\, N x \A[q]\).

Therefore there is an induced functor

^=p:=A^MPro,        p[q] = ^x\A[q]\.

The inclusion functor I: Pro -» Top induces a natural functor mT- A/Pro -+

mTop , and we also have the composite:

X = c = MI-p: A^ MPro -> MTop.

Since Top has colimits, applying Theorem 3.2, we obtain the continuous

realization functor Rc: S(Sm) -» Top and the continuous singular functor

Sc: Top ^S(Sm).
By the exponential law, there is a set isomorphism

Top(N x \A[q]\, X) =* Top(|A[<,]|, X?)

where the mapping space X® has the compact open topology. It is clear that X®
has the structure of a right M-space, therefore we have the following diagram

which is commutative up to isomorphism

( )N
Top-i-2-^ TopM

S(SM)

that is, SCX' 3 Se(XcN).

Recall that for X an object in S(SM), the functor i?c: S(Sm) -* Top is

defined by

RCX = colim M A" -+ M x A -C Top J .

If X is an object in S(Sm/ ff)/ fd, by Proposition 3.2 RCX is isomorphic to

co\im(D(Skn)X'-»- M x A -^-»- Top).

Since M x A ^+ Top factor as M x A -^ Pro -► Top and using the fact

that for any object (p[q], (i, m)) in D(Sk„X') the continuous map c'[^] =

N x \A[q]\ -> flcX is proper, it follows that colim(Z)(lS,/c„X') -» M x A ̂  Pro)

exists. Applying again Proposition 3.2, one has the colim(/ X' —> M x A ^>

Pro) exists. Therefore, for any X an object in S(SM/ff)/fd we can define

RP:S(SMff)/fd^Pxo by

A-pX = colim (Ix'^MxA—^ Pro) .

On the other hand, observe that the set Xf = Pro(N, X) is bijective to the

subset {/ € X,?|/_1oo = oo}. We will consider on Xf the relative topology
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induced by the compact open topology of the space X^ . It is easy to check that

we have a natural set-isomorphism

Pro(N x \Ap[q]\, X) Si Top(\A[q]\, Xf).

These sets have also a natural structure as right M-sets (M = Pro(N, N)), and

the isomorphism above becomes an M-set isomorphism. Therefore we have the

following diagram of functors which is commutative up to natural isomorphism:

(-)N

Pro--^TopM

S(SM)

The pair of adjoint functors Rc: S(Sm) -» Top, Sc: Top -► S(Sm) possesses

the following properties (a)-(c).

(a) Sc preserves "function" functors: for a finite simplicial set K and an

object X of Topm , we have

SC(XK) S SedXW)*!) = Se((X?)W) Si (SeX®)K Si (SCX)K .

(b) Rc preserves "tensor" functors. Let X be an object of S(Sm) and let

Y be a topological space. Then

Top(RcX®K, Y)Si Top(RcX, YK) Si S(SM)(X, SC(YK))

Si S(SM)(X, (SCY)K) Si S(SM)(X ® K, SCY)

Si Top(Rc(X ®K),Y).

By the Yoneda lemma, it follows that RCX® K = RC(X® K). This implies that

Rc is simplicial left adjoint to Sc; that is,

HomTop(RcX, Y) = HomS(SM)(X, SCY).

(c) Rp: S(SM/ff)/fd —► Pro preserves "tensor" functors. This follows be-

cause Rp = Rc on the full subcategory S(SM/ff)/fd . Observe that the "ten-
sor" functor of Top (see §1, Example (2)) induces a "tensor" functor on the

subcategory Pro of spaces and proper maps. Notice that we only consider "ten-

sor" functors associated with finite simplicial sets. Using this tensor produce

one can define a functor HomPro: Proop x Pro -> SS by

HomPro(X, Y)q = Pxo(X ® A[q], Y).

In this way Pro becomes a simplicial category, and the standard proper homo-

topy category is defined to be ^o(Pro).

Because Rp: S(SM/ff)/fd) -» Pro preserves "tensor" functors, we have

the following isomorphisms:

HomPro(ApZ, Y)q Si Pxo(RpX ® A[q], Y) Si Pxo(Rp(X ® A[q]), Y)

3 S(SM)(X®A[q],SpY) Si Hom5(SM)(X, SpY)q .

This implies that we have a simplicial isomorphism

HomPro(A^, Y) Si HomS{SM](X, SPY)

and Rp: S(Sm/ff)/fd -> Pro is a partial simplicial left adjoint functor for
Sp: Pro —» S(Sm) • The functors Rp and Sp induce the following adjointnessLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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on the categories Tto(Pro) and 7Co(S(Sm)) ■ If X is an object of S(Sm/ff)lfd
and Y an object of Pro, then

no(Vxo)(RpX, Y) Si n0(S(SM))(X, SPY).

The last properties give the following results:

Theorem 1. The proper realization functor Rp: S(SM/ff)fd —> Pro is simpli-

cial partial left adjoint to the proper singular functor Sp: Pro —► S(Sm) ■

Theorem 2. If X is a cofibrant object of S(SM/ff)/fd and Y an object of
Pro, then

7r0(Pro)(AyY, Y) Si Ho(S(SM))(X, SPY).

Proof. Let U: S(Sm) -> SS denote the forgetful functor. Notice that

U(SpY)SiUSe(YpN) = S(Y®)

is a fibrant object of SS. By the definition of fibration in S(Sm) , see Definition
2.1, it follows that SPY is fibrant in S(Sm) ■ Therefore we have

n0(Pxo)(RpX, Y) = 7r0HomPro (/?„*, Y) Si Tt0liomS{SM)(X, SPY)

Si Ho(S(SM))(X, SPY).

The last isomorphism follows from the fact that X is cofibrant and SPY is

fibrant.

4. Realization and singular functors for pro-spaces. Let C be a category with

countable sums (coproducts). Using the sum of C, we can define a functor

c: C —> pro C as follows. If X is an object of C, cX: N —> C is defined by

(cX)i = \_\X,
j>i

where N is consider in this case with its left filtering category structure. The

standard "inclusions" of the coproduct define the natural map (cX)i+\ -* (cX)t.
Recall that the objects of the category (pro C, C) are promorphisms of the
form Y —> B, where Y: I —> C is an object in proC and B: 1 = {0} —► C
is a constant object. To determine a promorphism Y —* B it suffices to give

a map tp: 1 —► I and a morphism /p(0): FP(0) —► Bo . Since c\Y: N —> C is an

object in pro C and (cX)o is a constant object, the maps p: 1-»N, p(0) = 0,

and id: (c\Y)P(0) —► (cAT)o determine a promorphism c^X: c\Y —> (cX)0; that

is, an object in (pro C, C). This defines a global (or argumented) functor

cg: C —> (pro C, C). If it is necessary to distinguish the two functors we shall

use the notation Coo: C —► pro C and cg: C -> (pro C, C) otherwise we just

write c.
Consider the following functors.

(a) The functor /oo: A -+ Moo (Pxo SS).

The functor c: SS —► proSS gives an object cA[0] in pro SS, and we

can consider the monoid Moo = pro55(cA[0], cA[0]) which is isomorphic

to PrOoo(N, N). As in subsection 3, cA[0] has a natural structure as a left

Moo-object. The functor - ® A[q]: pxo SS -> pxo SS induces left M^-object

structures on cA[0] ® A[q] = cA[q], so there is a functor /oo: A -► Moo (pro SS),

(Xoo)q = cA[q]. Now by Theorem 3.2, we obtain a realization singular functor
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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RXoo: S(Sm00) —► pxo SS which is simplicial left adjoint to the corresponding

singular functor SXoo: pro SS -* S(SMoo) ■

(b) The global functor /^: A -> m (pro SS, 55").
Using the global version of the c functor, cg: SS -> (pro SS, SS), and the

monoid M = (proSS, SS)(cgA[0], c^A[0]) which is isomorphic to Pro(N, N),
we have an induced functor Xg '■ A —» M(pro S-S, SS). Associated with the func-

tor Xg > there are a realization functor RXg: S(Sm) -* (pxo SS, SS) and a sin-

gular functor SXg: (pxoSS, SS) -» S(SM) that induce a simplicial adjunction

isomorphism

no™(proSS,ss)(RXgX, Y) Si Hom5(5M)(X, SXsY).

(c) The functor xlo'- A -* m^(proSS,).
Recall that for a simplicial set A", A" U A[0] is denoted by K+ . Using the

functor c: SS* -> pro SS,, we get the object cA[0] and we can consider the

monoid M^ = proSS,(cA[0]+, cA[0]+) which is isomorphic to Top^°(N, N).
As a consequence of Theorem 3.2, we also have a natural adjunction isomor-

phism

HomptoSs.(RX'aoX,Y)*iHomS{SMSo)(X,S^Y).

(d) The functor *£: A -> M; (proSS,, SS*).

The monoid M* = (proSS,, SS,)(c^A[0]+, (t^A[0]+) is isomorphic to

Top,(N, N). As in the cases above, we have a functor

X*g: A ̂ M;(proSS*, SS*)

and a simplicial isomorphism

Hom(pro^. ,ss.)(Rx;X> Y) S HomS(5v.)(Jr, Sz. F).

5. Brown's 3s functor and the singular functor proSS —► S(Sm)

In 1975, E. M. Brown [Br.l] gave a definition of a proper fundamental group

Bnf(X) of a a -compact space X with a base ray. He also defined a functor

3s: tow Gps —> Gps that gives the relation between the tower of fundamental

groups, %\eX, of a tower of neighbourhoods of^f at infinity and the proper

fundamental group. This relation is given by 3Bn\eX = Bnf(X). In this
section we extend this definition to other categories and study the relation with

the singular functor pro SS —► S(Sm) •

Let C denote one of the following categories:

Set = (sets),
Set, — (pointed sets),
Gps = (graphs),
Ab = (abelian groups).
The small projective generators of these (algebraic) categories will be denoted

by * , S°, Z, Za , respectively.
Since C has sums, we have the functor c: C —> pro C defined by cX: N —►

C, (cX)i - \_\j>i ̂  ■ Sometimes, we will also consider the global (or augmented)

version c: C —» (proC, C).
Let G denote the small projective generator of C and let 3°cG denote the

endomorphism set
^5cG = proC(cC7,cG:).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SIMPLICIAL M-SETS 383

If C = Set and G — *, 3°c* has a monoid structure. Notice that 3>c* =
proSS(cA[0], cA[0]) £ Pro(N, N). In the pointed case, C = Set,, G = S°,
the endomorphism set admits the structure of a 0-monoid, see §2, and we have

that 3*cS° Si proSS,(cA[0]+, cA[0]+) 2 Topr(N, N).
If C = Gps, G - Z, the endomorphism set has a natural near-ring structure,

see [Mel, Pilz]. Finally for C = Ab, G = Za , the endomorphism set ^dLa
becomes a ring isomorphic to the ring of locally finite matrices modulo the ideal
of finite matrices, see [F-W.l, F-W.2].

Let C@cg denote one of the following categories:

If C = Set, G = *, then Set^, is the category of right ^c*-sets. If
C — Set,, G - S° , then Set,^^ is the category of right 3scS°-pointed sets.

If C = Grp, G = Z, then Grp^cZ is the category of right 3scZ-gxoups. This
category is also known as the category of right near modules over the near-ring
3scl, see [Mel, Pilz].

If C = Ab, G = Zfl, then Ab^cZa is the category of right ^cZa-abelian
groups that is usually called the category of right ^cZa-modules.

If we consider the global (or augmented) functor c = cg: C -» (pro C, C),

we will get the endomorphism set 3°gcgG = (proC, C)(cgG, cgG) that will

also be denoted by &>gcG and the corresponding category C&> cq ■

Given an object X of proC, it is easy to check that proC(cC7, X) is an

object of C&cg . Therefore we have a functor

3s: pro C -» Cg>CQ

defined by 3sX = pro C(cG, X).
The full subcategory of proC determined by objects indexed by natural

numbers is usually denoted by tow C. We say that an object X of pro C is
; nitely generated if there is an effective epimorphism Q ^ X where Q is a

finite sum of copies of cG.

We summarize some properties of the 3s functors in the following results,
see [He.l].

Theorem 1. The functor 3°: proC —* CgscG satisfies:

(i) the restriction 3s: tow C —> C&>cq is faithful;

(ii) the restriction 3°: tow C/fg —> C&cG is also full, where tow C/fg is the

full subcategory of tow C of finitely generated towers.

Theorem 2. The functor 3s: pxoC —> C&cq has a left adjoint functor £?: CgocQ
—> pro C.

Remark. There are similar results for the category (pro C, C) of global pro-

objects in C and the category C&> cG.

Since the forgetful functor U: C#>cG -> C has a left adjoint function

- ®3°cG: C —y C@cg , we have the pairs of adjoint functors

sr -q&cG

pro C-vCa>cG   —*   C
3s U

and the composites SC = Sf(- ®3°cG), 3* = U35 give a new pair of adjoint

functors

pro C^C.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Notice that 3°: pro Gps —» Gps is the functor defined by Brown and denoted

in his paper [Br.l] by 3°.

Remark. It is easy to check that S?G = Sf(G © 3BcG) Si Sf(3scG) = cG and

Sff = cf for any morphism f : G -y G. Therefore Sf = c on the full
subcategory of C obtained from G by considering finite colimits of copies of

G.
Given a left filtering small category I, the equivalence of categories (C7)A ~

(CA)' induces a natural functor F: pro SC ^ S pro C defined by (FX)q(i) =

(X(i))q , where X is an object in pro SC. On the other hand the functors

Sf: CgnCQ —y pro C and 3s: pro C —► C#>cG induce functors SSf: SC&>cG —►

Spro C and S30: Spro C -> SC?>cG . Next we analyse the relation between the

3** functor and the singular functor SXoc: pro SC -> S(C&>cG) defined in §4.4.

The relation between these functors is given in the following:

Theorem 3. The following diagram is commutative up to natural isomorphism:

pro SC-^ S pro C

S(C&>cG).

Proof. We are going to use the fact that the functor c: C —> pro C agrees with

Sf in some cases (see the Remark above). We also consider several functors

of the form in: ff —» Sff, where {ynX)q = X and the face and degeneracy

operators are equal to the identity of X . We have the following isomorphisms:

(SXooX)q=pxoSC(Xoo[Q],X)

Si pxoSC(c(inG®A[q]),X)

Si proSC(cinG®A[q],X)

(1) Si S pro C(F(c in G ® A[q]), FX)

Si S pro C(Fc in G © A[q], FX)

Si S pro C(in cG ® A[q], FX)

Si Spro C(inJ?C7 © A[q], FX)

Si Spro C(inSf(G®3scG)®A[q], FX)

Si S pro C(SSf in(G © 3*cG) ® A[q], FX)

Si S pro C(S^(in(G © 3scG) ® A[q], FX)

= S(S^cG)(in(G © 3scG) ® A[q], S3°FX)

Si (S3°FX)q.

The isomorphism (1) follows from the fact that c in G ® A[<?] is a finite-dimen-

sional pro-object. Let S<qff denote the category of ^-truncated simplicial
objects in ff ; that is, functors (A/q)op —> ff where A/q is the full subcategory

of A determined by the objects [0], [1], ... , [q]. It is not hard to check that

proSC(c inG® A[q], X) Si pro S<qC(cin G © A[q], X)

(2) Si S<qproC(F(cinG® A[q]), FX)

Si SpxoC(F(cinG® A[q]), FX).
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The isomorphism (2) is a consequence of the theorem of C. V. Meyer [Mey]

that says that pro(CD) is equivalent to (pxoC)D if D is a finite category and

C has finite limits.

Remark. As a consequences of Theorem 3, we observe that the singular functor

SXoo is calculated dimensionwise by the 3° functor. In this way, the functor

SXoo can be considered as an extension of the functor 3s: pro C —> C&>cG . For

this reason, in the sequel, the functors S/oo , SXg, Sxio , Sx* will be denoted by

3s and the corresponding realization functors RXoo, RXg, Rx^ , Rx* by Sf .

The forgetful functors Set, —► Set, Gps —► Set, and Ab —> Gps have left
adjoint functors denoted by

(  )+: Set -» Set,,        /: Set* -» Gps,        ab: Gps -» Ab .

We consider the induced functors

pro( )+: pro Set -» pro Set,,

pro/: pro Set, -> pro Gps,

pro(ab): pro Gps —<■ proAb .

and the induced monoid homomorphisms

proSet(c,, c*) -» proSet,(cS°, cS°) -» proGrp(cZ, cZ) -» proAb(cZa, cZa).

Using the isomorphism Pro^N, N) = proS(c,, c*), the proper map sh: N

-+ N, sh(/) = / + 1, / e N, defines an element of proS(c*, c*). The monoid

homomorphisms above determine new canonical elements in the other monoids.

Any one of these elements will be denoted by sh and will be called the shift

operator.

For C any of the categories with which we are working, we define a functor

-^sh: C&cG -> C by

FShX = {x € X\x sh = x}.

It is easy to check the functor diagram

tow C-*■ C&cG

lim\ j/F^

c

is commutative up to natural isomorphism, where lim is the standard inverse

limit. We can also prove the following result.

Theorem 4. The diagram

towSC-»-S(C^cG)

SC

is commutative up to natural isomorphism.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. By Theorem 3, 3° is isomorphic to S3SF. It is clear that Slim =

SFshS3s . Since the diagram

tow SC->■ S tow C

lim\^ j/^S lim

SC

is commutative, we have that

Fsh3> £ FshS3sF Si SFshS3BF s SlimF £ lim .

Remark. The functors lim: pro SC—>SC, ^: pro SC —> S(Qi<;cG), and Fsh:
S(C&>cg) -> SC have left adjoint functors.

6. Derived functors of Sf and ^

In this section we analyse the properties of the pair of adjoint functors Sf =

R^ : S(St3i>cSo) -> pro SS,, 3s = S/Jo: pro SS* -* S(S*&>cSo) with respect to

the closed model structures of these categories. In the category pro SS, we
consider the structure given by Edwards and Hastings [E-H], and the category

S(S*#>cSo) is provided with the structure given in §2.

Recall that if sf' is a full subcategory of sf , we say that a functor F: sf' —>

& is a partial left adjoint to the functor G: f% —► sf if for any A of sf' and B

of 38 there is a natural isomorphism 38 (FA ,B)Sisf(A, GB) .If sf , 38 are
simplicial categories and this isomorphism extends to a simplicial isomorphism

Hom^ (FA, B) = Honv(,4, GB), it is said that F is a partial simplicial left
adjoint functor to G.

Lemma 1. The restriction of the functor c: SS* -> pro SS* to the full sub-
category of finite simplicial sets is a partial simplicial left adjoint functor to
3s = U3°: pxoSS* -» SS*.

Proof. For a finite simplicial set X, we have the isomorphisms

HomproS5. (cX, Y) Si Hompro5S> (cA[0]+ ® X, Y)

Si HomS5. (X, Hompro55.(cA[0]+, Y)) Si HomSs. (X, &Y).

Lemma 2. The functor 3°: pro SS* —> S(S*^cSo) satisfies the following condi-

tions :
(1) If p: E -> B is a fibration in pro SS* in the Edwards-Hastings sense,

then 3sp is a fibration in S(S*^cSo).
(2) Let p : E -> B be a level morphism in tow SS* (p — {p,: F, -> Bj\i e N})

such that each pt: F, -* Bt is a fibration in SS*.  Then 3sp is a fibration in

S(Stigscso) .

Proof. By Definition 2.1, 3°p is a fibration in S(S,^c5o) ifandonlyjf U3°p =

3°p is a fibration in SS*. By Lemma 1, c is partial left adjoint to 3s: pro SS,
—y SS*. Therefore the existence of a lift in the commutative diagram

V(n, k)-*-&£

"
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is equivalent to the existence of a lift in the corresponding commutative diagram

cV(n, k)->-E

cA[n]-»- B

In case (1), the lift exists because pro SS* is a closed model category and
cV(n, k) —y cA[n] is a trivial cofibration. For case (2), taking into account that
the bonding morphisms of cV(n, k), cA[n] axe injections, limcV(n, k) =

0 = limcA[«], cV(n, k) -» cA[n] is a levelwise morphism and that for each
/ > 0; Pi'. E —y Bj is a fibration, it is easy to find a lift in the diagram above.

In the following lemma, for a given closed model category ff we use Quillen's

notation fff to denote the full subcategory of fibrant objects. We are also going

to use the following notation and results: Let SS* denote the category of
functors N -+ SS* and natural transformations. Given an object Y: N -» SS*,

consider N+ = {-1} U N and define Y+: N+ -> SS* by F+ = * and Y+ = Yt
if / > 0. For an injective increasing map tp: N —> N, define Ip: N -> N+ by

lp(j) = -1 if j < g>(0) and lp(j) = i if <p(i) < j < <p(i + 1). Now we define
an object Y*<p: N —> SS* by (Y*(p)j = Ytjy  There is a natural morphism

Y -> Y*tp , and tow SS* is equivalent to the category of left fractions Z_1SS^
associated with the family of morphisms of the form Y —y Y*tp (see [G-Z]). As

a consequence of this fact we have that

Homtow5S. (X, Y) £ colinv HomS5;(X, Y*<p).

A more detailed description of these results is contained in [He.l].
We also have the functor c: SS* -* SS® defined as usual by (cX)t = [_]<>*X

and the functor p: SS® -* SS* defined by pY = T\V£ Yt. It is easy to check
that c is left adjoint to p .

These results are applied to prove the second part of the following lemma
that will be useful to find the relation between the proper singular functor and
the right-derived functor of the 3s functor.

Lemma 3. The functor 3°: pro SS* -» S(S*&>cso) satisfies the following condi-
tions:

(1) If f is a weak equivalence in (pro SS*)/, then 3s f is a weak equivalence

in S(S*&cSo). Moreover, 3sf is a homotopy equivalence in S(S*^c5o).

(2) If f = {f: Xi ->Yi) is a level map such that for each / > 0, ft: X\ -+ F,
is a weak equivalence in SS* and X\, F, are fibrant in SS*, then 3s f is a
weak equivalence in S(S*^cSo).

Proof. (1) Since (proSS*)/ = (proSS*)Cf and / is a weak equivalence, it
follows that / is a homotopy equivalence. Because 3s: pro SS* —> S(S,^cso)

induces a functor no (pro SS*) —y 7io(S(S*&>cSo)), we get that 3s f is also a

homotopy equivalence. Therefore 3°f is a weak equivalence in S(S,^c5o).
(2) In order to prove that 3s f: 3sX —y 3d Y is a weak equivalence it suffices

to show that U3"f: U3BX -> U3"Y is a weak equivalence. Since for each
i > 0, Xj, Yt are fibrant, applying (2) of Lemma 2, one has that 3°X, 3°Y
are fibrant in S(S*^cSo). Therefore U3°X, U3SY are fibrant in SS* and we
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obtain the following isomorphisms:

\A[q]/A[q], U3>f] = n0Homss.(A[q]/A[q], U3>f)

= n0Homss,(A[q]/A[q], colim, p(f*tp))

Si n0 colim,, Hom^ (A[q]/A[q], p(f*<p))

= 7c0colim^(Hom^.(A[?]/AM, />(;')))

Si colim^i?7CoHom55,(A[^]/A[^], /-+(;))

Si colim,p[A[q]/A[q],f±{j)),

where we have taken into account that

U3*X = HomproSS,(cA[0]+ , X)

Si Homtow55.(cA[0]+,X)

Si colimpHomSSN(cA[0]+, X*q>)

Si colimp HomS5. (A[0]+, p(X*tp))

= colim, p(X* tp)

and that for maps a similar expression is obtained.

Finally, since each  [A[q]/A[q], f±,A  is an isomorphism, we obtain that

[A[<7]/A[g'], U3sf] is an isomorphism. Therefore U3°f is a weak equiva-

lence, and by the definition of weak equivalence in S(S*^cso) it follows that

3sf is also a weak equivalence in S(S*&>cSo).

Remark. Since Sf: S(S*^cSo) —> pro SS* is left adjoint to 3s: pro SS* —»
S(S*^>cSo) and pro SS*, S(S*^>cSo) axe closed model categories, it is easy to

check that Sf preserves cofibrations. Since Sf is simplicial left adjoint to 3s,
we also get that Sf carries a weak equivalence between cofibrant objects into

a weak equivalence.

Notice that Lemma 2, Lemma 3 and the remark after Lemma 3 prove that the

functors Sf: S(S*^cSo) —> pro SS+* and 3s: pro SS, —> S(S*gscSo) satisfy the

conditions of Theorem 4.3 of [Q. 1, Chapter I]. Therefore we have the following:

Theorem 1. The functor Sf: S(S,^C5o) —► proSS* induces a left-derived functor

SfL: Ho(S(S*^c5o)) -> Ho(proSS*) and 3s: proSS, -► S(S*^cSo) induces

a right-derived functor 3°R: Ho(pro SS,) —► Ho(S(S,^.cSo)) such that SfL is
left adjoint to S*1*-. Moreover, SfL preserves cofibration sequences and 3°R

preserves fibration sequences.

Recall that by Theorem 2.2 we also have the following pair of adjoint functors

Ho(S(S*^c5o)) *^- Ho(SS*).

The composition of the two pairs of functors gives a new pair of adjoint functors

SfL =SfL(- ©M): Ho(SS,) -^ Ho(proSS,) and 3»R = U3>R: Ho(proSS.)
—y Ho(SS,). Therefore we have:

Corollary 1. The functor S? = Sf(- © M): SS* -► pro SS* has a left-derived

functor SfL: Ho(SS.) -> Ho(pro SS,) and 7? = U3S: pro SS, -> SS* has aLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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_p _r

right-derived functor 3s  : Ho(pro SS*) —► Ho(SS,) such that Sf    is left ad-
_p _£ _»

joint to 3* . Moreover Sf preserves cofibration sequences and 3° prescribes
fibration sequences.

Notice that for a finite simplicial set X, we have that

Ho(pxo SS*)(SfLX, Y) Si Ho(SS*)(X, 3>*Y).

It is easy to check that c: SS* —> pro SS* preserves cofibrations then

Ho(proSS*)(cX, Y) s Ho(proSS*)(cX, Y').

where Y -> Y' is a weak equivalence and Y' is a fibrant object in pro SS*.

Since cX is cofibrant and Y' is fibrant, we have

Ho(proSS,)(c*, Y') Si n0(proSS*)(cX, Y').

Applying Lemma 1, we see that

n0(pxoSS,)(cX, Y') Si n0(SS*)(X ,3>Y')

Si n0(SS*)(X, 3>RY) Si ¥Lo(SS*)(X,WRY).

Therefore as a consequence of these isomorphisms, we have the following:

Theorem 2. Let Ho(SS*)/f be the full subcategory of Ho(SS*) determined by
finite simplicial sets. Then c: Ho(SS*)// -> Ho(pro SS,) is a partial left adjoint

to 3° : Ho(proSS,) -> Ho(SS,). The functors Sf and c agree up to natural

isomorphism on the subcategory Ho(SS*)//; moreover, c preserves cofibration

sequences associated with a map between finite simplicial sets.

Corollary 2. The diagram

Ho(pro SS*)-Z--^ Ho(SS»)

G—00^\ y/      ̂,lq ^ X

Gps

is commutative up to natural isomorphism, where nq denotes the standard qth

homotopy group and Gnqx denotes the qth Grossman homotopy group, defined

by Gnf(X) = Ho(pro SS*)(cS" , X), S" = A[q]/A[q].
_p

Proof. By Theorem 2 above, c is partial left adjoint to 3°   , so

Gnqa(X) = Ho(proSS*)(cSq, X) Si Ho(SS*)(S", &*X) Si nq(3>RX).

Theorem 3 (Brown). The diagram

Ho(tow SS*)-^-^ tow Gps

GpsLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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is commutative up to natural isomorphism, where tow nq is the natural prolon-

gation of the functor nq to the category of towers.

Proof. We use again the fact that tow SS, can be obtained as a category of
left fractions of the category SS* (see the notation given before Lemma 3 and

[He.l]). We have

Gn™(X) = Ho(towSS*)(cSq, X)

Sin0HomXoviSs,(cS'!,RX)

Si 7t0 colim, Hom^cS9 , (RX)*tp)

Si jr0 colim, HomMj(S« , p((RX)*<p))

Si colim, n0 Homss^S" , p((RX)*tp))

Si colim, nq(p((RX)*tp))

Si colim,p((nq(RX))*<p) £ colim,p((nqX)*tp)

s U3* tow nqX Si 3* tow nqX

where nq(RX) = {nq(RX(i))\i > 0} 2 {nq(X(i))\i > 0} = nqX.

In Theorem 5.4, we have seen that the functors 3s: tow SS* —► S(S*gscSo)

and lim: tow SS, —> SS* axe related by the functor Fsh: S(S,^c5o) —► SS* in
such a way that lim Si Fsh^. The following result gives an induced relation

between the right-derived functor lim7' = holim of the lim functor and the

right-derived functor 3sR of the 3° functor. We refer the reader to [E-H] for
the definition and properties of the functor holim: Ho(tow SS*) —> SS*.

Theorem 4. The functor holim = lim7*: Ho(tow SS,) -* Ho(SS») can be fac-

tored as

Ho(tow SS*)-^-^ Ho(SS,)

n0(S(S*&cSo))

Proof. We have proved that 3s: (towSS,)/ -» S(S,^c5o) sends weak equiva-

lences into simplicial homotopy equivalences. Since Fsh preserves finite limits,

it follows that Fsh preserves homotopy relations defined by cocylinders (FAt']).

Therefore Fsh induces a functor Fsh: no(S(S*#>cSo)) -> Ho(SS*).

Given an object X in tow SS,, we have that

Fsh3°RX = F^3°RX Si \m\RX = holimX,

where (1) is a consequence of Theorem 5.4 and we have used the definition of

holim given by Edwards and Hastings [E-H, page 133].

7. Simplicial complexes and simplicial M-sets

In this section we consider noncompact simplicial complexes X satisfying

the following three conditions.
(1) X is locally finite. Each point x e X has a neighbourhood U which

has points in common with only a finite number of simplexes.

(2) X has finite dimension.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SIMPLICIAL Af-SETS 391

(3) X has a countably infinite number of simplexes.
A simplicial complex of this type is homeomorphic to a subspace of some

Euclidean space W" which is the union of countably many simplexes of dimen-
sions 0 through n. Two simplexes have empty intersection or they meet in a

common face, and the countable family of simplexes is locally finite. A simpli-

cial complex is said to be ^-dimensional if it contains at least one ^-simplex but

none of higher dimension. A simplicial complex X is said to be w-dimensional

at infinity if for every finite subcomplex K of X, there is at least an n -simplex

of X - K and none of higher dimension. In this section, simplicial complex

means a simplicial complex satisfying conditions (1), (2) and (3).

Recall the functor Rp: (SMlff)lfd -» Pro defined in §4.3, where M =
Pro(N, N). In this section for each simplicial complex X, we construct a

simplicial M-set, N,in (Sm///) such that RPN Si X. The simplicial M-set
A^ satisfies that for each dimension q > 0, Nq is (//), a free M-set over a

finite set. The condition fd means that N has finite dimension, that is, there

is n such that for q > n every simplex of Nq is degenerate. The simplicial

M-set N will be proved to be cofibrant in the closed model structure of S(Sm) •

Let I bea simplicial complex (satisfying (1), (2), and (3)) such that both
the dimension of X and the dimension of X at infinity are equal to n . We can

define a simplicial M-set, N, associated with X as follows: Define Nq — M,

N\ = soMLiM, where sqM is a copy of M and U denotes the sum of M-sets.
For a k with 0 < k < n , define

Nk = 5fc_i5A:_2 • • • s0M U f [J Sik_3 ■ ■ ■ sioM J

U--UJ      |J     5;i5i0MJu(    [J   5,0M|UM,
\fc>(i>/o>0 / \/t>;0>0 /

where any Sjr• • ■ Sj0M is a copy of M. For k > n, Nk is similarly defined

except that the last M is removed.
The degeneracy operators of N axe defined using the identity of M. Given

M or a copy of M of the form s,r_, ---s^M with k > ir-\ > ■■■ > /o > 0

and k > i > 0, we use the relations SjSj — Sj+iSj if / < j to find a copy

■V-i+i •••Si---sioM such that /r_i + 1 >•••>/>•••> /0 . Then s, is defined

from 5,r_, • • • sioM to sir_l+i ■ ■ ■ s,■■ ■■ sioM by the "identity" map.

To define the face operator we consider two cases: If we have a copy of

M of the from Si,---Si0M or if we have M. In the first case we use the

relations djSj = Sj-\dj if / < j, djSj = id if i — j or i = j + 1, and
djSj — Sjdj-i if / > j + 1 to transform an expression of the form dtSir ■ ■ -Sj0M

into an expression of the form s,r , • • -Sj0M. Then the restriction of the face

operator dj to •$,-, • • -sioM is defined by the "identity" map from sir ■ --s^M to

sJr-r--Sj0M.
Now we have to define the face operators for the term of Nk (I < k < n)

equal to M. It is in this step where we use the combinatorial structure of the
simplicial complex X.

Given a simplicial complex X (satisfying (1), (2), and (3)) such that the

dimension of X and the dimension of X at infinity are equal to n , firstly, an
enumeration can be chosen for the countable set of 0-simplexes of X, E§, E°,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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F°, etc. This enumeration induces a unique order to the finite set of vertices

of each /c-simplex Ek of X. Therefore for each /c-simplex Ek of X the

different faces doEk , d\Ek , ... , dkEk are well defined. We also choose an

enumeration for the countable set of 1-simplexes of X, the countable set of

2-simplexes, etc, and finally for the countable set of «-simplexes.

If 0 < k < n, 0 < / < k, for each / e N the face djEf is equal to some

Ek~x. This defines a proper map #>,: N —> N; that is, an element tpt e M. The

restriction of the face operator dj applies the term M of A^ into the term M

of Nk-i . Since M is a right M-set freely generated by 1 e M, it suffices to

define do 1 = <Po, • • • , dk 1 = tpk .
The simplicial M-set N satisfies that RPN Si X, where Rp: (SM/ff)/fd -*

Pro is the realization functor defined in §4.3. The reason for this is that the

space X admits the following inductive construction. We start with a "proper"

0-simplex N x |A[0]|. We attach a "proper" 1-simplex to obtain the 1-skeleton,

and continue in this way to obtain the «-skeleton of X. On the other hand,

if we look at the definition of RPN and take into account Proposition 3.2,

we have to consider the diagram D(SknN) (see §3). In this case, because

s;1m = Im we can again reduce D(SknN) to a diagram that contains exactly

the necessary instructions to attach each face N x |<9,A[<7]| of the "proper" q-

simplex N x \A[q]\.
Notice that the realization functor satisfies

Rp(A[q] ®M)SiNx \A[q}\ Si (J \A[q]\,
N

Rp(A[q]®M)SiNx\A[q]\Si\J\A[q]\.
N

For the case when both the dimension of X and the dimension of X at
infinity are equal to n, we have constructed a simplicial M-set, N, such

that RPN = X. For the general case we have dimX = m > n, where n is

the dimension of X at infinity. We note that there are finitely many simplexes

of dimension greater than n . Using the construction above we can find a sim-

plicial M-set, N', such that RPN' = sk„ X. In order to attach the simplexes

of dimension greater than n, for each q > n, we are going to construct a

simplicial M-set Ax[q] such that RpAi[q] Si \A[q]\ U (|_|f°° *) • Now instead of

attaching |A[<jr]| by using a map \A[q]\ —> sk?_i X , we attach \A[q]\ U (\Jl°° *)

by using a proper map \A[q]\ U (\_\*°° *) -* skg_i X.
We note that if Y is a simplicial M-set, we have the following isomorphisms:

HomS(^)(A[1?] © M, Y) Si Hom55(A[<7], UY) Si UYq ,

where U is right adjoint to - © M. Therefore each element y e Yq determines
a map fy: A[q] © M -> Y. Recall that for each simplicial set Z , we have that

(Z © M)q = Zq © M = Zq x M, and an element (z, m) of Zq © M is also
denoted by z © m . If iq denotes the identity of [q] and sh: N —> N is an

element of M defined by sh(/) = / + 1, we have that the element iq © sh

of (A[<?] 0 M)q determines a map /,0Sh: A[<?] © M -> A[<jr] © M. We also

consider the restriction of /,0Sh to the corresponding (q - 1 )-skeletons that will

be denoted by sk,_i(/} Qsh). On the other hand the final map *: A[#] -» A[0]
induces a map *©M: A[#]©M -> A[0]©M. Using this notation, the simplicialLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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M-set A! [q] is determined by the pushout

A[#]©M^iA[0]©M

A[q] © M->■ A] [q]

and similarly one also has the pushout

A[q]®M^^A[0]®M

sk«-iC/i,0»h)

A[q]®M-^Ai[^f]

It is easy to check that

ApA,MS|AM|uf[J*J ,

/+oo    \

RMrt = \M<i]\ul |_l*) •

If we suppose that we have a simplicial M-set N' such that RPN' = sk„ X.

Because there are finitely many simplexes with dimension greater than n , we

can consider pushouts of the form A*"" = N' U^i[p] A\[p] to obtain finally the

desired N.
Notice that the simplicial M-set N has the following skeletal structure:

sko A^ c ski A^ c • • • C sk„ N c • • • C skm N,

where if / < n, sk/ A^ is obtained from sk/_, TV by a pushout of the form

A[/]©M-^sk/_! N

A[/]©M-*skiN

where the map A[/]©M —> sk/ N is determined by the adjoint isomorphisms by

the identity 1 of M considered as an element of the term M of (sk/ N)i Si N/.

If / > n , N/ is obtained from N/_ \ by a pushout of the form

United/]--Sk^/V

Unite AlM--Sk/7V

Since Ai [/] -y A\ [I] is a retract of A[/] © M -y A[l] 0 M, which is a cofibration,

it follows that Ai[/] -+ Ai[/] and A[/] © M -» A[/] © M are cofibrations in
S(Sm) ■ Therefore N is a cofibrant object in S(Sm) ■ It is also clear that N is

an object of (SM/ff)/fd.
Then we have proved the following:
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Theorem 1. For any simplicial complex X, there is an object N in (Sm/ ff)/ fd
which is cofibrant in S(Sm) and such that RPN = X.

We are going to analyse the relationship between the proper realization func-

tor Rp: S(SM/ff)/fd -> Pro and the realization functor Sf = R^: S(SM) ->
(pro SS, SS). Consider the Edwards-Hastings embedding

e: Pro —> (pro Top, Top)

and the restrictions e: Proff —> (pro Top, Top) and e: PC -» (pro Top, Top),
where Pro<j is the full subcategory of Pro determined by locally compact, a-

compact Hausdorff spaces and PC is the full subcategory of Pro^ determined

by spaces that admit a triangulation as a simplicial complex satisfying the con-

ditions (1), (2) and (3) at the beginning of the section.

Edwards and Hastings [E-H; Proposition 6.2.7] proved that the induced func-

tors

e: 7E0(ProCT) -> HoSt(proTop, Top),

e: ^((Pro^oo) -» HoSt(proTop)

are full embeddings, where 7to(ProCT) and 7ro((ProCT)oo) are defined dividing by

proper homotopies and germs of proper homotopies and Host(proTop, Top),

Host(proTop) are obtained by the inversion of the weak equivalences of

(pro Top, Top) (resp., pro Top) of the closed model structure defined by Ed-

wards and Hastings [E-H] on these procategories and induced by the Strom

closed model structure of Top.

If one considers the closed simplicial model structure of Top defined by
Quillen [Q. 1], using the Edwards-Hastings method there are induced closed sim-

plicial model structures on the categories (pro Top, Top) and pro Top. Let
Hog(proTop, Top), Ho^(proTop) denote the corresponding localized cate-

gories. Using these new closed model structures, there are also full embeddings

e: tto(FC) -> Hoe(proTop, Top),

e: (no(PC)x) -» HoQ(proTop),

if we consider the restriction of e to spaces that admit a triangulation as a

simplicial complex.

The standard realization and singular functor

Top £ SS
s

induce equivalences of categories

R

Hoe(pro Top, Top) —► Ho(pro SS, SS),

R

HoG(pro Top) ̂  Ho(pro SS).

Therefore we also have the full embeddings

Se: no(PC) -» Ho(proSS, SS),

Se: 7r0((FC)oo) ^Ho(proSS).

The next proposition relates the proper realization functor Rp: (Sm/ ff)/ fd

-> PC and the realization functor Sf: S(SM) -> (pro SS, SS).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proposition 1. Let X be an object of PC and let N be a simplicial M-set
associated with X by the construction given in this section (RPN = X). Then
SfN is isomorphic to SsX in the category Ho(pro SS, SS).

Proof. Let X be a simplicial complex and assume that the set of vertexes of
each simplex of X is provided with a fixed order. We can define a simplicial

set sX by

(sX)q - {/: \A[q]\ -* X\f is a simplicial, order-preserving map} .

It is well known that sX —> SX is a weak equivalence in SS. Therefore if X

is an object of PC provided with an enumeration for the countable set of its

vertexes and X = X(0) D X(l) D ■■■ is a decreasing sequence of subcomplexes

such that X(i + 1) c Int X(i), / > 0, and f| x(i) = 0, we have that se'X -►
SeX is a weak equivalence in (proSS, SS), where se'X = {sX(i)}.

Assume that X is an object in PC with dimX = m and the dimension of

X at infinity is equal to n (m > n). Suppose that X is provided with the corre-

sponding enumerations for the countable sets of O-simplexes, 1-simplexes, ... ,

and «-simplexes. Then for 1 < / < n we have the following pushouts:

Rp(A[l] © M) 2 |JN |A[/]|-- sk/_, X

Rp(A[l] © M) Si [JN |A[/]|-^sk/X

and for n < I < m

LLite^A.lV]--sk/_,*

Ufinitetf„Ai[/]--Sk/X

The "functor" se' preserves these colimits and we have, in (pro SS, SS), the
pushouts

se'(Rp(A[l] © M))-^se'(sk!_i X)

se'(Rp(A[l]®M))-*se'(skiX), 1 </<«,

"' (United (A. M)) --^'(Sk,_, X)

"

se' (Unite *p(Ai [/]))- se'(sk, X), n<l<m.

The left adjoint Sf: S(SM) -* (pro SS, SS) preserves colimits, so for the
simplicial M-set N we have the sequence

SfskoNcSfski Nc ••• cSfsknNc ■■■ c Sf skm SiSfN
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and the pushouts

Sf(A[l] © M)-^Sf(sl,.xN)

"

Sf(A[l]®M)-* Sf (skt N), l<l<n,

-^ (UfiniteA,[/])-*Sf(skt_xN)

^ (Ufinite Ai[/])- -^Sf(sk,N), n<l<m.

But we have

Sf(A[l] ®M)Si se'(Rp(A[l] © M)),    Sf(A[l] ® M) Si Se'(Rp(A[l] © M)),

^(A, [/]) Si se'(RpA, [I]),    Sf(Ax [/]) Si se^R.A, [/]).

Then by induction it follows that ^(sko N) = se' sk0 X, ^(sk, N) = se' sk, X,
... , and finally LN = se'X. Therefore SeX is isomorphic in Ho(proSS, SS)

to Sf(N), where N is an object of (Sm/ ff)/ fd which is cofibrant in S(Sm) ■

8. Applications to proper homotopy theory

Associated with the monoid M = Pro(N, N), we have introduced the proper

realization functor Rp: (Sm/ff)/fd —> Pro and the proper singular func-

tor Sp: Pro —y S(Sm) ■ Given an object N of S(Sm/ff)/fd and a space
Y, by Theorem 4.1 we have that n0(Pxo)(RpN, Y) Si n0(S(SM))(N, SPY).
If AT is also a cofibrant object in S(Sm) , then Theorem 4.2 implies that
n0(Pro)(RpN, Y) = Ho(S(SM))(A, SPY). Consequently, in some cases, the

problem of computing sets of proper homotopy classes is translated from the

proper homotopy category 7to(Pro) to the category of fractions Ho(S(Sm)) •

We note that the definition of the functor Sp is given by sequences of singular

simplexes converging to infinity. Therefore the use of the functors Rp and Sp
will be more convenient for spaces which are first countable at infinity. For

more general spaces we have to use nets instead of sequences, and the category

S(Sm) would have to be modified to one of the form S(S^) where J? is

a category of "proper maps" between directed sets. In any case, many of the

more important applications of the proper homotopy theory are concerned with

noncompact spaces which are first countable at infinity.

An important class of these latter spaces are the simplicial complexes con-

sidered in §7. Recall that PC denotes the category of proper maps between

spaces that admit a simplicial decomposition with a countably infinite num-

ber of simplexes; we also assume that this triangulation is locally finite and

has finite dimension. By Theorem 7.1, a simplicial complex X of PC is of

form X = RPN, where A^ is an object of S(SM/ff)/fd which is cofibrant in
S(SM) ■ Then it follows that

7r0(Pro)(X, Y) Si n0(Pxo)(RpN, Y) Si Ho(S(SM))(N, SPY).

In order to define the proper homotopy groups of a space X, we choose a

base sequence a: N -* X converging to infinity. Associated with X, one hasLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SIMPLICIAL Af-SETS 397

the simplicial M-set SPX, and the forgetful functor U: S(SM) -* SS gives

the simplicial set SPX — USPX. Notice that a is a 0-simplex of SPX. We
consider the following definition of proper homotopy groups pnq(X, a).

Definition 1. Let JT be a space and a: N —y X a proper map. Then the qth

proper homotopy group is defined by

pnq(X,o):=nq(SpX,o).

Remarks. (1) For the category PrOoo of germs of proper maps and the monoid

Moo = PrOoo(N, N), we have similar notions and results. For instance, we can

consider the proper homotopy groups at infinity pnqK(X, a) of a space X and

base sequence a.
(2) E. M. Brown [Br.l] define the proper homotopy groups BnqyD(X, a) of

a space X with a proper base ray a: [0, +oo) —» X. If S9 denotes the q-

sphere and * is a base point of S9, we can consider the Brown ^-sphere
BSi = ([0, oo) x {*}) U (NxS"). It is easy to check that the inclusion NxS«-»

([0, oo) x {*}) u (N x Sq) induces a group isomorphism na: Bnqx>(X, a) -*

pnqK'(X, a/N). We note that if a, a': [0, oo) —> X axe two proper rays such

that a/N = a'/N, we have the group isomorphism 6 = n~,xna: BnqK'(X, a) -*

BnqK(X, a'). However, two different choices of base ray can lead to noniso-

morphic progroups. We refer the reader to Siebenmann's thesis [Sie.l]. He

considers a space X (an infinite cylinder with an infinite string of circles) and

two proper maps a, a; : [0, oo) —► X that lead to nonisomorphic pro-groups

C7 = tow7ti(e(Ar, a)) Sltowni(e(X, a')) = G'.

Siebenmann shows that for a, lim G is a cyclic infinite group, and for a',

lim G' is a trivial group. Recall that if we consider the functor 3s: tow Grp -»

Grp^cZ , for the progroups G, G' we have the group isomorphisms:

HmGSi{xe3BG\xsh = x},

lim G' Si {x' e 3>G'\x' sh = x'} .

Therefore, as a consequence of Siebenman's example we obtain that 3s G is

not isomorphic to 3*0 in the category Grp^>cZ (notice that any morphism in

Grp^.,-2 has to "commute" with the shift operator sh).

On the other hand, by Theorem 6.3, one has canonical isomorphisms

3°GSiB ti? (X, a),     3*G' SiBn?(X, a').

In the Siebenmann example we have that the group isomorphism 9 does not

preserve the action of sh, hence 6 is not a morphism of the category Grp^<rZ .

Now we obtain the following version of the Whitehead theorem in the proper

setting.

Theorem 1. Let f: X —» Y be a proper map between simplicial complexes (that

is, f is a morphism of PC). Then f is a proper homotopy equivalence if and

only if pnq(f): pnq(X, a) -> pnq(Y, fo) is an isomorphism for all q>0 and
for every base sequence a.

Proof. Let Z be a object in PC. By Theorem 7.1, there is an object N in

S(SM/ff)/fd which is cofibrant in S(SM) and such that Z Si RpN. UsingLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 7.2, we obtain the following commutative diagram:

n0(Pxo)(RpN, X) Si Ho(S(SM))(N, SPX)

f. (sPf).

n0(Pxo(RpN, Y)) Si Ho(S(SM))(N, SPY)

By the definition of pnq, one has that Spf = USpf is a weak equivalence
in SS. Taking into account the definition of weak equivalence in S(Sm) , we

have that Spf is a weak equivalence. Therefore (Spf)* is an isomorphism

in the diagram above, and this implies that /» is also an isomorphism. This

follows for any Z = RPN, and by the Yoneda lemma one obtains that / is an

isomorphism in 7to(Pro); that is, / is a proper homotopy equivalence.

Remarks. (1) A similar version of this paper Whitehead theorem can be proved

for germs of proper maps and the proper homotopy groups at infinity pnqx'.

(2) Siebenmann [Sie.2], Farrel-Taylor-Wagoner [F-T-W], Edwards-Hastings

[E-H] and Bassendoski [Bas] have proved different versions of the proper White-
head theorem. There are also other versions of the Whitehead theorem

for prospaces and prosimplicial sets that can be applied to proper homotopy.

Extremiana-Hernandez-Rivas [E-H-R.l] gave a version that only uses strong

(Steenrod) proper homotopy groups. Baues [Ba.2] and Ayala-Dominguez-

Quintero have given a Whitehead theorem for spaces with a base tree.
(3) Let n = pn\(X) and assume that there is an action of n on an abelian

group A. One can define proper cohomology of X with twisted coefficients

by pHq(X; A) := Hq(SpX; A). It is clear that the cohomology version of the
standard Whitehead theorem implies a similar version for the proper category.

The following result gives the relation between the proper singular functor,
the right-derived functor of the 3s functor, and the Edwards-Hasting functor.

Theorem 2. Let Pro^ be the full subcategory of Pxo determined by locally com-

pact, a-compact Hausdorff spaces. Then the diagram

7t0(ProCT)-^Ho(proSS, SS)

Ho(S(Sm))

is commutative up to natural isomorphism.

Proof. Let X be an object in ProCT . From the topological properties of X, we

infer that eX Si {Xt\i e N} . Therefore SeX Si {SXt} . Using the properties
of the model structure of (towSS, SS), one has a levelwise map {/: SXt -»
(RSeX)j} such that RSeX is a fibrant object, and for each / > 0, SX{ and
(RSeX)i axe fibrant objects, and / is a weak equivalence. We can now apply

Lemma 6.3, to obtain that

3BSeX si 3>{SeXt} -» 3>(RSeX) = 3>RSeX

is a weak equivalence; that is, an isomorphism in Ho(S(Sm)) •License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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On the other hand, one has the isomorphisms

(3>SeX)q Si (proSS, SS)(Sf(A[q] © M), SeX)

Si (proTop, Top)(\cA[q]\, eX)

^(proTop,Top)(e(Nx|A[<7]|),eX)

2 Pxo(Nx\A[q]\,X)Si(SpX)q.

Therefore 3°SeX is isomorphic to SPX andSpX -> 3sRSeX is an isomor-

phism in Ho (S(Sm)) •

A partial version of the Edwards-Hastings embedding theorem can be ob-

tained as a corollary.

Corollary 1. Let X be an object in PC. Then

n0(Pxo)(X, Y) Si Ho(proSS, SS)(SeX, SeY)

for any space Y in ProCT .

Proof. By Theorem 7.1 there is an object N in S(Sm) such that RPN = X
and

7r0(Pro)(X, 7) Si Ho(S(SM))(N, SPY).

By the above theorem, SPY is isomorphic to 3sRSeY in Ho(S(SM)), so one

has

Ho(S(SM))(N, SPY) Si Ho(S(SM))(N,3>RSeY)

= Ho(proSS, SS)(SfN, SeY).

In the last isomorphism, we have taken into account that N is cofibrant in
S(Sm) ■ Applying Proposition 7.1, one has that SfN is isomorphic to SeX.
Therefore

n0(Pxo)(X, Y) Si Ho(proSS, SS)(SeX, SeY).

Different homology theories can be defined in order to have Hurewicz the-

orems. If one considers the following definition, we have that the standard

Hurewicz theorem implies a proper Hurewicz theorem. Recall that SPX de-

notes the simplicial set USPX, where U: S(Sm) -* SS is the forgetful functor
and Sp is the proper singular functor.

Definition 2. Let X_he a space. The qth proper homology group of X is defined

by pHq(X) := Hq(SpX).

Theorem 3 (Proper Hurewicz theorem). Let X be a noncompact space and

suppose that X is properly ^-connected (pno(X, a) = * for some base sequence

a). Then there is a homomorphism pnq(X) —y pHq(X) for each q > 0 such
that:

(1) For q = 1, pni(X) —y pH\(X) is up to isomorphism the natural epimor-

phism from a group to its abelianization. The first proper homology group is

isomorphic to the abelianization of the proper fundamental group.

(2) If X is properly (n - l)-connected, n>2 (pnq(X) = 0 for q < n - 1),
then the Hurewicz homomorphism pnn(X) —» pHn(X) is an isomorphism and

pn„+i(X) —y pHn+i(X) is an epimorphism.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Remarks. (I) If X is a space and a: [0, +00) —► X a base ray, such that a is

a "proper cofibration", then the pushout

e[0, +00)-»-*

I
eX-*e'X

defines an object e'X of (proTop,, Top,) and eX —> e'X is a weak equiv-
_» _

alence in (pro Top, Top).   Then 3° SeX -» 3°Se'X is a weak equivalence
_p _D

in SS, and we have that nq(3> SeX) = nq(3B Se'X). The proper homotopy

groups satisfy

pnq(X) = nq(SpX) Si nq(3*RSeX) Si nq(3>RSe'X) Si 3*(pxonq , nq)(e'X).

That is, the functor nq commutes with the 3° functor.

(2) The functor Hq does not commute with the 3° functor. Take X ob-

tained from the semiopen interval [0, +00) by attaching one 1-sphere at each
nonnegative integer. In this case, the natural map

pHx(X)^3^((pxoHx,Hx)e'X)

is not an isomorphism.

(3) We can also consider the following functor

Pro -^ pro SS, SS) —U- (pro SA,SA) -^*-*- S(A9>C%) -£_► SA,

which induces another proper homology theory that also satisfies a Hurewicz

theorem. In this case, the functor Hq "commutes" with 3° .

(4) Otherwise useful proper invariants are the strong (Steenrod) homotopy

groups of a rayed space that can be defined by nq(Fsh3BRe'X) or by nq lim7' e'X

see [H-P.l, H-P.2]. Other alternative definition can be seen in [Ce]. A proper

homology theory for these groups, that satisfy the Hurewicz theorem, can be

defined by Hq(Fsh3BRe'X). Other Hurewicz theorems for the strong homotopy

groups are proved in [E-H-R.2].

9. Applications to prohomotopy theory

In this section, in order to prove new versions of standard theorems for the

homotopy category Ho(proSS,), we will use the pair of adjoint functors

s"-
Ho(S(S*^cSo))^=; Ho(proSS*).

Definition 1. An object X of pro SS* is said to be Sf-cofibrant if X is isomor-

phic in Ho(pro SS») to some SfG, where G is a cofibrant object in S(S*^cSo).

If G is cofibrant and dim G < k , then X is said to be Sf- k-cofibrant.

There are many versions of the Whitehead theorem in prohomotopy theory.

On one side, there are theorems that give algebraic conditions to ensure that a

morphism of pro Ho(Top) is an isomorphism—see for instance [Rau] and [M-

S]. On the other side, there are theorems of the same type for a morphism of

Ho(proTop). The monograph of Edwards and Hastings [E-H] and the papersLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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of Grossman [Gr.l, Gr.2, Gr.3] include some versions of the last type for maps

between towers that satisfy additional conditions on (co) dimension or mov-

ability. Here we prove a slightly different version of the Whitehead theorem

for ^-cofibrant objects. In general, an ^-cofibrant object is not necessarily
isomorphic to a tower. The algebraic condition of our result is given in terms

of Grossman homotopy groups or equivalent cohomology conditions:

Theorem 1. Let X, Y be Sf-cofibrant objects in pro SS* and let u: X —y Y
be a map in Ho(proSS*). If 3°Ru is an isomorphism in Ho(S(S*^cSo)), then

u is an isomorphism in Ho(pro SS»).

Proof. If suffices to prove that for any cofibrant object G of S(S^cSo)) the

induced map

u*: Ho(proSS*)(SfG, X) ^Ho(pxoSS*)(SfG, Y)

is an isomorphism. Because SfL is left adjoint to 3°R , this condition is equiv-

alent to showing that

(3>Ru)*: Ho((S*c?cSo))(G,3*RX) -> Ho((S*^cSo))(G, 3>RY)

is an isomorphism. This follows because 3°Ru is an isomorphism by hypothe-

sis.

Consider a simplicial ^-sphere, for instance Sq = A[q + 1], and recall that

Sf(Sq ®3°cS°) = cSq. Given an object X in pro SS*, the qth Grossman

homotopy group

Gn™(X) s Ho((S*<?cSo))(Sq ®3°cS°, 3>RX)

Si Ho(SS*)(S« , ~&>RX) S nq(3»RX).

A pro-pointed simplicial set is said to be (Grossman) 0-connected if G7i0x'(X)
is trivial.

Corollary 1. Let X, Y be Sf-cofibrant objects in pro SS, and assume that

X and Y are 0-connected (G^o° = 0). If u: X -> Y is a morphism in
Ho(pro SS,), then u is an isomorphism if and only if GnqKX —> Gnqx>Y is

an isomorphism for all q > 1 .

Proof. By Theorem 1, u is an isomorphism if and only if 3iRu is an isomor-

phism. It is easy to check that 3°Ru is an isomorphism in Ho(S(S*^>cSo)) if
_p

and only if 3° u = U3°Ru is an isomorphism in Ho(SS,). We note that the
_p _p

simplicial sets 3s X and 3s  Y are 0-connected. Therefore this is equivalent
_p _p

to saying that nq3° u is an isomorphism for q > 1. Since nq3° u — Gnqx'u,

we get the algebraic condition of the corollary.

Remark. We can define the cohomology of a prosimplicial set X with twisted
_p

coefficients in A by Hq(X; A) := Hq(3° X; A), where A is a n-module and
n = Gnqx'X. It is clear that we can give a cohomology version of the Whitehead

theorem for ^-cofibrant objects.

Recall that the natural "inclusion" Ho(SS) -> Ho(pro SS) is left adjoint to

the homotopy limit lim7': Ho(proSS) -> Ho(SS), and for the case of towers

lim factors as lim7* = F^3°R . We also have similar functors and properties
for the pointed case.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Given an object X in pro SS,, the qth strong homotopy group of X is

defined by snq(X) = nq(limR X). If X is a tower we have that nq{limR X) —

nq(E^l3eRX). The Cech homotopy groups of X are defined by hq(X) =
limnqX, where nqX denotes the progroup pxonqX. If X is a tower then

nq(X) = limnqX = F^3°nqX = Fshnq3sRX. Then the homotopy groups

nq3sRX determine the Cech homotopy groups hq(X) (the homotopy group

nq3°RX is provided in a natural way with a shift operator sh).

For any object X in pro SS,, we have the natural map lim^X -> X in
pro SS*. Consider the following notion.

Definition 2. An object X in pro SS* is said to be 3°-movable if the induced
_p n _p

map 3s  lim  X —> 3° X is a weak equivalence in SS*.

Proposition 1. Let X be an object of tow SS* and assume that X is 3s-

movable. Then
(i) The Cech homotopy groups hq(X) are isomorphic to the strong homotopy

groups snq(X).

(ii) The strong homotopy groups determine the Grossman homotopy groups by

the formula Gn™(X) Si W(snq(X)).

Proof. To prove (i), consider the following isomorphisms:

hq(X) = limnqX Si F^3°nqX Si F^nq3°RX

Si Fshnq3>R lim75 X Si F^3°(nq lim7* X) Si nq lim* X Si snq(X).

Part (ii) follows from the isomorphisms

Gn™(X) = nq(&RX) Si nq(3*R lim7' X) Si 3»nq lim* X Si 3°(snq(X)).

Now we obtain the following Whitehead theorem for ^-movable prosimpli-

cial sets.

Corollary 2. Let X, Y be objects in tow SS* and assume that X, Y are Sf-

cofibrant and 3°-movable. Suppose also that X and Y are h-0-connected. If

u: X —> Y is a morphism in Ho(pro SS»), then the following conditions are

equivalent:
(i) u is an isomorphism in Ho(pro SS*).

(ii) nq(X) —ynq(Y) is an isomorphism for all q > 1.

(iii) snQ(X) -* snq(Y) is an isomorphism for all q>\.

Proof. Since X, Y are ^-movable, we infer by the proposition above that
nq(X) = snq(X) and similarly for Y. Because snq(X) is isomorphic to

snq(Y), by the proposition above it follows that

Gn™(X) Si 3>(snqX) Si 3>(snqY) Si Gn™(Y),        q>l.

Applying Corollary 1 we have that condition (iii) implies that u is an isomor-

phism.

Remarks. (1) Let X he a topological space and a:[0,-roo)-tlbea "proper"

cofibration. In Remark (1) after Theorem 8.3 we have considered the pointed

prosimplicial set Se'(X,a). We say that X is ^-movable at infinity if

Se'(X, a)  is ^-movable.   As a consequence of Proposition 1, we have thatLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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for a space X which is ^-movable at infinity, the strong (Steenoord) homo-

topy group

snq(X, a) Si 7r0(PrOoo)((S« x [0, +00), * x [0, +00)), (X, a))

is isomorphic to the proper Cech group

iiq(X, a) = limnqe(X, a).

Therefore we also have the following proper Whitehead theorem: Let (X, a)

and (Y, B) be two "well rayed" simplicial complexes (objects in PC) and let

/: (X, a) —y (Y, B) be the germ of a proper map. Assume that (i) X, Y have

finite dimension, (ii) X, Y axe ^-movable at infinity, and (iii) X, Y have
one Freudenthal end. Then / is a proper homotopy equivalence at infinity if

and only if nq(f): nq(X, a) —► nq(Y, B) is an isomorphism for q > 1.

A Whitehead theorem involving only strong (Steenrod) proper homotopy

groups was proved in [E-H-R.l].

(2) If we define the H3°-homology groups of a prosimplicial set X by

H^<i(X) = Hq(3s X), we also have a homology theory that satisfies the Hure-

wicz theorem for the Grossman homotopy groups. We will analyse this case in

the following section for the prosimplicial set VX associated with a compact

metrisable space X.
(3) Many of the notions and theorems of this section can also be obtained

for the nonpointed case pro SS, and the corresponding global (augmented)

categories (proSS, SS), (proSS*, SS*).

10. Applications to strong shape theory

First we recall the definitions of the Cech nerve CX of a space X and the

Vietoris nerve VX that was introduced by Porter [P.l].
Given a space X, consider the directed set cov X. An element of cov X

is an open covering ^ of X. If %, 'V e cov X, it is said that "V refines
% CV > V) if for any V e'V there is some U £ % such that V C U. Given
a space X and an open covering %,  (CX)%, denotes a simplicial set such

that a typical w-simplex is given by (Uo, ... , U„) where Uo.U„ e ^ and

C/0 n ■ • • n U„ ^ 0 . The correspondence X -> {(CX)V\U e covX] defines a
functor C: Top -+ pro Ho (SS).

If % is an open covering of the space X, the Vietoris nerve of ^, (VX)w ,
is the simplicial set in which an w-simplex is an ordered (n +1 )-tuple (xo, ... ,
x„+i) of points contained in an open set U e %. One important difference

with the Cech nerve is that if y refines ^ there is a canonical map (VX)y —►

(yX)y in SS, whereas in the case of the Cech nerve the corresponding map

(CX)<y -* (CX)% has to be considered only in Ho(SS).
Using the Vietoris functor V: Top -» pro SS, one can define the category

St Sh(Top) of strong shape of topological spaces by taking as objects the topo-
logical spaces, and for two spaces X, Y the hom-set St Sh(X, Y) is defined

by
StSh(X, Y) = Ho(proSS)(VX, VY),

where pro SS is provided with the closed model structures given by Edwards

and Hastings [E-H]. We shall also use the Dowker theorem [E-H, page 125],License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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which asserts that for an open covering % of a topological space the Vietoris

nerve (VX)% is isomorphic to the Cech nerve (CX)% in the category Ho(SS).

It is not difficult to check that if X is a compact metrisable space, then
there is a cofinal sequence... ,^2,^1,^0 of open coverings in cov X . There-

fore CX = {(CX)%\% 6 covX} is isomorphic to C'X = {(CX)%\i e N}
in proHo(SS) and VX = {{VX)V\& e covX} is isomorphic to' VX =

{(VX)v.\ieN} is proSS and in Ho(proSS).
Recall that if JT is a compact metrisable space we can assume (up to homo-

morphism) that X is a subspace of s = YV,™(^, £), the pseudo-interior of

the Hilbert cube Q = Ylt^dlT > «1 • Consider the open neighbourhoods of X
in Q

NX = {U\X c U, U is an open subset of Q}

as an object of pro Top. Since X is a compact space, there is a cofinal sequence

of neighbourhoods N'X = {Uj\X c L7, / £ N} such that NX is isomorphic to
N'X in pro Top. Applying the singular functor we get SNX = {SU\U £ NX} ,
which is isomorphic to VX in Ho(pro SS). It is also interesting to remark that

the natural inclusion

N'CX = {U- X\X c U,  i £ N} c {Ui\X c U,  i £ N} = N'X

is an isomorphism in Ho(proTop) and therefore SN'X and SN'CX axe iso-

morphic in Ho(pro SS).
Notice that by considering the functor Ho(tow SS) —► towHo(SS) and the

Dowker theorem we have that, for a compact metrisable space X, C'X and

VX axe isomorphic in towHo(SS). If we choose representative maps of the

bounding maps of C'X, we obtain an object C'X in the category tow SS, and

by Theorem 5.2.9 of [E-H] we also have that C'X and VX are isomorphic

in Ho(towSS). Therefore, for a compact metrisable space the objects VX,

SNX, VX, SNX, SN'CX, C'X are isomorphic in Ho(proSS).
Recall that in the Example (2) of §2, we introduced the simplicial M-sets

ss(X) and ssc(X) for a compact subset X of the pseudo-interior of the Hilbert

cube. The following result gives a geometric interpretation of the simplicial M-

set 3°RVX.

Proposition 1. Let X be a compact subset of the pseudo-interior of the Hilbert

cube. Then 3aRVX, ss(X), and ssc(X) are isomorphic in Ho(S(Sm)), where

M = Pro(N,N).

Proof. Since VX is isomorphic to SNX, then

3>RVX Si 3>RSNX Si 3°RSN'X Si 3>RSN'CX.

The objects SN'X = {SUt\i £ N} and SN'CX = {S(U, - X)\i £ N} are such
that for each / e N, St/, and S(U -X) axe fibrant in SS. By Lemma 6.3, we
infer that 3°RSN'X is isomorphic to 3°SN'X and 3>RSN'CX is isomorphic
to 3°SN'CX in the category Ho(S(Sm)) • Now it is easy to check that 3sSN'X
is isomorphic to ss(X) and 3°SN'CX is isomorphic to ssc(X) in the category

S(SM).

Remark. From the definition of ssc(X) and SP(Q-X), it is clear that ssc(X) =

SP(Q - X).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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To define invariants for the strong shape category, consider the following

functors:

St Sh(CM) —v-* Ho(pro SS) -^+ Ho(S(Sm)) -s— Ho(SS) ,

where St Sh( CM) is the strong shape category for compact metrisable spaces
_p

and M is the monoid 3°c* . Recall that we also use the notation U3°R = 3°   .

We also note that a base point * of a compact metrisable space determines a

base point of ~3°  VX .

Definition 1. The n3°-homotopy groups of a pointed compact metrisable space
are defined by

af (X) = nq(WRVX)

and the //^-homology groups of X (nonpointed) by

Hf(X) = Hq(3*RVX).

Remarks. (1) The n3°-homotopy groups nf(X)  are isomorphic to the "in-

ward" groups °-nq(X) of Quigley [Quig, P.6].
_ _p _

(2) Notice that n and 3° commute; that is, nq3° VX = 3°nqVX, where

nq VX denotes the homotopy progroup pro nq VX.

(3) In general H and W do not commute; that is, Hq~3PRVX si 3*HqVX,
where Hq VX denotes the pro-abelian group pro Hq VX.

(4) To define homology theories, we can consider functors into a category of

simplicial objects in an abelian category. For instance, the free abelian functor

/: Set -+ Ab induces natural functors /: SS —> SA, f: pro SS -* proS^,

where SA is the category of simplicial abelian groups. We also have the free

functor /: S(S^>C*) —> S(S^cZ), where S(A&>cz) denotes the category of sim-

plicial objects in A&clj (Ab = A). Therefore we have the following simplicial
objects to define homology of a prosimplicial set X:

(a) fU3°RX in SA,
(b) Uf3BRX in SA,
(c) U3>RfX in SA,
(d) f3>RX in SAM,
(e) 3>RfX in SA&cZ,
(f) fX in pxoSA.
For the cases (c) and (e) we have that H and 3° commute. The homology

in cases (d) and (e) has a natural structure as a 3scZ-module. Recall that 3°cZ

is the ring of locally finite matrices modulo the ideal of infinite matrices, see

[F-W].
An immediate consequence of the definition is that the /A^5-homology sat-

isfies the Hurewicz theorem for the inward groups of Quigley.

Theorem 1. Let X be a compact metrisable space and assume that X is Qn'-0-

connected (Qn'0(X) = 0). Then there is a canonical homomorphism Qnq(X) ->

Hf(X) such that

(1) For q = 1, Qn\(X) -» Hf(X) is the abelianization of Qn[(X).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



406 L. J. HERNANDEZ PARICIO

(2) If X is Qn'-(n-l)-connected, n>2 (that is, Qn'q(X) = 0, q < n = -1),

then Qn!(X) —> Hf(X) is an isomorphism and QnIn+l(X) -y Hf+l(X) is an
epimorphism.

Proof. It suffices to apply the standard Hurewicz theorem to the simplicial set

3*RVX.

Remark. There are other homologies that satisfy Hurewicz theorems for the

inward groups of Quigley. For instance, consider the H3°/-homology groups,

Hff(X) = Hq(WRfX).
It is also interesting to analyse the family of invariants obtained when one

considers the commutative diagram

Ho(tow SS)

Ho(pro SS) -—* n0(S(SM)) -=r-*- Ho(SS)
3? * sh

For a compact metrisable space the prosimplicial set VX is isomorphism to

a tower of simplicial sets; then holim VX = lim* VX Si Fsb3BRVX. That is,

lim* VX is a sub-simplicial set of 7?RVX. The inclusion lim* VX C 3*RVX

induces many relations between the homotopy invariants of lim* VX and the

invariants of 3°  VX.

Definition 2. The nF3°-homotopy groups of a pointed metrisable space are

defined by

n^(X) = nq(Fsh3>RVX)

and the HF36-homology groups of X (nonpointed) by

Hf*{X) = Hq(F*0>*VX).

Remarks. (1) The aF^-homotopy groups nq^(X) axe isomorphic to the ap-

proaching groups Qnq(X) defined by Quigley [Quig, P.6].
(2) The functors nq and Fsn do not commute. These are spaces X such

thata^Fsh^^FS £ Fshnq3sRVX. Notice that Fshnq3>RVX Si Fsh3>nqVX 2

limnQVX is isomorphic to the Cech homotopy group nq(X). Therefore the

Fn3"-homotopy groups of X, Fnf(X) — F^nq3°VX are up to isomorphism

the Cech homotopy groups.
(3) We can consider the following simplicial objects, in different abelian cat-

egories, associated with a prosimplicial set X.

(a) fFsh3>R = /lim** in SA ,

(b) Fshf3BRX in SA,

(c) Fsh3°RfX = limRfX in SA.
The //FJV-homology groups (or //lim/) H**f(X) = Hq(F^3°RfX) are

the strong (or Steenrod) homology groups sHq(X); see [E-H, page 208], [Co]

and [P.4]. We can also consider F3>//-homology groups FS°Hq(X) =Fsh3BHqX

= UmHqX = lim pro HqX = Hq(X) which are isomorphic to the Cech homol-

ogy groups.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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There are theorems of Hurewicz type for the approaching groups Qnq(X)

of Quigley and the strong (Steenrod) homology groups sHq(X); see the paper
of Kodama and Koyama [K-K]. We can also prove that the HF3°-homology

groups satisfy a Hurewicz theorem for the approaching groups of Quigley.

Theorem 2. Let X be a compact metrisable space and assume that X is °-nA-

0-connected (that is, QnA(X) = 0). Then there is a canonical homomorphism

QnA(X) -» HF^(X) such that

(1) for q = 1, Q-nf (X) -» HF^(X) is a abelianization of QnA(X), and

(2) if X is °-nA-(n - l)-connected, « > 2 (that is, QnA(X) = 0, q<n-l),

then QnA(X) -» HF9°(X) is an isomorphism and QnA+l(X) -> ^nF+f(X) is an
epimorphism.

Proof. This is a particular case of the standard Hurewicz theorem.

If Xis a compact metrisable space, then VX is isomorphic to C'X in
Ho(pro SS). If the covering dimension of X is finite, then C'X is isomorphic

to a tower of finite simplicial sets of dimension less than or equal to the covering
dimension of X. It is not hard to check that a tower of finite simplicial sets of

dimension < n (for some n) is an .^-cofibrant object in the sense of Definition

9.1. Therefore if X is a compact metrisable space and X has finite covering
dimension we have that VX is an J?-cofibrant object. As a consequence of

the Whitehead theorem proved in §9, we obtain the following version of the

Whitehead theorem for the strong shape category.

Theorem 3. Let X, Y be compact metrisable spaces with finite covering dimen-

sion. Assume also that X and Y are Qn' -0-connected (Gag = 0). A strong

shape morphism f:X^Y (that is, a map f: VX -> VY in Ho(pro SS)) is
a strong shape isomorphism if and only if f*: Qnq(X) —► Qnq(Y) is an isomor-

phism for q>\.

Remarks. (1) For a compact metrisable space X, let a = Qn\(X) be the fun-
damental inward group and let A be a a-module. Define the cohomology of

X with twisted coefficient in A by Hq(X; A) = Hq(3*RVX; A). Then in

Theorem 3 we can give the following equivalent condition:

(i) /*: Qn!q(X) —y Qn\(Y) is an isomorphism, and

(ii) /*: Hq(Y;A) -» Hq(X;A) is an isomorphism for q > 0 and any
twisted coefficients A. _p

(2) The functors F^^1* and 3s can be used to transform many notions
and results of standard homotopy theory into strong shape notions and results.

We have just included some canonical examples about Hurewicz and Whitehead
theorems.

Definition 3. A compact metrisable space X is said to be 3°-movable if VX
is ^-movable (see Definition 9.2).

An immediate consequence of Corollary 9.2 is the following Whitehead the-
orem

Theorem 4. Let X and Y be compact metrisable spaces andassume that X and

Y have finite covering dimension and that X and Y are 3°-movable. Suppose
also that X, Y are h-0-connected (h0 = 0). If f: X -+ Y is a strong shape
morphism the following conditions are equivalent:License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(i) / is a strong shape isomorphism,
(ii) nq(X) —yfcq(Y) is an isomorphism for q > 1,

(ii) QnA(X) —> Qnq(Y) is an isomorphism for q > I.
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