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A. Joyal initiated the dimension theory of  rings in a topos. Joyal's notion of Krull dimension 
of lattices and rings was considered by the author, who has shown that dim K[X] = 1 for any field 
K in a topos .~/. The basic aim of this paper is to prove that dim R[X] = 1 for any regular ring 
R in Y, that is by working in commutative algebra without choice and excluded middle. Given 
a regular ring R, let E be the boolean algebra of idempotents of  R, and ~ = sh(E) the topos of  
sheaves over E with the finite cover topology. The Pierce representation R of R is a filed in ~', 
so that dim R[X] = 1 and this implies dim R[X] = 1 by using preserving properties of the global 
sections functor F :  # - ,  ~. Section 1 deals with lattices in the topos ~ = sh(E) of  sheaves over a 
boolean algebra E with the finite cover topology. We characterize lattices in # as lattice homo- 
morphisms E--,D, and we consider the dimension of lattices in this form. In Section 2 we describe 
rings in # as boolean homomorphisms E-,E(A). Here, we discuss the Pierce representation and 
polynomials. The spectrum of a ring is considered in Section 3, which ends with the aim theorem. 

Introduction 

In several talks during 1975, A. Joyal initiated the dimension theory of rings in 
a topos. Later, Joyal's notion of Krull dimension of  (distributive with 0 and 1) lat- 
tices and (commutative and unitary) rings was considered by the author [1, 2] who 
has shown that dim K[X] = 1 for any field K (geometric field in [3]) in a topos b ~ 
(with natural numbers object). The basic aim of this paper is to prove that 
•lm R[X] = 1 for any regular ring R in •, that is by working in commutative algebra 
without choice and excluded middle. 

Given a regular ring R, let E =  E(R) be the boolean algebra of idempotents of R, 
and ~' = sh(E) the topos of sheaves over E with the finite cover topology. The Pierce 
representation ~ of R (see [8]) and [7] for a stalk-free approach) is a field in #, so 
that dim R[X] = 1 and this implies dim R[X] = 1 by using preserving properties of 
the global sections functor F :  # - ,  ~. 

The plan of this paper is as follows. Section 1 deals with lattices in the topos 
= sh(E) of sheaves over a boolean algebra E with the finite cover topology. We 

characterize lattices in ~' as lattice homomorphisms E-,D, and we consider the 
dimension of lattices in this form. In Section 2 we describe rings in ~ as boolean 
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homomorphisms E~ E( A ) .  Here, we discuss the Pierce representation and poly. 
nomials. The spectrum of a ring is considered in Section 3, which ends with the aim 
theorem. 

An advance of  this paper was communicated in the Seminar on Category Theory 
and their Applications held in Bogotd, Colombia (August, 1983). Some of the 
results of Section 2 were our contribution to the Spanish-Portuguese meeting which 
took place in Salamanca, Spain (April, 1982). 

1. Boolean valued lattices 

Here we view a boolean algebra E as the category associated to its order, noted 
_E, which is a site with the f i n i t e  cover topology (first considered by Reyes [9] in a 
more general context) given by all finite coverings 

e = e l  v . . . v e n  

for each e ~E.  A functor 

D "  E°P- '* Y 

is a shea f  if for any covering e =  el v..-Ven and for any family 

ti ~ D(ei), 1 < i < n 

which verify 

D(eiAej  < ei)(ti) = D(eiAej  <- ej)( tj) , 

when i ~ j ,  there is a unique t ~D(e)  such that 

D(e i<  e)(t) = ti, 1 < i < n. 

Because the sheaf condition is applied to the empty covering of 0 ~E, note that 
D(0) = 1 (final object of Y). 

An important case of covering, called parti t ion,  is 

eiAej=O,  i ~ j .  

Then we write 

e = e i + . . . + e n .  

It is not hard to see that a functor D : E °p --* Y is a sheaf if and only if it satisfies 
the sheaf condition for partitions. Using induction, we arrive on the wen-known 

1.1. Lemma. A f u n c t o r  D : _E °p ~ Y~ is a shea f  i f  and  only i f  

(i) /9(0)= 1. 
(ii) For  any  parti t ion e = e I + e2 e E, the diagram 
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D(el) 

D(q) 

is a product, with the maps D(eiS e), i = 1,2. 

Let b(E) be the full subcategory of YEoP with objects all the sheaves. If we take 
~=2, the boolean algebra of two elements, then g(2)= % From now on, we shall 
consider a fixed boolean algebra E and we shall write & = C?(E). 

It is well known that the global sections functor 

I-: CiF-W, I-(D)=D(l) 

preserves arbitrary limits (in particular monomorphisms) because there is a geo- 
metric morphism d -I r. 

We are now interested in lattices in 8, that is, sheaves D such that D(e) is a lattice 
for each e E E and that the restriction maps D(el 5 e2) are lattice homomorphisms. 
All lattices in this paper are distributive and with 0 and 1 which are preserved by 
lattice homomorphisms. 

The following lemma is a particular case of [5, Lemma 4. l] since 8 is equivalent 
to the topos sh(X) of sheaves over the Stone space X= spec(E), and lattices are L- 
structures in the sense of Loullis. 

1.2. Lemma. Let D be a lattice in 6* and e E E. For any t E D(e) there is a global 
t’ E r(D) extending t. 

Proof. Take 1 = e + 1 e and (t, 0) E D(e) x D(- e); then use Lemma 1.1. q 

Note that the global t’ is uniquely extending t E D(e) and 0 E D(- e). In particular, 
given e E E, there is a unique S(e) = 1’ E r(D) extending 1 E D(e) and 0 E D(l e). 
Hence we have a map 

6: E+-(D).’ 

Since there is a bijection between the (isomorphic) product decompositions 
L=LI x L2 of a lattice and the boolean algebra C(L) E; L of the complemented 
elements of L, we see that 6(e) is the complemented element of r(D) corresponding 
to r(l)-D(e) xD(le). 
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1.3. Lemma. t5 is a lattice homomorphism.  

Proof. For i= 1, 2, 

D(el A e2 <-- 1)(iS(el)) = D(el A e2 < ei)D(ei <- 1)(tS(ei) ) = 1, 

SO that D(elAe2 < 1)(~(el)At~(e2))= 1. To prove 

~5(el) A J(e2) = J(el ^ e2) 

we also need D(-~ (el^e2)_< 1)(J(el)AJ(e2) ) =0.  But if we put t for the left-hand side 
of  the last equality and a=-~ (el^e2), then t e D ( a )  with a=-~eiV-~e2,  and for 
i = 1 , 2  

D(' ,  ei < a)( t) = D(-~ ei <- 1)(J(el)AJ(e2))=0 

since D(-~ei<_l)(J(ei))=O. Hence t = 0  by the sheaf condition. One can prove 
J(e l )vJ(e2)=J(e lve2)  similarly. [] 

From a lattice homomorphism f :  D - , D '  in ¢ we obtain a commutative diagram 

Y 
E 

\ 

and a functor 

/-'(D) 

r ( f )  

F(D' )  

: Lt(gO-~E-Lt 

where Lt(~ ") is the category of  lattices in 8 and E-Lt is the comma category of lattice 
homomorphisms (in ~ )  with domain E. If we forget (functor U) the E-structure, 
~b is the restriction of  F to lattices 

Lt (¢)  , E-Lt 

Lt 

1.4. Theorem. ¢~ is an equivalence. 

Proof. We shall prove (see [6]) that 
(i) ¢~ is full and faithful. 

(ii) Each lattice homomorphism A : E - ~ L  is isomorphic to ¢~(D) for some lattice 
D i n  ~. 
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For (i), given two lattices D, D’ in d with Q(D) =6, @(D’) = 6’ and a lattice 
homomorphism fi : r(D) -‘r(U) such that fo 6 = 8, we must prove that there is 
a unique lattice homomorphism f : D +D’ with f( 1) =f, . For any e E E we define 

f(e) : DW+D(e’), f@W = We 5 1 Nfi VI) 

where t’E r(D) is the unique global extension of (t, 0) E D(e) x D(l e). It is not diffi- 

&t to check that f(e) is a lattice homomorphism for any e E E (the condition 
fi o S = 6’ is used to see f(e)( 1) = 1) and thence f : D +D’ is a lattice homomorphism 
such that f(1) =fi. The uniqueness is trivial. 

In order to prove (ii) we take LS,, = {x~ L 1 -A( )} xc e an we define a functor d 
D*E~~--+~ by ._ 

D(e) =J&+ 

D(el se2) : D(e+D(e,), t+td(e,). 

It is clear that D(e) is a lattice (with unity n(e)) and D(e, se2) is a lattice homomor- 
phism. Moreoever D(0) = 1 and given e = el + e2 we have L(e) = n(e,) + n(e,) so that 

the. map 

L I A(e) -‘LSlt(Q) XL,(@)9 t -+(tWed, tMe2N 

is an isomorphism (with inverse (tl, t2)+tlVt2). Hence D is a sheaf, that is a lattice 
in 1. Finally, r(D) = L and for any eE E, A(e) is the complemented element of L 
associated to L=L,,~~~xLsA~,,~ so that @(D)=A. Cl 

Recall that the lattice L,, is universal among the lattices L’ with a lattice 
homomorphism f : L +L’ such that f(a) = 1. For instance, after Theorem 1.4 we 
have isomorphisms D(e) = r(D) s6(e). One can prove this fact directly, since 
o(es 1)(6(e)) = 1 and given a lattice homomorphism 1: r(D)+L such that 
f@(e)) = 1, there is a unique lattice homomorphism I’ : D(e)+L such that 
I’oD(es 1) =f. Actually, l’(t) = Z(t’), so that the definition of f(e) in the proof of 
Theorem 1.4 is f(e)=l’ with Z=D’(e=l)ofi. 

We shall refer to A : E +L as an E-lattice. As usual, we sometimes forget 1 and 
we say that L is an E-lattice. We shall write from now on L for the sheaf 
L(e) = L,,, used in the proof of Theorem 1.4. The construction (y) is the inverse 
equivalence of @, iti particular r(t) = L. Given an E-lattice homomorphism 

L 

/ 

A 

E 

I 

f 

\ A’ 

L’ 

and eE E, we can define a lattice homomorphism 
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P 

fe" L<_a(e) L<_;,,(e ), fe(X)=f(x) 

(unique as induced by f )  and thence f(e) =re is a lattice homomorphism f :  £~/~, 
in g unique such that F ( f ) = f .  

The restriction of q~ to boolean algebras give us a similar functor ~ :  BI(g)~E-BI 
such that 

BI(E) 

\ 
, E-BI 

BI 

1.5. Corollary. ~ is an equivalence. 

Proof .  It suffices to note that for any boolean algebra L and a e L, the lattice L~ a 
is also boolean. [] 

If D is a lattice in g and B(-) means the free boolean algebra generated by (.), 
then 

We can prove this fact in the level of E-lattices. It is an easy routine to check the 
universal property in the following 

1.6. Proposition. Let it : E -*L  be an E-lattice and j : L--,B(L) the canonical inclu- 
sion. Then f l = j  o it :E  ~B(L)  is the free boolean E-algebra generated by it and j is 

c 

the canonical inclusion. 

When we speak about E-lattices A : E ~ L  we are really concerned with pairs (L,I) 
formed by a lattice L and a boolean homomorphism it :E--,C(L) from E to the 
center of L, that is the boolean algebra C(L) of  complemented elements of L. We 
can express E-lattices as it :E--,L since the inclusion I : BI--,Lt is a left adjoint for 
C with unity CI(B)=B and counity IC(L)~L.  If we consider the funetor 
C : L t (g )~BI (g )  in the level C:  E-Lt~E-BI,  then C(L, it)=it. 

KruU dimension of lattices is based on the following universal construction: given 
a lattice D and n >  0, there is a lattice Dn (the prime n-chain lattice of Dn) and 
lattice homomorphisms 

po, ... , p~ : D-* D~ 

which are universal for the property 

P 0 < " ' < P n  

i.e., they satisfy this property and for any lattice homomorphisms 1o-~--- -< in : D-*L 
there is a unique lattice homomorphism I:Dn--)L such that lpi=ls, O<_i<n. 
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Classically, if we take L = 2, there is a bijection between prime ideals of  Dn and n- 
chains of prime ideals of D. For  details, see [1]. The following lemma says that 

1.7. Lemma. Let  2" E ~ L be an E-lattice and 1o <. . .  <- In" L ~ L n the prime n-chain 
lattice o f  L.  Then the pr ime n-chain E-lattice o f  A is 

Y 
E 

L 

lo<-...<-l, 

L ,  

where An = lo A = ' "  = lnA. 

Proof. If li <- lj and t e L is a complemented element, then lift) <- lj(t) and --1 li(t) = 
li(-~t)<_lj(-~t)=-~lj(t), so that l i ( t )=lj( t ) .  Hence 10A =-'-=l,A. Now, the universal 
property is checked easily. [] 

For any n>O (Do=D) the commutative diagram 

po<'"<_Pn+l 
D ~ Dn+l 

po<'"<pi<Pi<--"'<--pnl 

D .  

defines a unique s i, O<_i<_n, and we have a lattice homomorphism 

(so, . . . , s , )  " D,+ - ,  I I D ,  
n + l  

from Dn + 1 to the product of  n + 1 copies of Dn. The Krull dimension of  D is de- 
f'med as follows: 

dimD_<n iff (So,. . . ,sn) is monic. 

Classically a prime ideal of l-[n+ l Dn is a pair (P,i) formed by a prime ideal P o f D  n 
and i e {0, 1, . . . ,  n}. Moreover (So, .. . ,  sn) monic is equivalent to (So, ..., Sn) -1 surjec- 
tire over prime ideals, with (So, . . . ,  sn)-l(P, i )=sTl(P) .  Hence dim D_< n if and only 
if each (n + D-chain of prime ideals of D is degenerated. 
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1.8. Theorem. For any lattice D in ~, dim D = dim F(D). 

Proof. Since F is a right adjoint, it preserves the construction (So,..., s~) by Lernma 
1.7. Moreover, products and monics in E-Lt are as in Lt, so that it suffices to use 
Theorem 1.4. [] 

2. Boolean valued rings 

All rings we consider are commutative and unitary, and ring homomorphisms 
preserve the unity. We start with a lemma like 1.2. 

2.1. Lemma. Let  A be a ring in ~ and e c E. For any a cA(e)  there is a global 
a' c F(A ) extending a. 

This global a' is unique extending a cA(e) and 0 cA(-~ e). Taking a = 1 cA(e) we 
obtain a global 

a(e)cF(A)  

uniquely extending 1 cA(e)  and 0cA(-~ e). 

2.2. Lemma. a(e) is idempotent. 

Proof. A(e< 1)(a(e) 2) =A(e< 1)(a(e)) 2 = 12= 1 and also A(-~e<_ 1)(a(e) 2) =0. [] 

In each category with finite limits we have a functor E which associates to any 
ring A the boolean algebra E(A) of idempotents of A (with x A y = x y ,  xvy= 
x + y - xy, -1 x = 1 - x). For any e c E(A) we have 

A = A e x A ( 1  - e )  

and conversely, given A = A I  ×A2 the element e t A  
idempotent. 

It is clear that if A is a ring in #, then 

corresponding to (1,0)is 

ro (A )) = r ( r ( A  )). 

2.3. Lemma. a : E--,E(F(A)) is a boolean homomorphism. 

Proof.  It is similar to the proof of  Lemma 1.3 and we omit the details. [] 

For any ring homomorphism f :  A -~A' in #, we obtain a commutative diagram 



Dimension of boolean valued lattices and rings 231 

E(F(A)) F(A) 

J 
E 

\ 
E(F(A ')) 

so that we have a functor 

A : An(£)--,E-An 

F(f) 

F(A ') 

from rings in g to the obvious comma category. The composition of A with the 
forgetful functor U: E-An-~ An is the restriction of F to rings 

A 
An(6") , E-An 

\ S  
d o 

An object of E-An, called E-ring, is a pair (R, ~) where R is a ring in ~ and 
#:E--,E(R) a boolean homomorphism. We cannot forget the ring R because 
sometimes E(R)=E(R')  but R , R ' .  But usually we shall say that R is an E-ring, 
omitting Q. 

2.4. Theorem. A is an equivalence. 

Proof. We only sketch the proof, after Theorem 1.4. Given a ring homomorphism 
f I:E(F(A)- 'E(F(A'))  such that f l a  = a ' ,  an element e ~ E and a ~ A(e), we define a 
unique ring homomorphism f :  A -~A" such that f(1) =fl  by 

f(e)(a) = A'(e <_ l ) ( f  l (a')) 

and hence A is full and faithful. 
On the other hand, given a boolean homomorphism O :E ~E(R) we can take for 

any e ~ E  

A(e)=Ro(e) 

where Re(e)= {xe(e)[x~R} is a ring with unity 0(e). If ei_<e2, we define 

A(el <--e2) :A(e2)~A(el) ,  a-*aQ(el) 

and so we obtain a ring in t such that A(A)=Q. [] 

Given an E-ring (R,0), we shall write ~ for the sheaf 

~(e)=RQ(e). 
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So we have a functor (7) which is the inverse equivalence of A. Moreover, F(/~)=R. 
Like in lattices, given an E-ring homomorphism f :  (R,o)-}(R, Q'), there is a unique 
ring homomorphism f:/~--}R' such that F(f) =f:  take f(e)(xQ(e)) =f(x)o'(e). 

2.5. Remark. One can prove Corollary 1.5 directly and then derive jointly Theorems 
1.4 and 2.4 by using some common properties of the functors C:Lt--,BI and 
E : A n ~ B I .  The functor E has also a left adjoint Zt.) with EZB=B and Zv4R)--'R 
monic. From a well-known fact about adjunctions, ZE is the initial E-ring, that is 
the ring of integers in g. In particular, the ring of integers in 5/is Z =  7 a.  As we 
can see in [7] the ring of integers in the topos sh(X) over a space X is the sheaf of 
locally constant functions from X to Z. Hence we can describe ZE as follows: 
elements are blocks 

(el..'en) with I el+'''+en=l' 
rl...r n (ritZ, l<i<n 

and with an evident relation of equality for blocks. The addition is 

( "'" ) en + 1, ={elAe['"e~Aem~ 
rl rn \rl '"rm/ \rl+rl'"rn+r~nJ 

and similarly for the product. The adjunction 

E ~ E(R) 

is given by 
n 

~(;:'"~)=i~=lrio(el), o(e)=,~(~ 0 e) 

and it gives the equivalence between boolean algebras and boolean rings. 
We can extend this adjunction to g and so we obtain 

Z(.)~E, E-An ~- E-BI 
where E(R, ~)=O and Z(e-.a)= (Za, E~B) because B = E Z  a. 

2.6. Example. Let E = E(R) be the boolean algebra of idempotents of a ring R in 
5 p. The Pierce representation of R is the ring R in g given by 

R(e)=Re, 
so that the associated E-ring is (R, 0) with Q : E-- ,E the identity. After [8] we know 
that 

R regular ,} R field 

(see also [3]). In fact, R is regular if --1 (1 = O) and 

l,'x, Yx' (x2x ' = xAxx '2 = x') 
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and it is a field if -, (1 = 0) and 

Vx (x=Ov(;_Ty xy= 1)). 

The field condition for R means that we have in R, -~ (1 = 0) and for each x e R there 
is a partition el +-. .  + en = 1 in E such that for any index i = 1,...,  n there is xi E R 
with xei = 0 or xxie i = el. If  R is regular, then e = x~' e E and we have the partition 
1 ~ e + ( 1 - e )  with x ( 1 - e ) = O  and xx 'e=e,  so tha t /~  is a field. 

Finally we consider polynomials. 

2.7. Proposition. Let o : E ~ E ( R )  be an E-ring and O=io :E ~E(R[X])  where 
i: R-~R[X] is the inclusion. Then (R[X], 0) is the E-ring o f  polynomials over (R, 0) 
with inclusion i. 

Proof. We must verify the following universal property: For any E-ring homomor- 
phism f :  (R, 0) ~ (R, 0 ' )  and for any x '  e R'  there is a unique E-ring homomorphism 
f :  (R[X], 0)-~ (R" 0') such that f o i = f  and f ( X )  = x'. But given f :  R ~ R '  and x ' ~  R 
there is a unique f :  R[X]-~R'  such that f o  i = f  and f (X)  =x ' .  Moreover f is an E- 
ring homomorphism because f is so. [] 

Hence, if A is a ring in g, the polynomial ring A[X] in g is given by 

A [X] = F("A )[X'] 

where we consider F(A)[X] as an E-ring in the form 

i 
E ~ E(F(A)) ----, E(F(A)[X]) 

with a corresponding to A. 
If R is a ring such that E = E(R) = E(R[X]) (for instance if R is regular), then the 

Pierce representation of  R and R[X] are related by 

and they correspond to the E-rings (R, id), (R[X], id) respectively. 

3. Spectrum and dimension of rings 

In a topos # the spectrum of a ring A is (see [4] and [2]) a lattice D(A) with a map 

dA : A- DC4) 

which is universal among the maps d : A - - , D  from A to a lattice D such that 
(i) d(0) = 0, d(!) = 1, 
(ii) d(ab)=d(a)Ad(b), 
(ifi) d(a + b)<_d(a)vd(b). 
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We shall say that a map d : A - ~ D  with these properties is a support of  A,  so that 
d A is a universal support of  A. 

Given a ring homomorphism f :  A ~ A ' ,  the composition dAf :  A-- ,D(A')  is a 
support of  A and thence there is a unique D ( f ) : D ( A ) ~ D ( A ' )  such that 
D(f)dA = da,f.  So we have a functor 

D : A n ( ~ ) ~ L t ( e ) .  

3.1. Lemma.  For any support d : R ~ L  the restriction E(R)-~L o f  d to idempotents 
is a lattice homomorphism. 

Proof. If e l , e 2 e E ( R ) ,  then d ( e l A e 2 ) = d ( e l e 2 ) = d ( e O A d ( e 2 )  so that for any 
e ~ E ( R ) ,  d(-~ e) = d(1 - e) = -1 d(e)  because 

d(e) Ad(1 - e) = d(e(1 - e)) = d(O) = O, 

d(e)vd(l - e ) > d ( e +  (1 - e)) = d(1) = 1. 

Now we conclude d(elvez)=d(eOvd(e2) by De Morgan's  laws. [] 

3.2. Lemma.  For any support d : R ~ L  and a ~ R there is a unique support de; 
R[a -1 ] ~Lsd(a  ) such that the following diagram is commutative 

d 
R , L  

rl 1' 
R[a-l  ] do ' L<-d(a) 

where r and 1 are the canonical homomorphisms. Furthermore, given a support 
d' : R[a- l  ] ~ L ' and a lattice homomorphism f :  L ~ L' such that d ' r= f d  (i.e., f 
such that fd(a)= 1) there is a unique lattice homomorphism fa: L<ata)~L' such 

that fal  = f  and fada = d'. 

Proof. We define 

da (x/a n ) = d(x) A d( a). 

This definit ion is correct because i f  x / a  n =y/a m, then ah(amx+ any)=0 for some h 

and thence 

d(x) A d( a) = d(x) A d( a h + m ) = d(xa h + m ) ._ d (  y a  h + n ) 

=d(y)Ad(a h+n) =d(y)Ad(a). 
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It is easy to prove that dU is a support. For instance 

since 
d(amx+any)~d(a)A[d(x)vd(y)]. 

It is clear that d,r=fd and also the rest of the proof. 0 

Given an E-ring (R, Q) and a support 
E-lattice (L, A) with A =d~, and we say 

WE) E 

d : R -+L by Lemma 3.1 we can obtain an 
that d : (R, e)*(L, A) is an E-support 

d 

I 

L L 

If d: A-D is a support in 8, A(A) = (r(A), a) and G(D) = (r(D),&, then it is 
clear that f(d) : T(A)+T(D) is an E-support. Conversely we have by Lemma 3.2 the 
following 

3.3. Proposition. For any E-support d : (R, e) + (L, A) there is a unique support 
d: l?+L in d such that r(d) = d. 

Proof. Let us recall that I?(e) = R&e) and z(e) = L SA(e). But since e(e) is idem- 
potent, R@(e) = R[e(e)-‘1 and A(e) = d@(e)), we can define a support 

ace> = d, 

following Lemma 3.2, that is 

&e)(xe(e)) = d(.x)l\l(e). 

It is easy to verify the naturality, so that we have a support d:I?+g with 
r(a) = a<l) = dl = d. The uniqueness follows also from Lemma 3.2. D 

3.4. Proposition. The universal E-support of an E-ring (R, e) is dR : (R, e)+@(R), S) 
where dR is the universal support of R and d = dRg. 

Proof. It is a simple exercise to check the universal property required. Cl 

Thus the spectrum of a ring A in d is 

D(A) = Dm). 

Finally we are ready to prove our aim 



236 L. Espa~ol 

3.5. Theorem. I f  R is a regular ring in a topos Y, then dim R[X] = 1. 

Proof.  We suppose the theorem is true for a field, as was proved in [2]. 
The Pierce,representation R of  R is a field (Example 2.6) in the topos go = sh(E) of 

sheaves over the boolean algebra E = E(R), so that dim R[X] = 1. Now dim R ~ ]  = 1 
by Proposition 2.7, that is dim D(R[X])= 1 since the dimension of a ring is by 
definition the dimension of  its spectrum. Furthermore, D ( R - ~ ] ) = D ( R [ X ] ) ,  hence 
by Theorem 1.8, dimD(R[X])=  1, that is dim R[X] = 1. [] 
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