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SUMMARY

A worldwide innovative method to discriminate grapevine clones is presented. It is an alternative to
ampelography, isozyme and DNA analysis. The spectra and their first and second derivatives of 201 bands in
the visible and near-infrared wavelength range between 634 and 759 nmwere used as inputs to a classifier created
using partial least squares. The spectra were acquired in the laboratory for the adaxial side of the apical part of
the main lobe of fully hydrated grapevine leaves. The classifier created allowed the separation of 100 leaves of
the Cabernet Sauvignon (Vitis vinifera L.) variety into four clones, namely CS 15, CS 169, CS 685 and CS R5,
comprising 25 leaves each. The percentages of leaves correctly classified for these clones were 98·2, 99·2, 100
and 97·8%, respectively, when the classifier input was the second derivative of the normalized spectra. These
percentages were determined by Monte-Carlo cross-validation. With the new method proposed, each leaf of a
given variety can be classified in a few seconds according to its clone in an environmentally friendly way.

INTRODUCTION

Grapevine varieties are long-living, woody perennial
plants,whichareasexuallypropagated.Vegetativepro-
pagation for many generations allows the appearance
and accumulation of somatic mutations, which are
the basis for selection of new clones that may exhibit
differences in various characteristics such as vigour,
berry and cluster weight, yield production, resistance
to plagues and diseases and enological potential,
among others.
Tools for distinguishing grapevine clones could be

very useful to ensure quality management and tracking
of grapevine propagation material (Blaich et al. 2007).
Clone discrimination was initially attempted using
descriptive ampelography (Galet 1979), which relies
on plant morphological features, as well as isozymes,

which target biochemical traits (Schläpfer & Fischer
1998), without much success. Nowadays, the state-
of-the-art methods for clone fingerprinting are based
on DNA analysis procedures such as simple sequence
repeats (SSR) (Regner et al. 2000), amplified fragment
length polymorphism (AFLP) (Cervera et al. 2000) or
random amplification of polymorphic DNA (RAPD)
(Regner et al. 2000). The discrimination power of these
techniques has been very variable in the literature,
with both positive (Cervera et al. 2000; Imazio et al.
2002; Fanizza et al. 2005; Wegscheider et al. 2009;
Blaich et al. 2007; Cretazzo et al. 2010; Anhalt et al.
2011) and negative results (Konradi et al. 2007;
Moncada & Hinrichsen 2007) depending on the
variety and methodology used. In addition, microsate-
llites, which are widely used for variety identification,
have also been capable of discriminating grapevine
clones but only on specific occasions (Silvestroni
et al. 1997; Kozjak et al. 2003; Regner et al. 2006).
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These DNA-based methods present problems of
repeatability among laboratories and are complex,
slow and time-consuming, preventing large-scale use.
These drawbacks create the necessity of developing
new methods that mitigate these problems in order to
make clone discrimination easy and accessible to
grape growers. Among the possible new methods for
addressing grapevine clone discrimination, the com-
bination of spectroscopy and machine learning tech-
niques, which involves computational processes of
discovering patterns in large data sets, is a promising
and innovative approach.

Spectroscopy is the analysis of how electromagnetic
radiation interacts withmatter at different wavelengths.
Hyperspectral imaging is a spectroscopic technique
that allows gathering information for several hundred
wavelength bands on various spatial positions. The
radiation that reaches the leaf surface may afterwards
be reflected, absorbed or transmitted. The nature and
fractions of reflection, absorption and transmission
depend on the wavelength of radiation, angle of inci-
dence, surface roughness as well as optical properties
and biochemical contents of the leaves (Vogelmann
1993). In the present work, only reflectance was used.

The spectral reflectance properties of plant leaves
are determined by the absorption and scattering events
occurring within the leaf (Grant 1987). In the visible
range (VIS: 400–700 nm), leaf pigments are the main
factors responsible for leaf reflectance, whereas in
the near infrared (NIR: 700–1350 nm) and short-wave
infrared (SWIR: 1400–3000 nm) ranges, the reflec-
tance signature of leaves is determined by structural
processes (leaf morphology) and leaf water content
(Peñuelas et al. 1993), respectively. The transition from
low reflectance at VIS to high reflectance at NIR is
called the red-edge (Collins 1978). Intrinsic differences
in the leaf content of pigments among clones of a given
species have been reported in previous work (Taylor
et al. 1992; Conforto et al. 2011; Lin et al. 2011).
Similarly, a histological study of leaves of several
clones of cv. Albariño (Vitis vinifera L.) evidenced
significant differences in the characteristics and thick-
ness of their spongy mesophyll (Alonso-Villaverde
et al. 2011). In this way, the distribution of air spaces
and the arrangement and size of cells in the mesophyll
have a strong impact on NIR reflectance (Gausman
et al. 1970). Leaves having a compact mesophyll layer
with fewer air spaces would allow more transmission
and less radiation scattering, and would lead to
increased NIR reflectance from the adaxial leaf surface
(Terashima & Saeki 1983; Slaton et al. 2001).

Partial least squares (PLS) is a machine learning
regression and classification method. Machine learn-
ing is the discipline that studies the development of
algorithms that provide machines the ability to
automatically learn from new examples. Machine
learning and spectroscopy have already been used
separately for clone determination. Likewise, machine
learning algorithms have been used to distinguish
clones from Eastern Cottonwood (Pande 2011), grapes
(Ferrandino & Guidoni 2010) or cocoa (Engels 1983)
using chemical or morphological features measured
through complex and slow methods. Spectroscopic
measurements in their turn have been used to dis-
tinguish clones of the rubber plant (Osman et al. 2010)
and jojoba (Gayol et al. 2009). In the above works, the
discrimination power of machine learning was not
necessary because clone separation was based on a
single feature, such as themaximum reflectance values
of plant seeds, in the case of rubber (Osman et al.
2010), or the concentration of a specific chemical
compound in the case of jojoba (Gayol et al. 2009).
The maximum reflectance values are not discrimina-
tive for grapevine clones and the Gayol et al. (2009)
method requires a conventional calibration to deter-
mine the chemical compounds concentration, a cali-
bration which is avoided with the new method
proposed in the current paper.

The present work proposes an innovative alternative
to ampelography, isozyme and DNA analysis for
grapevine clone discrimination, consisting of the com-
bination of spectroscopic (hyperspectral imaging) and
machine learning algorithms (PLS) to classify grapevine
clones using the leaves. Partial least squares was used
to create the clone classifier, i.e. the mathematical
function that transforms the hyperspectral data into a
given ‘clone type identification’. The proposedmethod
aims at discriminating grapevine clones by combining
the processing and analysis power of machine learning
algorithms with the simplicity of gathering sample
information using portable spectroscopes.

METHODS AND MATERIALS

Leaf samples

Leaves of grapevines of V. vinifera L. cv. Cabernet
Sauvignon were collected on 5 October 2011. A total
of 100 leaves from four clones named CS 15, CS 169,
CS 685 and CS R5 were collected in the field (Vitis
Navarra nursery, Tafalla, Spain) and Bodegas Pago de
Larrainzar (Estella, Spain) (Table 1). The leaves, 25 per
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clone, were collected from 48 different vines, 12 vines
per clone, at various maturity stages or shoot node
positions, to have a representative set of leaf samples
per clone. After collection, the leaves were immedi-
ately submerged in deionized water at 10 °C. This was
intended to avoid desiccation as well as to bring all
the leaves to a similar water status corresponding to
fully hydrated leaves with approximately 100% rela-
tive water content. The leaves were then transported in
portable refrigerators to the University of Rioja and
were kept in cold water for 18 h. After this time, each
leaf was blotted dry and a 2 cm diameter disc was
cut in the apical part of the main lobe. Hyperspectral
images of the leaf discs were taken immediately on the
adaxial side of the fully hydrated leaf discs.

Experimental setup and image acquisition

The experimental setup (Fig. 1) was composed of
a hyperspectral camera, lighting and a white refer-
ence made of Spectralon® (Specim, Oulu, Finland).
Spectralon® has the highest diffuse reflectance of any
known material or coating over the ultraviolet, visible
and near-infrared regions of the spectrum, allowing
measurement of the total intensity of light that was
incident on the leaf surface. The hyperspectral camera
consisted of a JAI Pulnix black and white camera (JAI,
Yokohama, Japan) that registered the image and a
Specim Imspector V10E (Specim, Oulu, Finland) spec-
trograph that decomposed the light into its composing
wavelengths. The camera also comprised a lens. The
black and white camera image size was 1040×1392
pixels. The 1040 pixels corresponded to the same
number of wavelength bands from 380 to 1028 nm,
with each band being approximately 0·6 nmwide. The
1392 pixels were relative to the spatial dimension and
each corresponded to a width of 79 μm.
In the present work, only the visible and part of the

near-infrared regions, between 634 and 759 nm, and
corresponding to 201 bands, were used. The wave-
length region used was strongly narrowed to facilitate

the potential development of cheap dedicated equip-
ment after the current work. Nevertheless, the narrow-
ing could not be too extreme or it would prevent the
development of good classifiers due to discarding im-
portant information. The region was chosen to include
the low red chlorophyll reflectance and the red-edge
which constitute important features of the spectral
response of vegetation.

For each leaf sample, 30 hyperspectral images
were taken. Image acquisition was done using
Coyote software (Version 2.2.0, JAI, Japan) at a
frequency of eight images per second. The hyperspec-
tral camera was placed at 420mm from the sample:
spectral calibration was performed using the manu-
facturer procedure (EHE 2006) and spatial calibration
using a black and white target. The lighting used com-
prised four 20W, 12 V halogen lamps and two
40W, 230 V reflector lamps from Philips (Spotline,
Philips, Eindhoven, The Netherlands). The lamps were
chosen to provide the best possible illumination over

Table 1. Designation of Cabernet Sauvignon (V. vinifera L.) clones used in this study and information about
their origin and selection

Feature

Cabernet Sauvignon clones

15 169 685 R5

Selection ENTAV 1 ENTAV 2 ENTAV 157 VCR R5
Place of origin Gironde (France) Gironde (France) Atlantic Pyrenees (France) San Michelle all’Adige (Italy)
Agreement Yr 1971 1972 1980 1988

Hyperspectral
camera

Black & white
camera

Spectrograph

Spotline
lamp

Halogen
lamp

Lamp
holder

Spectralon

Leaf

Lens

Fig. 1. Experimental setup for hyperspectral imaging of
leaves.
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the wavelength operation range of the hyperspectral
camera. They were powered by direct current power
supplies to avoid image flickering. The dimensions of
the lamps holder were 300×300×175mm3 (length×
width×height). The measurements were done in a
dark room at 20 °C.

Reflectance determination

The experimental setup allowed determination of the
samples’ reflectance (R). The reflectance spectrum
provides the percentage of light that is reflected by a
leaf relative to the total intensity of light that is incident
on the leaf for each wavelength (λ) measured.
In hyperspectral images the reflectances were deter-
mined for each spatial position x. Reflectance for a
certain position x and wavelength λ was determined
according to Eqn (1):

R(x, λ) = LI(x, λ) −D(x, λ)
SI(x, λ) −D(x, λ) (1)

where LI(x,λ) is the intensity of light coming from
the leaf, SI(x,λ) corresponds to the total light intensity
that reaches the leaf and D(x,λ) is the camera’s
dark current. SI(x,λ), the reference for reflectance
estimation, was measured using the white reference
made of Spectralon®. The dark current was measured
with the camera lens covered and corresponds to
inherent electronic noise. Its value must be discounted
from both the leaf and Spectralon® signals because
it is independent from these signals and would distort
the real reflectance values. The parameters LI(x,λ),
SI(x,λ) and D(x,λ) were calculated from averaging the
30 hyperspectral images per leaf sample to minimize
measurement noise. The reflectance values were av-
eraged over all the spatial positions measured on the
adaxial sides of the leaf discs. Finally, the values were
normalized to a range of 0–1, originating NormR. This
way, clone discrimination was based on spectra
shape and not on absolute reflectance values. As
an input to the classifiers, besides NormR, it was also
used the first derivative (NormR(1)) or the second
derivative (NormR(2)) of the normalized reflectance.
The two derivatives were calculated using the follow-
ing equations (Butt 2010):

where i is the wavelength at which derivatives are
being calculated and i +1 refers to the hyperspectral
camera wavelength band after i.

Partial least squares

Partial least squares was used to develop the classifiers
that provided a clone class for hyperspectral reflec-
tance spectra of leaves. This method constructs a
model that transforms independent variables, in
the present case, the leaves reflectance values, or the
reflectance derivatives, into a dependent variable, the
clone class. It works by transforming the independent
variables into a new set of variables that explain to the
largest possible extent the covariance between inde-
pendent and dependent variables (Geladi & Kowalski
1986). A small percentage of new independent vari-
ables, relative to the number of initial variables, is
usually able to account for most of the variability in the
data. The final step consists of a regression providing
the coefficients that allow transforming the indepen-
dent variables into the dependent ones. The number
of new variables, also called components, varied from
1 to 79 for each classifier to determine the optimal
value which corresponded to the lowest root mean
squared error (RMSE) for a validation set.

Quaternary classifiers were created to discriminate
the Cabernet Sauvignon (V. vinifera L.) leaves, mean-
ing that a single classifier was capable of discriminat-
ing the four clones under study. The classifier inputs
were the raw, first derivative and second derivative of
the normalized reflectance. The classifiers had four
output variables, one for each clone to be identified.
Ideally, for a leaf of a certain clone, the classifier output
variable assigned to the clone had value one and the
remaining variables had value zero. A leaf was attrib-
uted to the clonewhose corresponding output variable
presented the largest value.

All calculations were done using Matlab (Release
2010a, MathWorks, Natick, USA).

Validation

The validation process aimed at verifying that the PLS
model was capable of providing good results for data

NormR(1) = −NormRi+2 + 8 NormRi+1 − 8 NormRi−1 + NormRi−2

12
(2)

NormR(2) = −NormRi+2 + 16NormRi+1 − 30NormRi + 16NormRi−1 − NormRi−2

12
(3)
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that were not employed in its creation, i.e. that the
model was able to generalize. In the present work, the
validation method employed was Monte-Carlo cross-
validation where multiple training and validation sets
were randomly selected from the available data (Arlot
& Celisse 2010). A PLS model was developed using
each pair of training and validation sets; each of these
PLS models is called a repetition. In each repetition, a
certain leaf spectrum cannot be assigned to both
training and validation sets. The final validation result
corresponds to the average of the validation results for
all repetitions. This methodwas used due to the natural
variability of the leaf features which originated differ-
ent training and validation results as the training and
validation sets composition varied.
The validation of the different types of classifiers’

was done using 100 Monte-Carlo cross-validation re-
petitions per classifier type. Each repetition used 80
leaves for training and 20 for validation, with each one
of the four clones contributing with 20 leaves for
training and five leaves for validation.

RESULTS

Clone discrimination was based on the differences in
the shape, variation and curvature of the normalized
reflectance curves. The variation and curvature were
calculated using the first and second derivatives of the
normalized reflectance, respectively. The minimum
and maximum values of the normalized reflectance
spectra and of the first and second derivatives of these
spectra are depicted in Figs 2(a), (b) and (c), res-
pectively. For practically all the cases shown, the
maximum reflectance values for the different clones’
spectra were almost coincident. The same happened
with the minimum values. Consequently, there were
no strong differences between clones’ spectral signa-
tures, but overlapping among their spectra. Only in the
case of the normalized reflectance of CS 15 did the
maximum values appear considerably different from
those of all the other three clones, but the overlapping
still existed. The red-edge was determined for each
clone as the maximum values of the first derivative of
the non-normalized reflectance spectra in the wave-
length region below 800 nm. It was found at 758, 753,
745 and 754 nm for clones CS 15, CS 169, CS 685 and
CS R5, respectively.
Figure 3 depicts the distribution of percentages

of correctly classified leaves in the validation set of
100 Monte-Carlo repetitions. The results are shown
for three different classifier inputs, namely, raw, first

derivative and second derivative of the normalized
reflectance which are designated by the prefixes ‘r’,
‘d1’ and ‘d2’, respectively. A total of 12 box plots are
shown in Fig. 3, four per classifier, with each box plot
corresponding to one of the clones to discriminate.
Table 2 shows the average results of the Monte-Carlo
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Fig. 2. Envelope (minimum and maximum value) curves
containing: (a) the normalized reflectance; (b) the first
derivative of the normalized reflectance; and (c) the second
derivative of the normalized reflectance. The curves may
have the same colour for different clones because the
values were similar.
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repetitions from Fig. 3. These average results were the
final validation results of the classifiers. The results in
Fig. 3 and Table 2 showed an improvement in the
classification results when the classifier input changed
from normalized reflectance to the first derivative and
then to the second derivative. Only in the case of CS
R5 was the classification percentage better for the first
derivative of the normalized reflectance (‘d1-CS R5’)
than for the second derivative (‘d2-CS R5’). Overall,
the best classifier input was the second derivative of
the normalized reflectance because it allowed the best
mean classification percentage for the four clones to be
obtained. The mean classification percentage for each
clone improved as the number of repetitions with
correct classification percentages smaller than 100%
was reduced. For example, from the 12 box plots, only
‘r-CS 169’ and ‘r-CS 685’ presented 25th percentiles of
80%; for ‘d1-CS 169’ and ‘d1-CS 685’, which showed
better mean classification percentages than ‘r-CS 169’
and ‘r-CS 685’, the 25th percentile reached 100%.
Another example involved the classifiers whose input

was the normalized reflectance. Their 5th percentile
whiskers were at a classification percentage of 60%
while this percentile was equal to or larger than 80%
for the first and second derivatives of the normalized
reflectance, which presented better mean results.
Using the same rationale it is possible to conclude
that the decrease in correct classification percentage
from ‘d1-CS R5’ to ‘d2-CS R5’ was caused by a
decrease of 5th percentile whisker from 100% down to
80%. The classification percentage median, indicated
by the grey arrows, was 100% for all box plots,
meaning that 50% of the repetitions yielded correct
classification results of 100%. The best classifier input
allowed correct classification percentages of 98·2,
99·2, 100, 97·8% for the leaves from clones CS15, CS
169, CS 685 and CS R5, respectively.

Figure 4 shows the distribution of the root mean
squared error (RMSE) values obtained in the validation
sets for the 100 repetitions of the Monte-Carlo cross
validation. Results are shown only for the classifiers
with the best input, the second derivative of the
normalized reflectance. Figure 4 shows four box plots,
each one corresponding to an output variable of the
classifier and to the clone associated with the variable.
The correspondence between the output variable and
the clone is pertinent because, for example, when the
first output variable presented a value close to one
there was a high probability that the leaf belonged to
clone CS 15. From these results it can be observed that
it was harder to determine whether a leaf belonged to
clone CS 169 or CS 685 than to clone CS 15. In
addition, CS R5 was the clone to which leaf allocation
was hardest, as the RMSE mean value for CS R5 was
the largest and close to 0·21. The 75th percentile of the
RMSE was smaller than 0·24 for all box plots and the
largest RMSE was smaller than 0·3; these values are
relatively small when considering that the optimal
values, of the classifier output variable, for belonging
or not to a clone are one and zero, respectively.
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Fig. 3. Correctly classified leaf percentage for the vali-
dation set in the 100 repetitions of the Monte-Carlo cross-
validation method for the four clones to be discriminated.
The classifiers may have three inputs: (a) the normalized
reflectance spectra, prefix ‘r’; (b) the first derivative of the
normalized reflectance, prefix ‘d1’; and (c) the second
derivative of the normalized reflectance ‘d2’. The box
represents the 25th, 50th and 75th percentiles, while
the whiskers represent the 5th and 95th percentiles. The
crosses stand for the 1st and 99th percentiles and the
minimum and maximum values. When the 1st or 99th
percentile coincides with the minimum and maximum
values, respectively, only one cross is visible. The dark
square represents the mean value. The arrows point to the
median line.

Table 2. Mean percentage of correctly classified
leaves in the validation sets of the Monte-Carlo cross-
validation method

CS 15 CS 169 CS 685 CS R5

Normalized reflectance 94·4 92·4 91·4 94·2
Normalized reflectance 97·4 95·8 97·8 99·2
1st derivative
Normalized reflectance 98·2 99·2 100 97·8
2nd derivative
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Consequently, the classifier output values were
relatively far from the midway value of 0·5 which
could lead to unreliable classification.
Figure 5 shows the variance of the second derivative

of the normalized reflectance and of the clone classes,
in the whole sample set, that is explained by the PLS
components. Considering the second derivative, with
20 components, only 59% of the variance was

explained. The amount of variance explained in-
creased slowly with the number of components. With
respect to the clone class, the same 20 components
explained 98·5% of the variance. Only three compo-
nents explained 80·9% of the variance and nine
components were necessary to explain 94·1%. For
more than nine components, the curve increased at a
lower rate than for less than nine components.

The distribution of the best number of components
in the 100 Monte-Carlo repetitions carried out for the
classifiers with the best input, the second derivative of
the normalized reflectance, is presented in the histo-
gram of Fig. 6. The mean value of components was
nine and this value had the largest frequency; how-
ever, seven components presented only a slightly
smaller frequency. There were no classifiers with more
than 14 components. With nine components, only
36·9% of the variance of the second derivative of the
normalized reflectance was explained. However, this
unusually small percentage was enough to create
classifiers that presented large correct classification
percentages. The small number of components relative
to the number of training samples, which was 80,
helped the classifier to have good generalization
ability.

Figure 7 depicts the loadings of the PLS components
of the whole data set when the input was the second
derivative of the normalized reflectance. These load-
ings show the importance of each wavelength to the
classification model. Figure 7 shows the loadings of
nine components which were the average values of
components employed by the classifiers. The variation
in loading values from one wavelength to the next was
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square represents the mean value.
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most probably caused by the variation in the values
of the second derivative of the normalized reflectance.
In the first and second components (Fig. 7(a, b)) there
were peaks over the whole wavelength range whereas
in the third component (Fig. 7(c)) the loadings for
wavelengths smaller than 720 nm became smaller
than the loadings for wavelengths larger than 720 nm.
This tendency was more evident for the loadings
of components four to nine (Fig. 7(d to i)). The
loadings for wavelengths between 640 and 670 nm
and between 720 and 759 nm stood out, which
suggests that these wavelengths were particularly
useful for clone discrimination. Nevertheless, mainly
in the first three components, the whole range
between 634 and 759 nm was employed in the com-
ponents formation and was relevant to the classifi-
cation model.

DISCUSSION

Leaf spectral reflectance data, which contains infor-
mation regarding differences in leaf traits, have been
employed in species discrimination (Castro-Esau et al.
2004; Asner et al. 2008; Sánchez-Azofeifa et al. 2009;
Burkholder et al. 2011; Durgante et al. 2013) and may
also potentially contribute to clone differentiation
within a given genotype. In grapevines, Lacar et al.
(2001) and Ferreiro-Armán et al. (2006) showed the
feasibility of spectral imaging on leaves to discriminate
successfully among grapevine varieties. Varietal
discrimination of grapevines by spectroscopy is an
important achievement, but the possibility of clone
discrimination within a given grapevine variety from
spectral imaging of leaves would be one step forward.
In the present study, the discrimination of a Cabernet
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Sauvignon clone based on leaf spectroscopy in the
visible and near-infrared range, among a group of
four different clones, was achieved with a percen-
tage of correct classification which exceeded 97·8%
for the four tested clones, CS 15, CS 169, CS 685 and
CS R5.
The wavelength range employed for the classifiers

creation was reduced markedly (between 634 and
759 nm) to facilitate the potential subsequent de-
velopment of cheap, dedicated equipment for clone
discrimination at a commercial level. This is possible
because the narrow range allows equipment com-
plexity to be reduced and the chosen wavelength
values may facilitate the development of good lighting
at low cost as well as the use of efficient and cheap
light sensors. The wavelength range used covered part
of the red reflectance region, characterized by large
absorption by chlorophylls (from 634 to 690 nm)
and the red-edge, typically occurring at wavelengths
between 690 and 740 nm depending on leaf surface
variability (M. Dockray, personal communication).
The use of the chlorophyll absorption region was
pertinent because intrinsic differences in the leaf con-
tent of pigments among clones of a given species have
been reported in previous works on the tea plant
(Taylor et al. 1992), rubber tree (Conforto et al. 2011)
and camphor tree (Lin et al. 2011). The red-edge was
an interesting region because it was where the
normalized reflectance values presented the largest
variance, when the whole wavelength range between
380 and 1028 nm was considered. The first and
second derivatives of the normalized reflectance
also presented considerable variances at the red
edge. In fact, the loadings for classifiers with the
second derivative of the normalized reflectance as
an input were larger at the red-edge region than in
the remaining wavelengths in the range between 634
and 759 nm. The red-edge position varied for the
four Cabernet Sauvignon clones studied, being
found between 745 and 758 nm, probably because
increased chlorophyll concentration shifted the red-
edge to longer wavelengths (M. Dockray, personal
communication). In view of all this, the range used in
classifier creation puts focus on the influence of
chlorophyll over the reflectance spectra. However,
since the transition at the red-edge from chlorophyll
absorption to within-leaf scattering is not abrupt, the
developed classifiers probably also considered some
information regarding the scattering.
Some of the identified sources of spectral vari-

ability include leaf age, adaxial and abaxial leaf

surfaces, sun exposure and water content (Ribeiro
da Luz 2006). From these, the first three factors
would be more important in the visible range than
the leaf water content. However, with the aim of
avoiding any interference from differential leaf hy-
dration status, all sampled and imaged leaves were
taken to full hydration and since all images were
taken from the adaxial sides, no spectral variability
due to the leaf surface side was expected. Regarding
leaf age and sun exposure, for each clone leaves
were collected at different node positions from the
basal to the apical parts of the shoots and at both
sides of the canopies, in order to cover a wide range
of spectral variability within a given clone and help
to increase the generalization ability of the classifiers
created.

The combination of the second derivative of the
normalized reflectance was highly efficient in extract-
ing the information necessary for clone discrimination.
In fact, the normalized reflectance, as well as its first
derivative, seemed to contain spurious information
that was ‘confusing’ the classifiers and lowering their
classification efficiency. Moreover, the small per-
centage of variability from the second derivative of
the normalized reflectance, 39·6%, that was necessary
to create highly efficient classifiers also suggests
that much of the information contained in the leaf
reflectance is not important to distinguish the four
clones. However, it is possible that the information that
was not useful to discriminate the clones in the current
analysis may be relevant for discriminating other
clones. The low dispersion of classification percentage
results in the validation sets from the Monte-Carlo
repetitions suggests that the classifiers created are
robust.

The results obtained in the present work evidence
the potential capability of local spectroscopy com-
bined with PLS techniques to successfully discriminate
among clones of a given grapevine variety. Though
preliminary, the results are completely innovative
and promising, and constitute the starting point for
further research involving increased number of clones
per given variety, increased number of varieties and
growing sites, in order to create a wide and more
complete database of classifiers. This database
could be further implemented for commercial pur-
poses, providing the grape and wine industry, includ-
ing nurseries, wineries, grape growers and suppliers
with an automatic, fast, environmentally friendly
(solvent-free) and reliable tool for grapevine clone
discrimination.
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CONCLUSIONS

The present work suggests that it is possible to discri-
minate among grapevine leaves of different clones of
Cabernet Sauvignon (V. vinifera L.) variety by using
PLS to analyse hyperspectral imaging data taken in a
narrow range of the visible and near-infrared spectrum.
This narrow range, which includes strong chlorophyll
absorption and the red-edge, was used to facilitate
the future development of affordable dedicated spec-
troscopes. Although further research including more
clones per variety, increased number of grapevine
varieties and sites is needed, the results obtained in this
work seem to warrant the use of this new method
based on leaf spectroscopy and PLS analysis for
grapevine clone discrimination.
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