Available online at www.sciencedirect.com
sc.E..cE@.,.nEcT@ JOURNAL OF

Algebra

R

ELSEVIER Journal of Algebra 275 (2004) 40-58 —_—
www.elsevier.com/locate/jalgebra

Maximal subalgebras of associative superalgebras

Alberto Elduquét*! JesUs Lalien&! and Sara Sacristdn

2 Department of Mathematics, University of Zaragoza, 50009, Zaragoza, Spain
b Department of Mathematics and Computation, University of La Rioja, 26004, Logrofio, Spain

Received 20 May 2001

Communicated by Efim Zelmanov

Abstract

The maximal subalgebras of the finite dimensional central simple associative superalgebras,
possibly endowed with a superinvolution, are determined. This relies on the corresponding descrip-
tion by M. Racine in the ungraded case, which is completed here too.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Given an algebraic or geometric structure, the knowledge of its maximal substructures
has a great interest. For example, the classical problem of the classification of primitive
transformation groups, posed by S. Lie at the end of the last century [6], is equivalent to
the determination of certain maximal subgroups in Lie groups. This fact led E. Dynkin
in 1952 to describe the maximal subgroups of certain classical groups [3], and also the
maximal subalgebras of semisimple Lie algebras [2]. More recently, in 1974, M. Racine
determined the maximal subalgebras of finite dimensional central simple algebras for each
of the following classes: associative, associative with involution, alternative and special
and exceptional Jordan algebras [7,8]. A very subtle case is missing in his determination
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of the maximak-subalgebras of central simple associative algebras with involution. This
case will be completed here. The same question for central simple Malcev algebras was
solved by the first author in 1986 [4].

This paper is devoted to the determination of the maximal subalgebras of finite
dimensional central simple superalgebras which are either associative or associative with
superinvolution.

First of all, let us recall some basic features of superalgebrasFlLbe a field, a
superalgebraA over F is a Z»-graded vector spacd = Az @ Aj over F, endowed
with a multiplication A x A — A which respects th&,-graduation:AqAg € Aa+p
(a, B € Zp). If a € A, we say that is anhomogeneous elemeaid we use the notation
a = a. A superalgebra is said to be nontrivial ifA; # 0. We remark that the center
of A is a superalgebr&(A) = Z(A)s © Z(A);. Let Z = Z(A)z, A is said to be a
central superalgebra oveF if Z = F. Given a superalgebra, it is said to be asimple
superalgebraf there is no proper nontrivial graded idealinand A2 # 0. In this caseZ
is a field.

In [10], Wall described the structure of finite dimensional simple associative superalge-
bras (see also [1,9]).

Theorem 1.1. Let A be a finite dimensional nontrivial central simple associative
superalgebra over a field@. Then either

(i) Z(A); =0, and this happens if and only & is central simple as arfungraded
algebra overF. Then there exists an element Z(Ap) such thatza; = —asz for
anyasi € Aj. In this caseA is said to be of even type.

(i) Z(A)7 #0, and this happens if and only K3 is a central simple algebra ovef.
ThenA is said to be of odd type. In this caggA) = F & Fu with 0+ u? € F and
A= A() &) A()u.

Given a superalgebra over F' we say that a graded vector spade= Mg + M; over
F is a left A-supermoduléf it is a left A-module and verifies\; M; € M, jmod 2 for
all i, j € {0, 1}. The A-moduleM is said to berreducibleif AM = M and it contains no
proper graded submodule.

A unital associative superalgeh4ds said to be aivision superalgebr# all its nonzero
homogeneous elements are invertibleAlfs a division superalgebra with; # 0 andM
is a A-supermodule, the is a freeA-module: any basis alfy as a vector space over
Ag is a basis o as a module oven.

In [9], M. Racine proved the graded version of Schur’'s Lemma and the Density Theorem
for associative superalgebras. Both results are instrumental for the paper:

Theorem 1.2 (Graded Schur's Lemmal.et A be an associative superalgebra. Létbe
an irreducible leftA-supermodule. TheBnd (V) = A is a division superalgebra.

Theorem 1.3 (Graded Density Theorem)et M be an irreducible left supermodule far
and letA = Endy(M). Then for every positive integer, any elements, ..., v, € My
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which are linearly independent ovetg, and anyws, ..., w, € Mg, there is an element
a € A such thatav; = w; foreveryi =1,2,...,n.

And, as a consequence:

Theorem 1.4. Let V be an irreducible leftA-module andA = Ends (V). If A is a finite
dimensional simple superalgebra, then= End, (V). Besides, the types of and A
coincide.

Throughout the paper we will identify, under the conditions of this theorémuith
Enda (V).

As a general rule, iV is a left module forA, A = Ends (V) will be assumed to act
on the right, so that becomes a right module fat and, therefore, a right module for
A°P @ A. Here A°P denotes the opposite algebra, whi{&°P will denote the opposite
superalgebra (where- y = (—1)* yx, for any homogeneous elementsy € A).

Finally, let us recall the following version (see [5]) of a basic result in associative
algebras, the Double Centralizer Theorem for central simple algebras, that will be used
quite often.

Theorem 1.5. Let B be a semisimple subalgebra of a finite dimensional central simple
algebra A. Then the double centralizef 4 (C4(B)) is preciselyB. If B is simple, so is
C4(B).

Our purpose is to extend to the setting of associative superalgebras the results by Racine
on associative algebras [7, Theorems 1-4]. We reproduce below [7, Theorem 1].

Theorem 1.6. Let A be a finite dimensional central simple algebra over the fig)det V
be an irreducibleA-module and letD = Ends (V). Then a subalgebrd of A over F is
maximal if and only if either

i) S=S(W)={aec A: aW C W}, for W a proper D-subspace oV’.
(i) S=Ca(K)={ae A: ak =ka Yk € A} where K/F is a field extension without
intermediate subfields.

Notice that the subalgebra in item (i) above can be describ8dW$ = eAe + eAf +
fAf,where &£ e # 1 is a projection i = Endp (V) onto W, so that is an idempotent,
andf =1—e. HereW =eV.

In Section 2 this will be extended to superalgebras, not “superizing” the proofs in [7],
but providing new shorter proofs. Section 3 is devoted to complete [7, Theorem 4], where a
very subtle case is missing, providing first a counterexample to the old result. This will turn
outto be the most difficult part of the paper. Then, in Section 4, the results for superalgebras
which extend [7, Theorems 2—-4] will be proved.
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2. Maximal subalgebras of associative superalgebras

We begin by studying maximal subalgebras of finite dimensional central simple
associative superalgebras. In the following the word subalgebra will be used in the graded
sense. First, let us remark the next general result;

Lemma2.1. Let F be afinite extension of the fieldand S a maximalE-subalgebra ofd,
a central simple superalgebra ovér. ThenS containsl, the identity ofA.

Proof. If 1 ¢ S then the algebra generated$wnd 1, that will be denoted by &l§uU {1}),
verifies that algSU{1}) = A, because is maximal. Ther§ is a nonzero graded ideal af
But A is a simple superalgebra, and henced. O

Now we describe the maximal subalgebras of simple superalgebras of even type.

Theorem 2.2. Let A be a finite dimensional central simple associative superalgebra over
F of even type, leV be an irreducible leftA-module and letA = Ends (V). Let S be a
subalgebra ofd. ThenS§ is a maximal subalgebra of if and only if either

(i) There exists a graded propet-submoduleW such thatS ={a € A |aW C W}
(stabilizer ofW).
(i) There exists a fiel& with F & K € A, such that there are no proper intermediate
subfields betweeR and K, such thatS = C4(K) (the centralizer oK in A).
(i) There exists € Aj with 0# u? € F such thatS = C (u).

These conditions are mutually exclusive.

Proof. Let V be an irreducible lefi-module, therV is also an irreducible rightA°P ® ¢
A)-module and therefore a righs°P? ®  A)-module. Notice that Engrg A (V) = {p €
Ends (V) = A: [p, A] =0} = Z(A) = F, so by density we can identifg®®? @ A =
Endp(V).

If W is a proper gradedS°° ®r A)-submodule ther§ C {a € A | aW < W}. By
maximality,S ={a € A |aW C W}.

Conversely, withW as before andS = {a € A | aW C W}, let us show thatS is
maximal, even as an ungraded subalgebra ofete = ¢2 € Ag be a projection ontdV,
thenS =eAe + eAf + fAf, with f =1 — e. For any homogeneous elemegte f Ae,
sinceA is (graded) simplef AfaqeAe = fAe and hence alg U {ay}) = A (ungraded).

In this case, notice thaf4(S) € Ca(e) = eAe ® fAf whereeAe, fAf are central
simple superalgebras (the first one being isomorphic toEWY), SOC4(S) C Z(eAe) &
Z(fAf)=Fe+ Ff,andsincef, e ¢ C4(S) it follows thatC4(S) = F1. This shows that
suchS does not appear in cases (ii) nor (iii).

Now, if V is an irreducible (graded) right module f§P ® ¢ A, let

K = Endg‘op@[,A(V) - EndA(V) =A,
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which is, by the graded Schur's Lemma (Theorem 1.2), a division superalgebra. Notice
that K = Endsorg . 4(V) = {9 € Enda(V) | [¢, S] = 0} = C4(S). Then, by identifying
APQp A= Endr(V), SP @F A corresponds to EndV). SinceS # A, alsoF # K.

If Kg#F andX is a minimal field withF G Kc Kp, thenS € Ca(K) € Ca(Kp) ©
Ca(K) so, by maX|maI|ty and sincd is central S = CA(K) By the Double Centralizer
Theoremk = Ca(S) =

On the other hand, iK(—) = F,thenk = F1+4 Fuwithu € Aj suchthatGt u’?=a € F
andsS C C4(K) so, by maximality,S = C4(K).

Conversely, withk either a minimal field extension of contained inAg or K =
F1l+ Fu as above, let§ = C4(K), then S®P @ p A = Cporga(K ® 1) = Endg (V).
HenceV is an irreducible (gradedy°® @ r A-module, the graded division algebra
being its centralizerX = Endsorg . 4(V)). If S € T C A for some subalgebrd@, then
F CEndropg . 4(V) € Endsorg . 4 (V) = K, henceC4(T) is eitherF or K and, by density,
TOP®Fr Ais either Engt (V) = S°PQr A or Endr (V) = A°P®F A. Thus eithell = S or
T = A, as required. O

Notice that Theorem 2.2 covers the ungraded case too, thus providing a new proof of 7,
Theorem 1]. This also shows that the subalgebras in (i) or (ii) are maximal even as ungraded
algebras. We will later use the fact that the subalgebras in (i) above are described as
S=cAe+eAf + fAf,wheree is a nontrivialevenidempotent angd = 1 — e. Therefore
there is a basis of such that, when identifying with Mat, (A), S is formed by the upper
block triangular matrices:

ko ok
(62)

One can argue that the arguments in the proof above are not “super” arguments. We
could have proceeded as followk: is a module forAS°P, where AS°P is the opposite
superalgebrad - bg = (—1)*fbga,), by means oby, - ag = (—1)*Pagv,, and therefore it
is a right module fordS°P& - A (where the graded tensor product is used). The centralizer
of SSP Q@ A centralizes the action oft, so it is in A = Ends (V) and thus, it is the
supercentrallzer of. In this way one obtains (i), (i) or a new (iii)": There existse Aj
with 0 # u? € F such thatS = C4 (), the supercentralizer af. an homogeneous element
aq isin CA(u) if agu = (—1)%ua (sinceu is odd). However, sincd is even, there exists
0#z € Z(Ap) suchthat G4 7% € F andza = —az foranya Aj. ThenC 4 (u) = Cy(zu)
and (iii) is recovered.

Corollary 2.3. Let A be a finite dimensional central simple associative superalgebra over
F of even type, and lef be a proper subalgebra afi. Then eitherS is contained in

a maximal subalgebra of typ@ in Theorem2.2, or C4(S) is a division superalgebra
strictly containingF .

Proof. If S is not contained in a subalgebra of type (i), tHéis irreducible as a module
overSP®r A, soC = C4(S) = Endsorg . A (V) is a division superalgebra by Theorem 1.2
and, by densitys°? ® A =Endc (V). SinceS G A, itfollows thatF S C. O
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Later on, the following extension of [7, Proposition 1] will be needed.

Proposition 2.4. Let A be a finite dimensional central simple superalgebra avef even
type, letV be anirreducible lefd-module and lett = Endy (V). If U andW are different
proper A-submodules o, then the only maximal subalgebras4dbver F which contain
SWU)YN S(W) are S(U), S(W) andS(U NW), S(U + W) if they are maximal, that is, if
WNU#O0,WH+UZ#V.

Moreover the expressia$U) N S(W) is unique, that is, i§(U) N S(W) = BN C with
B, C maximal subalgebras of over F, then{B, C} ={S(U), S(W)}.

Proof. Let V =V1 @ Vo @ V3 & V4, where all theV;’s are graded and’y = U N W,
U=Vi1&® Vy, W=V, & V3 (V1 and V4 can be zero). We denote kyc Endy V = A
the projection ofV onto V; associated to this decomposition. Thgre A for anyi and
1=e1+e2+e3+e4. Consider the Peirce decompositionfofelative to these idempotents,
A= @szl A;j, where A;; = ¢;Aej. One can check, for instance just looking at the
expression:

* ok % % * % % % * k% k%
R O « 0 )] [0 = O =«
0 0 * =x* *+ % % x| |0 0O % x|’
0 0 x =« 0 « 0 =« 0O 0 0 =«

that S(U) N S(W) = A11 @ A12 D A13D A14 D Ao @ A2a ® A3z D Aza @ Ass. SO
CA(S(UYNS(W)) N1 Caler) = A11® A2p @ Azs® A44 < S(U) N S(W), and hence
CA(S(U) N S(W)) € PP, Z(Air) = @}_, Fe: € Ag. For any subalgebra containing
S(U) N S(W), its centralizer is contained i@4 (S(U) N S(W)) C @le Fe; C Ag, thus
avoiding types (ii) and (iii) in Theorem 2.2. Now,${(U) N S(W) C S(X) for some proper
A-submoduleX, sincee; Ae; € S(X) foranyi =1, 2, 3,4, X is a sum of some of thg;’s.
SinceAes C S(X), V4 is not contained inX, and sincee1A € S(X), V1 € X. Therefore
XiseitherVi=UNW, Vi Vo=U,V1®Va=WorVi@®d Vod Va=U+ W. The
unigueness of the expressiSt/) N S(W) now follows easily. O

Next we will describe the maximal subalgebras of the simple superalgebras of odd type.

Theorem 2.5. Let A be a finite dimensional central simple associative superalgebra over
F of odd type. Them = Ag & Agu, with u € Z(A)7 such that0  u? € F, and Ag is a
central simple algebra. Lef be a subalgebra ofi. ThensS is a maximal subalgebra of

if and only if either

(i) S=Sz® Sgu with Sz a maximal subalgebra of.
(i) S=Ag.
(i) Agis agraded algebradg= Cy® Ci, andS = Cy @ Ciu.

This conditions are mutually exclusive.
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Proof. Let Z = Z(A) = F1+ Fu be the center ofA. SinceS C ZS C A, it follows by
maximality that eitheZ S = S or ZS = A.

If S=7ZS, u e S because k S. This implies thatS; = Sgu and S = S5 @ Szu. Since
S is a maximal subalgebra of, it follows that S5 is a maximal subalgebra ofs. The
converse is clear.

If ZS = A, Ag= S5+ Squ and Aj = S; + Sgu. Since Sy N Sju is an ideal ofAj;,
becauseSy(Sju) € Sju and(Sju)2 C Sp, andAg is simple, it follows thatdg = Sy @ Squ
is a graded algebra. If the grading is trivial, that $$¢ = 0 = Sj, thenS = Az and §
is a maximal subalgebra of. Otherwise,Ag = Cg ® C; with Cz = S5, C; = Sju and
§= 550 81 =Cqy® Cqu.

Conversely, ifAg = C5 @ C; and S = C5 @ Cju, thenA = S @ Su = S ®F Z as
algebras. We notice that is a central algebra becauggA) = F1+ Fu and Z(S) ;Ct
Z(A) = F & Fu. Now we claim thatS is a simple algebra. If is a splitting field of the
polynomial X? — « € F[X], wherea = u?, it follows thatg: S @ F — Az ®F F given
by ¢((cg+ cju) ® 1) = c5 ® 1+ cf ® a/? is an isomorphism. Sincég is central simple
overF, so isS. HenceS is a maximal ungraded subalgebraso® » Z = A and, therefore,
S is a maximal subalgebra ef. O

Later on, also the following extension of [7, Corollary 1] will be needed:

Corollary 2.6. Let A be a finite dimensional central simple associative superalgebra over
a field E and suppose thak/F is a finite field extension. Lef be a subalgebra oft
over F. ThenS is a maximal subalgebra of over F if and only if either

(i) ES C S andS is a maximal subalgebra of overE.

(i) There exists a fiel& such thatF C K ;Ct E and the extensiork /K contains no
proper intermediate subfields, such thafs a central simple superalgebra ovéf
andE ®x S= A (¢ ® s — as) as E-algebras.

Proof. Let S be a maximal subalgebra dfover F, thenS C ES C A and, by maximality,
eitherS=ESorES=A.ByLemmaZ2.1, kS.

If S = ES thenS is anE-subalgebra and hendds a maximal subalgebra af overE.

If A= ES thenS is a finite dimensional prime superalgebra o¥erland soS is a
simple superalgebra (one may argue as follows:Iéty a minimal left (graded) ideal
of S, by primenesd is a faithful and irreducible left module fa¥, so if A = Ends(7),
by graded density and finite-dimensionalify= End, (/) is simple). Letk = Z(S)g, then
SinceES=A,F CK ;Cé E=Z(Agandp:EQkx S — A.a®s — as, is onto. Therefore
¢ is an isomorphism becauge®x S is a simple superalgebra. MoreovekifS K’ C E,
S=KSSK'S € Aand by maximalityk’s = A andK’' = E.

Conversely, ifS is a maximal subalgebra of over E andS C T with T an F-sub-
algebratherE C ES =S C T andT is E-subalgebra. ThereforE =S or T = A. This
implies thatS is a maximal subalgebra of over F.

If FC K G E, such thatE/K contains no proper intermediate subfields, anig a
central simple superalgebra oémwith E ® S = A, let T be a maximal subalgebra over
Fsuchthats G T G A. ThenA = ES C ET, so thatE @k T = A, with K" = Z(T);.
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But K’ verifies thatk € K’ C E. So eitherK’ = E or K/ = K becausedZ /K contains no
intermediate subfields. K’ = E, T is a subalgebra ovef andT = A. If K’ = K, then
EQRgT=AZ=EQgk SandS =T. ThereforeS is a maximal subalgebra df overF. O

3. Maximal subalgebras of associative algebraswith involution

Let A be an algebra over a fiel#’, endowed with an involution. A x-ideal
(respectivelyx-subalgebra of A, is an ideall (respectively subalgebr&) of A which
verifies I* = I (§* = S). For example, the center of, Z(A), is ax-subalgebra ofA.
ThenA is said to bex-simpleif A% £ 0 and 0 and4 are the only-ideals ofA. Suppose
now that A is a finite dimensionak-simple associative algebra ovér. Then either
*|z(4) = Id, andx is said to be an involution of the first kind, efz4) # Id, and then
* is said to be of the second kind.is said to be central, as an algebra with involution, if
{z e Z(A): z* =z} = F1.If C is a maximak-subalgebra ofi over F, thenC C B with B
a maximal subalgebra of over F. SinceC is ax-subalgebraCC € BN B*, butB N B* is
also ax-subalgebra, so the maximality 6f asx-subalgebra implie€ = B N B*. Hence,
to determine the maximatlsubalgebras of we only need to determine the conditions for
B N B* to be a maximak-subalgebra, foB a maximal subalgebra of over F.

In [7, Theorem 4] the following result is set:

Theorem 3.1. Let A be a finite dimensional centratsimple algebra oveE and letB be

a maximal subalgebra od over E. ThenB N B* is a maximalkk-subalgebra ofA if and

only if either.

(i) B is of type(i) in Theoreml.6, B=c¢Ae ®eAf ® fAf witheV N f*V =0,eV or
f*V,whereV denotes an irreducible lefA-module.

(i) B is of type(ii) in Theorenl.6, B = C4(K) with K* =K.

Next, a counterexample will be given to show that a case is missing in the above
theorem. But first some preliminaries are needed.

Lemma 3.2. There exists a finite separable field extensibfy F with an order 2
automorphismd # ¢ € Autz M (¢? = Id), such that the lattice of subfields is

M

K'=¢(K)

F

whereL = {a e M: ¢(a) = a}.
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Proof. Notice that if there exists such extension, thgif) = E and¢|g # Id must be
verified and, thereforef / F and M /L are Galois field extensions of degree two.

It is well known that there are Galois field extensions with Galois gré&ppthe
symmetric group of degree. So it is enough to find a symmetric grodp with two
subgroupsA and G, A < G, such that the lattice of subgroups betweemnd G is as
follows:

C2

N
G

with N a normal subgroup af, [G : N] = 2 (and thereforel = N N B a hormal subgroup
of B with index 2), and such that is the semidirect product of and a cyclic grougx)
of order two (2 = 1), andC> = xC1x 1 = xC1x. We notice that thenr ¢ N, because
B ¢ N, thereforeG is the semidirect product @f and(x).

Actually, if the situation above exists for suitable subgroups, we can take

¢o=x and F =Fix(G),

the set of elements in a Galois field extensidii F’, with Galois groups,, which are
fixed by every automorphism @ . Also we takeE = Fix(N) (and thenE/F is a Galois
extension of degree two),

K =Fix(C1), K' =Fix(C2)

(notice then that for any in the extension fieldp(a) € Fix(xC1x 1) if and only if
a € Fix(C1), thereforep(K) = K'),

L =Fix(B) and M =Fix(A)

(and thereford. = {@ € M: ¢(a) = «}). Then these fields satisfy the requirements of the
lemma.

Let G be the semidirect product 6§ x S3 and the cyclic grougx) of order two where
(o,7)x = x(t,0) for everyo, T € S3. G is imbedded inSg identifying S3 x 1 with the
subgroup ofSg formed by the permutations of the 4@t 2, 3}, 1 x S3 with the subgroup
of Sg of the permutations of the s¢4, 5, 6}, andx with the permutation14)(25)(36)
in Se. Let U = ((12)), which is a maximal subgroup df3, and consided = U x U.
We claim that ifH is a group such thall x U & H G S3 x S3, then eitherH = S3 x U
or H=U x S3. Suppose there exists an eleméntr) € H with o ¢ U. If T € U, then
(0,1) € H and, sincd/ is maximal subgroup af3, thenS3 x 1 C H and soH = S3 x U.
If ¢ ¢ U, multiplying if necessary byl, (12)), we can suppose that there exigtst) € H
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such thav, © ¢ U with o andt having different signature. So the orderaofs either 2 or

3 and the order of is either 3 or 2, respectively. Thea, )2 is either(1, ) or (u, 1) with

w ¢ U and so either k S3C H orS3 x 1 C H, thatis, eithetld = S3x U or H =U x S3.
Similar arguments show that the lattice of subgroups betweenU x U and G =

(S3x S3) X Zyis
UxU

(U xU) xZp
U x S3

S3 % S3
(S3 x S3) X Zo

asrequired. O

Lemma 3.3. Under the conditions of the lemma above= Endz (M) has an involution
of the second kind.

Proof. We consider the nondegeneratebilinear form (,): M x M — E such that
(x,y) = Tu/e(xy), whereTy, g denotes the trace in the extensibfy E, and we define
h:M x M — E by h(x,y) = {p(x),y) for any x,y € M. Thenh is an F-bilinear

map and anE-linear map in the second component. Moreokeéy, x) = (p(y), x) =

Tym/e(@(y)x) =Ty e(p(e(x)y)) = @(h(x, y)), therefore is hermitian and: determines
the involution of the second kind given bi(ax,y) = h(x,a*y) for everya € A

andx,yeM. O

TheM above s realized as a subalgebraidfy means of. : M — A suchthatL,(y) =
xy foranyx,y € M. Foranyr € M, h(tx,y) = Tp/e(9(tx)y) = Tnye(@(x)@(T)y) =
h(x,e(v)y), thatis,t* = ¢(7). In particular,K’ = ¢(K) = K*.

Theorem 3.4. Let M/ F be a field extension satisfying the conditions in Len&2aand
let A=Endg(M). ThenM = C4 (M) is a maximak-subalgebra ofA over E. Moreover
if B=Cs(K), thenB is a maximal subalgebra of overE, BN B*=Cs(M) and B is
neither of typ€i) nor type(ii) in TheorenB.1

Proof. The field extensiork / E has no proper intermediate subfields,Be- C4(K) is a
maximal subalgebra of overE andBNB* = C4(K)NC4(K*) = C4(M) = M because
alg(K, K*) = M and dimz A = (dimg M)2. If S is a maximal subalgebra of over E
such that C S, then sinceM (which is imbedded im) stabilizes no subspace #f (see
Theorem 1.6), it follows tha$ is of type (ii) in Theorem 1.6, that is§ = C4 (D) with
D/E a field extension without intermediate subfields. Heﬁcg DCCyp(M)=M and
D is eitherK or K* because of Lemma 3.2. Therefafg (K) andC 4 (K*) are the unique
maximal subalgebras of over E containingM, and sinceC4(K) andC4(K*) are not
x-subalgebrasyf is a maximak-subalgebraofi. O

To give a correct version of Theorem 3.1, still some extra preliminary results are needed.
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Lemma 3.5. Let A be a finite dimensional central simple algebra ovgrand letkK be a
field such that G K € A. ThenC4 (K) is not contained in any maximal subalgebrasof
of type(i) in Theoreml.6.

Proof. Without loss of generality, suppose that= Endp (V), with V a right vector space
over the division algebr®. SinceC4(K)°P ®r D is a simple algebray is completely
reducible as a module over it. W is a nonzerdC4(K)°?®fr D)- -submodule ofV, take
a (C4(K)°? @ D)-submoduleW of V such thatV = W @ W. Let e € Endr (V) the
projection of V onto W. Thene is a nonzero idempotent arde Endc,, (kyorg-p(V) C
Endp (V) = A. Thereforee € C4(C4(K)) = K and sae = 1, thatis,W = V and there are
no D-vector subspaces of stabilized byC4(K). O

Corollary 3.6. Let A be afinite dimensional central simple algebra over a fig|&zndowed
with an involutionx, and letM/E be a field extension such th&tC M C A, M* =M
and such that there is ne-stable intermediate subfields betwerand M. ThenC4 (M)
is a maximak-subalgebra ofd.

Proof. By Lemma 3.5, if § is a maximal subalgebra o containingC4 (M), then
S = C4(K), with K/E a minimal field extension such th& € M. It has to be proved
thatCa (M) = SN §*.

If K =M thenS = C4(M)is maximalinA andS* = S, thereforeC 4 (M) is a maximal
x-subalgebra ofA. If K # M, thenK and K* are subfields of\/, with K = E(¢) and
K* = E(c*) # K. Thereforee +¢* ¢ E andM = E(c, ¢*) = E(c+¢*), becaus@/ has no
subfields which are stable underin particular,SNS* = C4(K)NC4(K*) = Ca(c, c*) =
Ca(M). O

Proposition 3.7. Let M/ E be a finite field extension, and kete Aut(M) such thaip # Id,
¢?2=1d, ¢(E) C E, andM/E contains no propep-invariantintermediate subfields. Then
either.

(i) M/E has no proper intermediate subfields, or

(i) ¢|g #1d and, in this case, it. ={x € M: ¢(x) =x}and F = E N L, it follows that
M/F is a separable field extensioh/F has no intermediate subfields andkifis a
minimal subfield such tha G K & M theng(K) # K and M = alg(K, ¢(K)).

Proof. Suppose thad/E has intermediate subfields and Etbe a minimal one, that is,
K is afield such thak & K G M. The hypotheses imply then thatK ) # K, K = E(c),
@(K) = E(¢(c), Withc +¢(c) ¢ E andM = E(c, ¢(c)) = E(c + ¢(c)).

If |g =Id, sincep(c + ¢(c)) = ¢ + ¢(c) it follows that ¢ = Id, a contradiction.
Thereforep|p #1d. LetL={x e M | p(x) =x}, F=ENL. If M is a field such that
FSM G L thenES E(M) S M andE(M') is g-invariant, a contradiction. Therefore
L/F has no intermediate subfields and, therefore, eithidt is a purely inseparable field
extension of degreg with p = charF, but then[M : E]=p,andp=[M : E]=[M :
K]1[K : E], a contradiction, oL/ F is separable, that is{// F is separable becaudé/L
is a Galois extension. O
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Lemma 3.2 shows that the situation in case (ii) of Proposition 3.7 actually occurs.
Finally, [7, Theorem 4] is completed to:

Theorem 3.8. Let A be a finite dimensional centralsimple algebra oveE and letB be
a maximal subalgebra of over E. ThenB N B* is a maximak-subalgebra ofA if and
only if either.

(i) B is of type(i) in Theoreml.6, B=eAe ®eAf ® fAf witheV N f*V =0,eV or
f*V,whereV denotes an irreducible left-module.
(i) B is of type(ii) in Theoreml.6: B = C(K), with K* = K.
(iii) * is of the second kindB = C4(K) with K/E a separable field extension without
intermediate subfield¥ # K* andalg(K, K*) = M is afield such thad//E has no
x-stable intermediate subfields. In this ca®€ B* = C4(K) N C4(K*) = C4(M).

The three possibilities above are mutually exclusive.

Proof. Assume first thatB N B* is a maximal«-subalgebra ofd. If B is of type (i) in
Theorem 1.6, the argument in [7, Theorem 4] gives (i). OthernBiseC4(K), with K /E

a field extension without intermediate subfieldskl&= K* we are in case (ii) (s8N B* =

B is maximal). If K # K* and G = alg(K, K*), B N B* = C4(G). Now, if B N B*
were contained ir§(W) for some proper subspad€, then B N B* C S(W) N S(W)*
and, by maximalityB N B* = S(W) N S(W)*, a contradiction with Proposition 2.4. Thus
C4(B N B*) (2 G) is a division algebra by Corollary 2.3, and sods As in the proof
of [7, Theorem 4] we pick a minimal field such thatF & L € F(c + ¢*) whereF =
{xe E: x*=x}andK = E(c). Now L = F(d) with d* = d. Consider the field extension
E(d) of E, which isx-stable. IfK ¢ E(d), by the Double Centralizer Theorem it follows
that C4(E(d)) € Ca(K) = B, and B N B* = C4(K) N C4(K*) ;Cé Ca(E(d)), because
E(d) C E(c+c*) Calg(K, K*). Butthis is a contradiction with the maximality 8f0 B*,
becauseC 4 (E(d)) is ax-subalgebra. Therefor€ C E(d) and soK* C E(d)* = E(d).
Hencec +c¢* € E(d), thatis,c+c* € L =F(d) ={x € E(d): x* =x}andL = F(c+c*),
E(d) = E(c + ¢*) = E(c,c*) = alg(K, K*) and F # E (otherwiseL = E(d) would
contain proper subfieldk and K*). Finally the result follows by applying Corollary 3.6
and Proposition 3.7 witt = E(d) = alg(K, K*). The uniqueness follows easily from
Lemma 3.5 and the Double Centralizer Theorermm.

Theorem 3.4 gives examples of the situation in case (iii) above. In both types (ii) and
(iii), B=Ca(M)whereM = M* is afield such thak & M C A andM/E has no proper
intermediatex-subfields.

4. Associative superalgebraswith superinvolution
In this section, the maximal superalgebras in associative superalgebras with superinvo-

lution will be studied. IfA is an associative superalgebra over a fig)det us remind that a
superinvolution: over A is an even linear map (that is, a map that appligén Ag andA;
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in A7), *: A — A, such thatfor every, b € A, a** = a and(ab)* = (—1)%b*a*. A super-
involution « is said to be of the first kind |z = Id (recall thatZ = Z(A)g), otherwise it
is said to be of the second kind.Afis an associative superalgebra with superinvolutipn
(A, %) is said to be simple ifA has no proper (graded}stable ideals and central if it is
unitalandZ (A, x)(={z € Z: z*=z}) = F1.

From [9, Lemma 11] it is known that ifA is an associative superalgebra with
superinvolutionk, Ag is an artinian algebra and, ) is simple, then either:

(1) there exists an idea of A such thatB is simple andA = B @ B*. In this case
Ag =By @ B(i)‘ is artinian and so isB. ThereforeB is artinian and simple and
(A, x) = (B & BS°P, exch (where exch denotes the exchange superinvolution), or

(2) A is an artinian simple superalgebra and then, eithé¥ M, (A) with A a division
superalgebra, ot = M, ,(D) with D a division algebra.

But something can be added. X = M, ,(D), with D a division algebra, since
Ag=My(D)® My (D) and I = 1, then eithee! =¢; fori = 1,2 ore] = ex ande;; = e,
wheree; ande; are the unital elements of the simple idealsAgf M, (D) andM, (D).

So in case (2) above the following possibilities appear:

(i) A= M,(A) with A a division superalgebra.

(i) A=M, (D), Ag= M,(D) x M,(D) andM, (D), M, (D) arex-stable simple ideals
of Ag. In this caseA; = e1Aje2 @ e2Aje1, Whereey ande; are the unital elements
of M, (D) andM, (D) respectively, and sinag = ¢;, it follows thatx exchanges the
two irreducibleAg-subbimodules of\;.

(i) A=M,,(D), Az = M,(D) x My (D), but + exchanges the simple ideals af:
M,(D) and M, (D). ThenM,(D) = M,(D)° and hence = g andA = M, ,(D).
Herex fixes the two irreducibletz-subbimodules of;.

Lemma 4.1. Let (A, %) be a superalgebra with superinvolution over a figidIf C is a
maximalx-subalgebra ofA, thenC = B N B* with B a maximal subalgebra of.

Proof. If C is a maximalx-subalgebra oA over F thenC C B, with B a maximalF-
subalgebra ofi. But C = C* C B*, thereforeC C BN B*. SinceB N B* is ax-subalgebra
of A, the maximality ofC impliesC =B N B*. O

Thus to determine the maximalsubalgebras of a finite dimensional central superalge-
bra with superinvolution{A, x) over F it suffices to determine the conditions fBrn B*
to be a maximak-subalgebra oft, for a maximalF-subalgebraB of A.

The following theorem can be proved following verbatim the non graded case (see [7]).
Thus the proof is omitted.

Theorem 4.2. Let (A, ) be a superalgebra with superinvolution over a field If
(A, x) = (B @ B3°P, exch with B a finite dimensional central simple superalgebra, then a
subalgebraS of A is a maximak-subalgebra ofA if and only if either
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(i) S= C @ CS°P, for a maximal subalgebr& of B.
(i) (B, —) isa central simple superalgebra overwith superinvolution- of the first kind
andS = {(b, b)y € B ® BS°" b, € B,}.

Proposition 4.3. Let (A, %) be a finite dimensional central superalgebra with superinvolu-
tion of the second kind over a fiekd Assume that is simple, and leE = Z (a quadratic
Galois field extension aof). Let S be ax-subalgebra ofdA over F. ThenS is a maximal
*-subalgebra ofd over F if and only if either

(i) Sisamaximak-subalgebra ofA overE.
(iiy S is acentral simple superalgebra over, and(E ®F S,0 Q x|s) = (A, %) (¢ ® s >
as), whereo is the Galois automorphism of the extensionF .

Proof. Suppose thaf is a maximak-subalgebra ofA over F and consideE S. SinceS €
ES C AandES is x-stable, by maximality eithe§ = ESor ES = A.If S = ES thenS is
an E-subalgebra and therefofas a maximal subalgebra ¢f over E such thats* = §. If
A = ES, then as in the proof of Corollary 2.6,is a prime finite dimensional superalgebra,
and hence a simple superalgebra. Ket= Z(S)5. SinceA = ES, F € K S E. Hence
K=FandEQ®r S= A.

The converse follows as in Corollary 2.60

Therefore, it is enough to deal with-subalgebras and check under what conditions,
given a maximakE -subalgebra, B N B* is a maximak-subalgebra. The last results deal
with this problem for the different possibilities fd.

Theorem 4.4. Let A be a finite dimensional central simple superalgebra of even type over
the fieldE and letV be anirreducibleA-module. Let be a superinvolution od and letB

be a maximal subalgebra df over E of type(i) in Theoren?.2 ThenB N B* is a maximal
x-subalgebra ofA if and only if B=e¢Ae ® eAf & fAf = S(eV) witheV N f*V =0,

eV or f*V. These conditions are equivalent¥o= f*V @ eV, e*e =0, or ff* =0,
respectively.

Proof. First notice that ifB = eAe @ eAf @& fAf = S(eV) (with e a nontrivial even
idempotent,f =1 — ¢ and V an irreducible module), theB* = e¢*Ae* & f*Ae* &

[*Af* = S(f*V). Suppose thaiB N B* is a maximalx-subalgebra ofA. Let A =

Ends (V). IfeVN f*V £0,eV, f*V,theneV N f*Visa((BNB*)°P®g A)-submodule
of V.HenceBNB* C S(eV N f*V),with S(eV N f*V) amaximal subalgebra af of type
(i) in Theorem 2.2. Sinc& N B* is maximal,B N B* = S(eV N f*V) N S(eV N f*V)*,

But this is a contradiction with the last statement of Proposition 2.4.

Conversely, ifeV N f*V =0, eV or f*V, then from Proposition 2.4 the only maximal
subalgebras oAl containingB N B* = S(eV) N S(f*V) areS(eV) andS(f*V), because
the conditioreV N f*V = 0 implies, by dimension count, thaV & f*V =V, sincef*V
and f'V have the same dimension (for instance, as modules for the division algghra
ThereforeB N B* is a maximak-subalgebra ofi.

The last assertion follows as in [7, Theorem 411
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Therefore, withB as is the previous theorem, there is an idempote#teC= Ay such
thatB N B* = S(eV) N S((1 — e*)V) with eithereV N (1 — ¢*)V = 0 or (changing: by
f*ifnecessaryy*e = 0. Asin [7], BN B* can be better described by an adequate election
of this idempotent involved. In [9, Theorem 7] it is proved that i = Enda (V) for
a division superalgebra and a right graded\-moduleV, any superinvolution irA is
induced by a nondegenerate hermitian or skew-hermitian supelforivi x V — A; that
is, h,, is a biadditive map satisfying:

hy(ve, wg) € Agtp+v,

hy(vads, wg) = (=1 *Tdsh, (vg, wp),
hy(ve, wgds) = hy (Vo , we)ds,

hy(va, wg) = (=) e by (wg, va),

for any v, € Vo, wp € Vg, ds € A5, wheree =1 if h, is hermitian ance = -1 if 4, is

skew-hermitian, and whereis a superinvolution ofA. This superform, is said to be
tracicif forany o« =0, 1 and any, € Vy, hy(vg, vy) = ¢ + (—1)*ec with ¢ € A,,. Notice
that if the characteristic ist 2 andh, (v, vo) = d, thend = (—1)%ed, SO h, (vy, Vo) =

d/2+ (—1)%ed /2, thus any superform is then tracic.

Lemma 4.5. Let V be a finite dimensional right module over a division superrihgnd
leth,:V x V — A be anondegenerate hermitian or skew-hermitian tracic form such that
V =U & W with U and W subspaces such that (U, U) = 0anddimU =dimW. Then
there is a subspac® of V such thatV = U @& W andh, (W, W) = 0.

Proof. It is enough to give an homogeneous basis, ..., x,, y1,...,y»} of V (as a
A-module) such thafxy,...,x,} is a basis ofU, h,(x;, y;) = 8;; and h,(x;, x;) =
hy(yi,y;) =0 foranyi, j. If A; #0 andv =1, take 0# p € A7 with i = £u (this
is always possible) and defirieby A(x, y) = phy(x,y). Then, ifdy = (—1)°udsp?
for anyds € A, 8 =0,1, o is a new superinvolution oft and/ satisfiesh(vy, wgds) =
h(vg, wg)ds and, if i = &’ with ¢’ = +1:

h(ve, wg) = why (va, wp) = (=) peh, (g, ve)
= (=1 (— 1) P %eh, (wp, va)7 1
= (=D (=)MPH (—ee')hy (wp, va)” 1”
= (=1 (—e&’) (nhy(wp, va))’
SO/ is —e&’-hermitian. Besides, #t, (vy, vy) = ¢+ (—1)%&¢, for ¢ € A1, thenh(vy, ve) =

wlc+ (=D%c) = uc + (—1~)°‘8;LEM_1M =puc— (=% cu = puc + (=D)%e’cu’ =
ue + (—1)%(—ee’)(uc)?, soh is tracic too.
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Hence, ifA7 # 0, we may assume = O; but theni = h,|v,xv, is e-hermitian and by
the proof of [7, Lemma 3], there is Az-basis{x1, ..., x,, y1, ..., yz} 0of V5 (and hence a
A-basis ofV) with the required properties.

Now assumeA; = 0. If v =0, h,|Vy x Vj is e-hermitian andh, |V; x Vj is (—¢)-
hermitian, so the arguments in [7, Lemma 3] apply to both situations and one obtains the
required basis by joining the obtained base¥grand Vj.

Finally, assumet; = 0 andv = 1. Thenhi(Vj, Vg) = 0= hq(Vy, V7) (so any suclhj is
trivially tracic). Take{xs, ..., x,} to be anyA-basis ofUg and, sincei; : Uy x W — Ais
a nondegenerate sesquilinear form, a basis..., y,} can be chosen iW; such that
hi(x;,y;) = 8;; for anyi, j (notice thathj(x;,x;) = 0= hi(y;, y;) for anyi, j since
hi(Vg, Vg) = 0 = hi(V1, V7). In the same way, take bas¢s 1, ...,x,} of U; and
{zr41, ..., 20} Of Wy with hi(x;,z;) = 6;; for anyi, j =r +1,...,n. Finally, for any
i=1,...,n—r consider the element ; = z,4; — & Y _;_1 xthi (1, z+i), which satisfies
also thathj(x,4, y,4i) = 6;; forany j =1,...,r. But now, for anyj =1,...,r and
i=1....,n—r,

,
hi(yj Yr4i) =hi (Vs 2r4i) — & Y hi (v x0)h1 (31, 2r1i)
=1

=hi(yj, zr+i) — ehi(yj, x;)hi(yj, Zr+i)
=hi(yj, Zr+i) _82hi(yszr+i) =0 ad

Proposition 4.6. Let A be a finite dimensional central simple superalgebra of even type
over the fieldE with a superinvolutior, and letB be a maximal subalgebra ef over E
of type(i) in TheorenR.2such thatB N B* is a maximak-subalgebra ofd. Then

(i) If there is an idempoter® # e € Ay such thatB N B* = S(eV) N S((1 — e*)V)
and eV N (1 — e*)V =0, thene can be chosen such that= ¢*. In this case
BNB*=eAe® (1—e)A(1l—e).

(i) If there is an idempotend # e € Ay such thatB N B* = S(eV) N S((1 — e*)V)
and e*e = 0 and if the involutionx on A is induced by a nondegenerate tracic
hermitian or skew-hermitian superform dn, thene can be chosen such that e*
and (1 — e)(1 — e*) are orthogonal idempotents with= ¢ + ¢* + (1 — e)(1 — e*)
((1—e)(1—e*) may be0). In this case

BNB*= (eA + Ae*) ®1- e)(l - e*)A(l - e)(l— e*)
=cAePe*Ae* D (1—e) (1 — e*)A(l - e)(l — e*) @ eAe*
BeA(l— e)(l — e*) B 1—e) (1 — e*)Ae*.
Proof. In case (i), as in [7, Lemma 2]y = eV & (1 — ¢*)V and if i, is a nonde-
generate hermitian or skew-hermitian superformioimducingx, a,(eV, (1 — e*)V) =
hy(V,e*(1—e*)V) =0, soeV and(1 — ¢*)V are orthogonal subspaces. Take the projec-

tion g € Ag of V ontoeV parallel to(1 — ¢*) V. By orthogonalityg = g’=g* gV=eV
andyg is the idempotent looked for.
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In case (ii), letf =1 — e, thene* f =e*(e+ f) = e*1=¢*, SO f*e = ¢. Hence

P f=fffA—e)=ff*— ffre=ff*— fe= ff*,
(FF¥ = fF5ff* = fFE £ = ff*

Also e(ff*) =0, (ff*e= fe=0, ande*(ff*) =e*f*=0=(ff")e*, s0 ff* is an
idempotent orthogonal to both and ¢*. Besides, sinceV C f*V, one hasef*V C
eV =eeV Cef*V, soef*V =eV. Moreover, 1— ¢* — ff* = f* — ff* =ef*, so
V=e*Ve(ffHVD A—e*— ffV =(eV @ e*V) @ ff*V. Leth, be an hermitian
or skew-hermitian nondegenerate superfornmvoimducingx. Sincee* ff* =0=-eff*,
eV @ e*V is orthogonal tof f*V, and sincee*e = 0, i, (eV,eV) = 0. By the previous
lemma, there is another isotropic subspélcef eV @ e*V such thatV @e*V =eV o U,
soV=eVdUG®® ff*V. Let g be the projection onte@V parallel toU & ff*V.
Theng =g%¢ AgandgV =eV. Sinceh,(V,g*gV) =h,(gV,gV) =h,(eV,eV) =0,
g*g = 0. Let a be the orthogonal projection ontoV @ ¢*V = gV @ U parallel to
ff*V. By orthogonalitya = a2 = a*. Also, h,((a — g)V,(a — g)V) = h,(U,U) =0,
S0 0=(a—g")(a—g)=a—g— g*andg* =a — g is the projection ont@ parallel to
eV ff*V.Finally,gg*=gla—g)=0and1-—g)(1—g¢g*)=1—g—g*=1—aisthe
projection ontof f*V parallel toeV @ e*V. Thus,g, ¢* and(1— g)(1— g*) are mutually
orthogonal idempotents whose sum is 1 grid the idempotent looked for.O

Now, let us consider the maximal subalgebras of types (ii) and (iii) in Theorem 2.2.

Theorem 4.7. Let A be a finite dimensional central simple even superalgebra dver
with a superinvolutionx. Let B = C4(K) be a maximal superalgebra of over E of
type (i) in Theorem2.2 ThenB N B* is a maximalx-subalgebra ofA if and only if
M* =alg(K, K*) is a field such thad// E has nox-stable intermediate subfield®Notice
that BN B* = C4(K) NCA(K*) = Cp(M).)

Proof. If B is of type (ii) in Theorem 2.2 an = C4(K) thenB* = C4(K™).

If K*= K thenB N B* = B is a maximal subalgebra of and hence a maximat
subalgebra ofi.

If K*# K, we follow the steps in the proof of Theorem 3.8: by Corollary B3) B*
is contained in a maximal subalgebra of type (i) in Theorem 2.2 urdes®8 N B*)
is a division superalgebra. But # N B* < S(W) for some proper subspad&, then
B N B*C S(W)N S(W)*. Since BN B* is a maximalx-subalgebra, it follows that
B N B* = S(W) N S(W)*. But S(W)* is again a maximal subalgebra df of type
(i) in Theorem 2.2 (see the proof of Theorem 4.4), and this gives a contradiction with
Proposition 2.4. Henc€4 (B N B*) = G, a division superalgebra. Now writé = E(c),
thenK* = E(c*). SinceK # K*, ¢ + ¢* ¢ E . Thereforex acts as the identity on the field
F(c+c*) C G with F ={x € E | x* = x}. As in the proof of Theorem 3.8, pick a minimal
field L such thatF ;Cé L C F(c + ¢*) and deduce thaM = alg(K, K*) = E(c + ¢*)
satisfies thadt/ E has no proper intermediatestable subfields (thus being in the situation
of Lemma 3.2).
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The converse is a consequence of the “super” versions of Lemma 3.5 and Corollary 3.6
(with A an even finite dimensional central simple superalgebsasuperinvolution an&
or M contained inAg). O

Theorem 4.8. Let A be a finite dimensional central simple even superalgebra @er
Let B be a maximal subalgebra of tyfi) in Theorem2.2, so B = C(u) with u € Aj,
0+ u® e E. ThenB N B* is a maximak-subalgebra ofA if and only ifu* € Eu.

Proof. SupposeB N B* is a maximak-subalgebra and* ¢ Eu. Thereforeuu™ ¢ E and
BNB*=Cp(u,u*) C Ca(uu®).

As in the previous proofB N B* is not contained in a maximal subalgebra of type (i) in
Theorem 2.2 and, therefor&,= C4 (B N B*) is a division superalgebra.

Hence E(uu*) € C4o(B N B*) = K and E(uu™) is a x-stable field extension of.
Let L be a minimalx-stable subfield such thaft ;Ct L € E(uu™). Then B N B* =
Ca(u,u*) C Ca(uu™*) C Ca(L). By maximality,B N B* = C4(L) € Ca(u). ThenE1l +
Eu = C4(Ca(u)) € Ca(Ca(L)) = L by the Double Centralizer Theorem, and thus
u € L C Ag, a contradiction. Hence* € Eu. Besides, ifu® = Au, A € E thenir* =1
(v = (u™)* = Au™* = Ar*u).

Conversely, ifu* € Eu then B N B* = B is a maximal subalgebra of over E and
hence it is a maximat-subalgebraofi. O

The final case to be considered is the case of the central simple odd superalgebras.

Theorem 4.9. Let A be a finite dimensional central simple odd superalgebra aver
Suppose thatt = Ag @ Agu, with u € Z(A); such thatd # u? € E. Let B be a maximal
subalgebra ofd over E. ThenB N B* is a maximak-subalgebra ofA if and only if either

() B = By ® Byu, with By a maximal subalgebra of\; and By N B a maximal
*-subalgebra ofA ;.

(i) B = Aj.

(i) Ap is a Zo-graded algebra Ay = Cg @ C3, with Cj = C5 and C = C3, and
B =Cq® Cqu.

Proof. We recall that* € Z(A); and hence™ = Au with A € E.

If Bisoftype (i) in Theorem 2.33 N B* = (ByN Bg) @ (BN Bg)u and, by maximality,
By N B} is a maximak-subalgebra ofi, with By a maximal subalgebra ofj.

Conversely, if B N B* C T, with T a subalgebra ofA such thatT* = T, then
By N By < Ty = T HenceBy N By = Tj. Sinceu € B N B, it follows thatu € T and
T; = Tqu € B N B*. ThereforeB N B* is a maximak-subalgebra ofd.

If B is of type (ii) in Theorem 2.3, that is} = A, thenB N B* = A is a maximal
subalgebra ofs and, therefore, a maximalsubalgebra ofi.

If B is of type (iii) in Theorem 2.3, theAj is aZ;-graded algebradg = C @ C3, and
B = Cy @ Cju. Notice thatA = B @ Bu and, since« ¢ B, BN B* S Z(A)(B N B*) =
(BN B*) + (BN B*)u. But Z(A)(B N B*) is x-stable, so by maximalitA = B @ Bu =
(BN B*) + (BN B*)u and henceB = B*, that is,Cci; =Cp andCil" =Cj.
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The converseis cleaB N B* = B is a maximal subalgebra df and thus itis a maximal
subalgebra ofA, x). O
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