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Abstract

The maximal subalgebras of the finite dimensional central simple associative superal
possibly endowed with a superinvolution, are determined. This relies on the corresponding d
tion by M. Racine in the ungraded case, which is completed here too.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Given an algebraic or geometric structure, the knowledge of its maximal substru
has a great interest. For example, the classical problem of the classification of pri
transformation groups, posed by S. Lie at the end of the last century [6], is equiva
the determination of certain maximal subgroups in Lie groups. This fact led E. Dy
in 1952 to describe the maximal subgroups of certain classical groups [3], and al
maximal subalgebras of semisimple Lie algebras [2]. More recently, in 1974, M. R
determined the maximal subalgebras of finite dimensional central simple algebras fo
of the following classes: associative, associative with involution, alternative and s
and exceptional Jordan algebras [7,8]. A very subtle case is missing in his determ
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of the maximal∗-subalgebras of central simple associative algebras with involution.
case will be completed here. The same question for central simple Malcev algebr
solved by the first author in 1986 [4].

This paper is devoted to the determination of the maximal subalgebras of
dimensional central simple superalgebras which are either associative or associati
superinvolution.

First of all, let us recall some basic features of superalgebras. LetF be a field, a
superalgebraA over F is a Z2-graded vector spaceA = A0̄ ⊕ A1̄ over F , endowed
with a multiplicationA × A → A which respects theZ2-graduation:AαAβ ⊆ Aα+β

(α,β ∈ Z2). If a ∈ Aα we say thata is anhomogeneous elementand we use the notatio
ā = α. A superalgebraA is said to be nontrivial ifA1̄ 
= 0. We remark that the cente
of A is a superalgebraZ(A) = Z(A)0̄ ⊕ Z(A)1̄. Let Z = Z(A)0̄, A is said to be a
central superalgebra overF if Z = F . Given a superalgebraA, it is said to be asimple
superalgebraif there is no proper nontrivial graded ideal inA andA2 
= 0. In this caseZ
is a field.

In [10], Wall described the structure of finite dimensional simple associative supe
bras (see also [1,9]).

Theorem 1.1. Let A be a finite dimensional nontrivial central simple associat
superalgebra over a fieldF . Then either:

(i) Z(A)1̄ = 0, and this happens if and only ifA is central simple as an(ungraded)
algebra overF . Then there exists an elementz ∈ Z(A0̄) such thatza1 = −a1z for
anya1 ∈A1. In this caseA is said to be of even type.

(ii) Z(A)1̄ 
= 0, and this happens if and only ifA0̄ is a central simple algebra overF .
ThenA is said to be of odd type. In this caseZ(A) = F ⊕ Fu with 0 
= u2 ∈ F and
A=A0̄ ⊕A0̄u.

Given a superalgebraA overF we say that a graded vector spaceM = M0̄ +M1̄ over
F is a leftA-supermoduleif it is a left A-module and verifiesAiMj ⊆ Mi+j (mod 2) for
all i, j ∈ {0̄, 1̄}. TheA-moduleM is said to beirreducible if AM = M and it contains no
proper graded submodule.

A unital associative superalgebraA is said to be adivision superalgebraif all its nonzero
homogeneous elements are invertible. If∆ is a division superalgebra with∆1̄ 
= 0 andM
is a∆-supermodule, thenM is a free∆-module: any basis ofM0̄ as a vector space ov
∆0̄ is a basis ofM as a module over∆.

In [9], M. Racine proved the graded version of Schur’s Lemma and the Density The
for associative superalgebras. Both results are instrumental for the paper:

Theorem 1.2 (Graded Schur’s Lemma).LetA be an associative superalgebra. LetV be
an irreducible leftA-supermodule. ThenEndA(V )=∆ is a division superalgebra.

Theorem 1.3 (Graded Density Theorem).LetM be an irreducible left supermodule forA
and let∆ = EndA(M). Then for every positive integern, any elementsv1, . . . , vn ∈ Mα
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which are linearly independent over∆0̄, and anyw1, . . . ,wn ∈ Mβ , there is an elemen
a ∈A such thatavi =wi for everyi = 1,2, . . . , n.

And, as a consequence:

Theorem 1.4. Let V be an irreducible leftA-module and∆ = EndA(V ). If A is a finite
dimensional simple superalgebra, thenA ∼= End∆(V ). Besides, the types ofA and ∆

coincide.

Throughout the paper we will identify, under the conditions of this theorem,A with
End∆(V ).

As a general rule, ifV is a left module forA, ∆ = EndA(V ) will be assumed to ac
on the right, so thatV becomes a right module for∆ and, therefore, a right module fo
Aop ⊗F ∆. HereAop denotes the opposite algebra, whileAsop will denote the opposite
superalgebra (wherex · y = (−1)x̄ȳyx, for any homogeneous elementsx, y ∈A).

Finally, let us recall the following version (see [5]) of a basic result in associ
algebras, the Double Centralizer Theorem for central simple algebras, that will be
quite often.

Theorem 1.5. Let B be a semisimple subalgebra of a finite dimensional central sim
algebraA. Then the double centralizerCA(CA(B)) is preciselyB. If B is simple, so is
CA(B).

Our purpose is to extend to the setting of associative superalgebras the results by
on associative algebras [7, Theorems 1–4]. We reproduce below [7, Theorem 1].

Theorem 1.6. LetA be a finite dimensional central simple algebra over the fieldF , let V
be an irreducibleA-module and letD = EndA(V ). Then a subalgebraS of A overF is
maximal if and only if either:

(i) S = S(W)= {a ∈A: aW ⊆W }, for W a properD-subspace ofV .
(ii) S = CA(K) = {a ∈ A: ak = ka ∀k ∈ A} whereK/F is a field extension withou

intermediate subfields.

Notice that the subalgebra in item (i) above can be described asS(W) = eAe+ eAf +
fAf , where 0
= e 
= 1 is a projection inA= EndD(V ) ontoW , so thate is an idempotent
andf = 1− e. HereW = eV .

In Section 2 this will be extended to superalgebras, not “superizing” the proofs i
but providing new shorter proofs. Section 3 is devoted to complete [7, Theorem 4], w
very subtle case is missing, providing first a counterexample to the old result. This wi
out to be the most difficult part of the paper. Then, in Section 4, the results for superal
which extend [7, Theorems 2–4] will be proved.
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2. Maximal subalgebras of associative superalgebras

We begin by studying maximal subalgebras of finite dimensional central si
associative superalgebras. In the following the word subalgebra will be used in the g
sense. First, let us remark the next general result:

Lemma 2.1. LetF be a finite extension of the fieldE andS a maximalE-subalgebra ofA,
a central simple superalgebra overF . ThenS contains1, the identity ofA.

Proof. If 1 /∈ S then the algebra generated byS and 1, that will be denoted by alg(S∪{1}),
verifies that alg(S∪{1})=A, becauseS is maximal. ThenS is a nonzero graded ideal ofA.
ButA is a simple superalgebra, and hence 1∈ S. ✷

Now we describe the maximal subalgebras of simple superalgebras of even type

Theorem 2.2. LetA be a finite dimensional central simple associative superalgebra
F of even type, letV be an irreducible leftA-module and let∆ = EndA(V ). Let S be a
subalgebra ofA. ThenS is a maximal subalgebra ofA if and only if either:

(i) There exists a graded proper∆-submoduleW such thatS = {a ∈ A | aW ⊆ W }
(stabilizer ofW ).

(ii) There exists a fieldK with F � K ⊆ A0̄, such that there are no proper intermedia
subfields betweenF andK, such thatS = CA(K) (the centralizer ofK in A).

(iii) There existsu ∈A1̄ with 0 
= u2 ∈ F such thatS = CA(u).

These conditions are mutually exclusive.

Proof. LetV be an irreducible leftA-module, thenV is also an irreducible right(Aop⊗F

∆)-module and therefore a right(Sop ⊗F ∆)-module. Notice that EndAop⊗F∆(V ) = {ϕ ∈
End∆(V ) = A: [ϕ,A] = 0} = Z(A) = F , so by density we can identifyAop ⊗F ∆ =
EndF (V ).

If W is a proper graded(Sop ⊗F ∆)-submodule thenS ⊆ {a ∈ A | aW ⊆ W }. By
maximality,S = {a ∈A | aW ⊆W }.

Conversely, withW as before andS = {a ∈ A | aW ⊆ W }, let us show thatS is
maximal, even as an ungraded subalgebra ofA. Let e = e2 ∈ A0̄ be a projection ontoW ,
thenS = eAe + eAf + fAf , with f = 1 − e. For any homogeneous elementaα ∈ fAe,
sinceA is (graded) simple,fAfaαeAe = fAe and hence alg(S ∪ {aα})=A (ungraded).

In this case, notice thatCA(S) ⊆ CA(e) = eAe ⊕ fAf whereeAe,fAf are central
simple superalgebras (the first one being isomorphic to End∆(W)), soCA(S)⊆Z(eAe)⊕
Z(fAf )= Fe+Ff , and sincef, e /∈ CA(S) it follows thatCA(S)= F1. This shows tha
suchS does not appear in cases (ii) nor (iii).

Now, if V is an irreducible (graded) right module forSop ⊗F ∆, let

K = EndSop⊗F∆(V )⊆ End∆(V )=A,
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which is, by the graded Schur’s Lemma (Theorem 1.2), a division superalgebra. N
that K = EndSop⊗F∆(V ) = {ϕ ∈ End∆(V ) | [ϕ,S] = 0} = CA(S). Then, by identifying
Aop ⊗F ∆= EndF (V ), Sop ⊗F ∆ corresponds to EndK(V ). SinceS 
=A, alsoF 
=K.

If K0̄ 
= F andK̃ is a minimal field withF � K̃ ⊆ K0̄, thenS ⊆ CA(K) ⊆ CA(K0̄) ⊆
CA(K̃) so, by maximality and sinceA is central,S = CA(K̃). By the Double Centralize
Theorem,K̃ = CA(S)=K.

On the other hand, ifK0̄ = F , thenK = F1+Fu with u ∈A1̄ such that 0
= u2 = α ∈ F

andS ⊆ CA(K) so, by maximality,S = CA(K).
Conversely, withK either a minimal field extension ofF contained inA0̄ or K =

F1 + Fu as above, letS = CA(K), then Sop ⊗F ∆ = CAop⊗F∆(K ⊗ 1) = EndK(V ).
HenceV is an irreducible (graded)Sop ⊗F ∆-module, the graded division algebraK
being its centralizer (K = EndSop⊗F∆(V )). If S ⊆ T ⊆ A for some subalgebraT , then
F ⊆ EndT op⊗F∆(V )⊆ EndSop⊗F∆(V )=K, henceCA(T ) is eitherF orK and, by density
T op⊗F ∆ is either EndK(V )= Sop⊗F ∆ or EndF (V )=Aop⊗F ∆. Thus eitherT = S or
T =A, as required. ✷

Notice that Theorem 2.2 covers the ungraded case too, thus providing a new proo
Theorem 1]. This also shows that the subalgebras in (i) or (ii) are maximal even as un
algebras. We will later use the fact that the subalgebras in (i) above are descri
S = eAe+ eAf + fAf , wheree is a nontrivialevenidempotent andf = 1− e. Therefore
there is a basis ofV such that, when identifyingA with Matn(∆), S is formed by the uppe
block triangular matrices: (∗ ∗

0 ∗
)
.

One can argue that the arguments in the proof above are not “super” argumen
could have proceeded as follows:V is a module forAsop, whereAsop is the opposite
superalgebra (aα · bβ = (−1)αβbβaα), by means ofvα · aβ = (−1)αβaβvα , and therefore i
is a right module forAsop⊗̂F ∆ (where the graded tensor product is used). The centra
of Ssop ⊗̂F ∆ centralizes the action of∆, so it is in A = End∆(V ) and thus, it is the
supercentralizer ofS. In this way one obtains (i), (ii) or a new (iii)’: There existsu ∈ A1̄
with 0 
= u2 ∈ F such thatS = ĈA(u), the supercentralizer ofu: an homogeneous eleme
aα is in ĈA(u) if aαu = (−1)αua (sinceu is odd). However, sinceA is even, there exist
0 
= z ∈Z(A0̄) such that 0
= z2 ∈ F andza = −az for anya ∈A1̄. ThenĈA(u)= CA(zu)

and (iii) is recovered.

Corollary 2.3. LetA be a finite dimensional central simple associative superalgebra
F of even type, and letS be a proper subalgebra ofA. Then eitherS is contained in
a maximal subalgebra of type(i) in Theorem2.2, or CA(S) is a division superalgebra
strictly containingF .

Proof. If S is not contained in a subalgebra of type (i), thenV is irreducible as a modul
overSop⊗F ∆, soC = CA(S)∼= EndSop⊗F∆(V ) is a division superalgebra by Theorem 1
and, by density,Sop ⊗F ∆= EndC(V ). SinceS � A, it follows thatF � C. ✷
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Later on, the following extension of [7, Proposition 1] will be needed.

Proposition 2.4. LetA be a finite dimensional central simple superalgebra overF of even
type, letV be an irreducible leftA-module and let∆= EndA(V ). If U andW are different
proper∆-submodules ofV , then the only maximal subalgebras ofA overF which contain
S(U) ∩ S(W) are S(U), S(W) andS(U ∩W), S(U + W) if they are maximal, that is, i
W ∩U 
= 0,W +U 
= V .

Moreover the expressionS(U)∩ S(W) is unique, that is, ifS(U)∩ S(W)= B ∩C with
B,C maximal subalgebras ofA overF , then{B,C} = {S(U),S(W)}.

Proof. Let V = V1 ⊕ V2 ⊕ V3 ⊕ V4, where all theVi ’s are graded andV1 = U ∩ W ,
U = V1 ⊕ V2, W = V1 ⊕ V3 (V1 andV4 can be zero). We denote byei ∈ End∆ V = A

the projection ofV ontoVi associated to this decomposition. Thenei ∈ A0̄ for any i and
1 = e1+e2+e3+e4. Consider the Peirce decomposition ofA relative to these idempotent
A = ⊕4

i,j=1Aij , whereAij = eiAej . One can check, for instance just looking at
expression:




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 ∩




∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗


 =




∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗


 ,

that S(U) ∩ S(W) = A11 ⊕ A12 ⊕ A13 ⊕ A14 ⊕ A22 ⊕ A24 ⊕ A33 ⊕ A34 ⊕ A44. So
CA(S(U)∩ S(W))⊆ ⋂4

i=1CA(ei)=A11 ⊕A22 ⊕A33⊕A44 ⊆ S(U)∩ S(W), and hence
CA(S(U) ∩ S(W)) ⊆ ⊕4

i=1Z(Aii) = ⊕4
i=1Fei ⊆ A0̄. For any subalgebra containin

S(U) ∩ S(W), its centralizer is contained inCA(S(U) ∩ S(W)) ⊆ ⊕4
i=1Fei ⊆ A0̄, thus

avoiding types (ii) and (iii) in Theorem 2.2. Now, ifS(U)∩S(W) ⊆ S(X) for some prope
∆-submoduleX, sinceeiAei ⊆ S(X) for anyi = 1,2,3,4,X is a sum of some of theVi ’s.
SinceAe4 ⊆ S(X), V4 is not contained inX, and sincee1A ⊆ S(X), V1 ⊆ X. Therefore
X is eitherV1 = U ∩ W , V1 ⊕ V2 = U , V1 ⊕ V3 = W or V1 ⊕ V2 ⊕ V3 = U + W . The
uniqueness of the expressionS(U) ∩ S(W) now follows easily. ✷

Next we will describe the maximal subalgebras of the simple superalgebras of odd

Theorem 2.5. LetA be a finite dimensional central simple associative superalgebra
F of odd type. ThenA = A0̄ ⊕ A0̄u, with u ∈ Z(A)1̄ such that0 
= u2 ∈ F , andA0̄ is a
central simple algebra. LetS be a subalgebra ofA. ThenS is a maximal subalgebra ofA
if and only if either:

(i) S = S0̄ ⊕ S0̄u with S0̄ a maximal subalgebra ofA0̄.
(ii) S =A0̄.
(iii) A0̄ is a graded algebra: A0̄ = C0̄ ⊕C1̄, andS = C0̄ ⊕C1̄u.

This conditions are mutually exclusive.
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Proof. Let Z = Z(A) = F1 + Fu be the center ofA. SinceS ⊆ ZS ⊆ A, it follows by
maximality that eitherZS = S orZS =A.

If S = ZS, u ∈ S because 1∈ S. This implies thatS1̄ = S0̄u andS = S0̄ ⊕ S0̄u. Since
S is a maximal subalgebra ofA, it follows thatS0̄ is a maximal subalgebra ofA0̄. The
converse is clear.

If ZS = A, A0̄ = S0̄ + S1̄u andA1̄ = S1̄ + S0̄u. SinceS0̄ ∩ S1̄u is an ideal ofA0̄,
becauseS0̄(S1̄u)⊆ S1̄u and(S1̄u)

2 ⊆ S0̄, andA0̄ is simple, it follows thatA0̄ = S0̄ ⊕ S1̄u

is a graded algebra. If the grading is trivial, that is,S1̄u = 0 = S1̄, thenS = A0̄ andS
is a maximal subalgebra ofA. Otherwise,A0̄ = C0̄ ⊕ C1̄ with C0̄ = S0̄, C1̄ = S1̄u and
S = S0̄ ⊕ S1̄ = C0̄ ⊕C1̄u.

Conversely, ifA0̄ = C0̄ ⊕ C1̄ and S = C0̄ ⊕ C1̄u, thenA = S ⊕ Su ∼= S ⊗F Z as
algebras. We notice thatS is a central algebra becauseZ(A) = F1 + Fu andZ(S) �
Z(A)= F ⊕ Fu. Now we claim thatS is a simple algebra. If̃F is a splitting field of the
polynomialX2 − α ∈ F [X], whereα = u2, it follows thatϕ :S ⊗F F̃ → A0̄ ⊗F F̃ given
by ϕ((c0̄ + c1̄u)⊗ 1)= c0̄ ⊗ 1+ c1̄ ⊗ α1/2 is an isomorphism. SinceA0̄ is central simple
overF , so isS. HenceS is a maximal ungraded subalgebra ofS ⊗F Z ∼=A and, therefore
S is a maximal subalgebra ofA. ✷

Later on, also the following extension of [7, Corollary 1] will be needed:

Corollary 2.6. LetA be a finite dimensional central simple associative superalgebra
a fieldE and suppose thatE/F is a finite field extension. LetS be a subalgebra ofA
overF . ThenS is a maximal subalgebra ofA overF if and only if either:

(i) ES ⊆ S andS is a maximal subalgebra ofA overE.
(ii) There exists a fieldK such thatF ⊆ K � E and the extensionE/K contains no

proper intermediate subfields, such thatS is a central simple superalgebra overK
andE ⊗K S ∼=A (α ⊗ s �→ αs) asE-algebras.

Proof. Let S be a maximal subalgebra ofA overF , thenS ⊆ES ⊆A and, by maximality,
eitherS =ES orES =A. By Lemma 2.1, 1∈ S.

If S =ES thenS is anE-subalgebra and henceS is a maximal subalgebra ofA overE.
If A = ES then S is a finite dimensional prime superalgebra overF and soS is a

simple superalgebra (one may argue as follows: letI by a minimal left (graded) idea
of S, by primenessI is a faithful and irreducible left module forS, so if ∆ = EndS(I),
by graded density and finite-dimensionality,S = End∆(I) is simple). LetK =Z(S)0̄, then
sinceES =A, F ⊆K � E =Z(A)0̄ andϕ :E⊗K S →A :α⊗ s �→ αs, is onto. Therefore
ϕ is an isomorphism becauseE ⊗K S is a simple superalgebra. Moreover ifK � K ′ ⊆E,
S =KS � K ′S ⊆A and by maximalityK ′S =A andK ′ =E.

Conversely, ifS is a maximal subalgebra ofA overE andS ⊆ T with T anF -sub-
algebra thenE ⊆ ES = S ⊆ T andT is E-subalgebra. ThereforeT = S or T = A. This
implies thatS is a maximal subalgebra ofA overF .

If F ⊆ K � E, such thatE/K contains no proper intermediate subfields, andS is a
central simple superalgebra overK with E⊗K S ∼=A, letT be a maximal subalgebra ov
F such thatS � T � A. ThenA = ES ⊆ ET , so thatE ⊗K ′ T ∼= A, with K ′ = Z(T )¯ .
0
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But K ′ verifies thatK ⊆ K ′ ⊆ E. So eitherK ′ = E orK ′ = K becauseE/K contains no
intermediate subfields. IfK ′ = E, T is a subalgebra overE andT = A. If K ′ = K, then
E⊗K T ∼=A∼=E⊗K S andS = T . ThereforeS is a maximal subalgebra ofA overF . ✷

3. Maximal subalgebras of associative algebras with involution

Let A be an algebra over a fieldF , endowed with an involution∗. A ∗-ideal
(respectively∗-subalgebra) of A, is an idealI (respectively subalgebraS) of A which
verifies I∗ = I (S∗ = S). For example, the center ofA, Z(A), is a ∗-subalgebra ofA.
ThenA is said to be∗-simpleif A2 
= 0 and 0 andA are the only∗-ideals ofA. Suppose
now thatA is a finite dimensional∗-simple associative algebra overF . Then either
∗|Z(A) = Id, and∗ is said to be an involution of the first kind, or∗|Z(A) 
= Id, and then
∗ is said to be of the second kind.A is said to be central, as an algebra with involution
{z ∈Z(A): z∗ = z} = F1. If C is a maximal∗-subalgebra ofA overF , thenC ⊆ B with B

a maximal subalgebra ofA overF . SinceC is a∗-subalgebra,C ⊆ B ∩B∗, butB ∩B∗ is
also a∗-subalgebra, so the maximality ofC as∗-subalgebra impliesC = B ∩B∗. Hence,
to determine the maximal∗-subalgebras ofA we only need to determine the conditions
B ∩B∗ to be a maximal∗-subalgebra, forB a maximal subalgebra ofA overF .

In [7, Theorem 4] the following result is set:

Theorem 3.1. LetA be a finite dimensional central∗-simple algebra overE and letB be
a maximal subalgebra ofA overE. ThenB ∩ B∗ is a maximal∗-subalgebra ofA if and
only if either:

(i) B is of type(i) in Theorem1.6, B = eAe ⊕ eAf ⊕ fAf with eV ∩ f ∗V = 0, eV or
f ∗V , whereV denotes an irreducible leftA-module.

(ii) B is of type(ii) in Theorem1.6, B = CA(K) with K∗ =K.

Next, a counterexample will be given to show that a case is missing in the a
theorem. But first some preliminaries are needed.

Lemma 3.2. There exists a finite separable field extensionM/F with an order 2
automorphismId 
= ϕ ∈ AutFM (ϕ2 = Id), such that the lattice of subfields is

�
�
�
�

�
��

�
�
�
�
������

�����

E

K ′ = ϕ(K)

M

K

F

L

whereL= {α ∈M: ϕ(α)= α}.
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Proof. Notice that if there exists such extension, thenϕ(E) = E andϕ|E 
= Id must be
verified and, therefore,E/F andM/L are Galois field extensions of degree two.

It is well known that there are Galois field extensions with Galois groupSn, the
symmetric group of degreen. So it is enough to find a symmetric groupSn with two
subgroupsA andG, A ⊆ G, such that the lattice of subgroups betweenA andG is as
follows:

�
�
�
�

�
��

�
�
�
�
������

�����

N

C2

A

C1

G

B

with N a normal subgroup ofG, [G :N] = 2 (and thereforeA=N ∩B a normal subgroup
of B with index 2), and such thatB is the semidirect product ofA and a cyclic group〈x〉
of order two (x2 = 1), andC2 = xC1x

−1 = xC1x. We notice that thenx /∈ N , because
B � N , thereforeG is the semidirect product ofN and〈x〉.

Actually, if the situation above exists for suitable subgroups, we can take

ϕ = x and F = Fix(G),

the set of elements in a Galois field extensionM/F ′, with Galois groupSn, which are
fixed by every automorphism ofG. Also we takeE = Fix(N) (and thenE/F is a Galois
extension of degree two),

K = Fix(C1), K ′ = Fix(C2)

(notice then that for anyα in the extension field,ϕ(α) ∈ Fix(xC1x
−1) if and only if

α ∈ Fix(C1), thereforeϕ(K)=K ′),

L= Fix(B) and M = Fix(A)

(and thereforeL = {α ∈M: ϕ(α) = α}). Then these fields satisfy the requirements of
lemma.

LetG be the semidirect product ofS3 × S3 and the cyclic group〈x〉 of order two where
(σ, τ )x = x(τ, σ ) for everyσ, τ ∈ S3. G is imbedded inS6 identifying S3 × 1 with the
subgroup ofS6 formed by the permutations of the set{1,2,3}, 1× S3 with the subgroup
of S6 of the permutations of the set{4,5,6}, andx with the permutation(14)(25)(36)
in S6. Let U = 〈(12)〉, which is a maximal subgroup ofS3, and considerA = U × U .
We claim that ifH is a group such thatU × U � H � S3 × S3, then eitherH = S3 × U

or H = U × S3. Suppose there exists an element(σ, τ ) ∈ H with σ /∈ U . If τ ∈ U , then
(σ,1) ∈H and, sinceU is maximal subgroup ofS3, thenS3 × 1 ⊆H and soH = S3 ×U .
If τ /∈U , multiplying if necessary by(1, (12)), we can suppose that there exists(σ, τ ) ∈H



A. Elduque et al. / Journal of Algebra 275 (2004) 40–58 49

eded.
such thatσ, τ /∈ U with σ andτ having different signature. So the order ofσ is either 2 or
3 and the order ofτ is either 3 or 2, respectively. Then(σ, τ )2 is either(1,µ) or (µ,1) with
µ /∈ U and so either 1×S3 ⊆H or S3 ×1 ⊆H , that is, eitherH = S3 ×U orH =U ×S3.

Similar arguments show that the lattice of subgroups betweenA = U × U andG =
(S3 × S3)� Z2 is

�
�
�
�

�
��

�
�
�
�
������

�����

S3 × S3

U × S3

U ×U

S3 ×U

(S3 × S3)� Z2

(U ×U)� Z2

as required. ✷
Lemma 3.3. Under the conditions of the lemma above,A = EndE(M) has an involution
of the second kind.

Proof. We consider the nondegenerateE-bilinear form 〈 , 〉 :M × M → E such that
〈x, y〉 = TM/E(xy), whereTM/E denotes the trace in the extensionM/E, and we define
h :M × M → E by h(x, y) = 〈ϕ(x), y〉 for any x, y ∈ M. Then h is an F -bilinear
map and anE-linear map in the second component. Moreoverh(y, x) = 〈ϕ(y), x〉 =
TM/E(ϕ(y)x)= TM/E(ϕ(ϕ(x)y))= ϕ(h(x, y)), thereforeh is hermitian andh determines
the involution of the second kind given byh(ax, y) = h(x, a∗y) for every a ∈ A

andx, y ∈M . ✷
TheM above is realized as a subalgebra ofA by means ofL :M →A such thatLx(y)=

xy for anyx, y ∈ M. For anyτ ∈ M, h(τx, y) = TM/E(ϕ(τx)y) = TM/E(ϕ(x)ϕ(τ )y) =
h(x,ϕ(τ )y), that is,τ ∗ = ϕ(τ). In particular,K ′ = ϕ(K)=K∗.

Theorem 3.4. Let M/F be a field extension satisfying the conditions in Lemma3.2, and
let A = EndE(M). ThenM = CA(M) is a maximal∗-subalgebra ofA overE. Moreover
if B = CA(K), thenB is a maximal subalgebra ofA overE, B ∩ B∗ = CA(M) andB is
neither of type(i) nor type(ii) in Theorem3.1.

Proof. The field extensionK/E has no proper intermediate subfields, soB = CA(K) is a
maximal subalgebra ofA overE andB ∩B∗ = CA(K)∩CA(K

∗)= CA(M)=M because
alg(K,K∗) = M and dimE A = (dimE M)2. If S is a maximal subalgebra ofA overE
such thatM ⊆ S, then sinceM (which is imbedded inA) stabilizes no subspace ofM (see
Theorem 1.6), it follows thatS is of type (ii) in Theorem 1.6, that is,S = CA(D) with
D/E a field extension without intermediate subfields. HenceE � D ⊆ CA(M) = M and
D is eitherK orK∗ because of Lemma 3.2. ThereforeCA(K) andCA(K

∗) are the unique
maximal subalgebras ofA overE containingM, and sinceCA(K) andCA(K

∗) are not
∗-subalgebras,M is a maximal∗-subalgebra ofA. ✷

To give a correct version of Theorem 3.1, still some extra preliminary results are ne
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Lemma 3.5. LetA be a finite dimensional central simple algebra overF , and letK be a
field such thatF � K ⊆A. ThenCA(K) is not contained in any maximal subalgebra ofA

of type(i) in Theorem1.6.

Proof. Without loss of generality, suppose thatA= EndD(V ), with V a right vector space
over the division algebraD. SinceCA(K)op ⊗F D is a simple algebra,V is completely
reducible as a module over it. IfW is a nonzero(CA(K)op ⊗F D)-submodule ofV , take
a (CA(K)op ⊗F D)-submoduleW̃ of V such thatV = W ⊕ W̃ . Let e ∈ EndF (V ) the
projection ofV ontoW . Thene is a nonzero idempotent ande ∈ EndCA(K)op⊗FD(V ) ⊆
EndD(V )=A. Thereforee ∈ CA(CA(K))=K and soe = 1, that is,W = V and there are
noD-vector subspaces ofV stabilized byCA(K). ✷
Corollary 3.6. LetA be a finite dimensional central simple algebra over a fieldE, endowed
with an involution∗, and letM/E be a field extension such thatE ⊆ M ⊆ A, M∗ = M

and such that there is no∗-stable intermediate subfields betweenE andM. ThenCA(M)

is a maximal∗-subalgebra ofA.

Proof. By Lemma 3.5, ifS is a maximal subalgebra ofA containingCA(M), then
S = CA(K), with K/E a minimal field extension such thatK ⊆ M. It has to be proved
thatCA(M)= S ∩ S∗.

If K =M thenS = CA(M) is maximal inA andS∗ = S, thereforeCA(M) is a maximal
∗-subalgebra ofA. If K 
= M, thenK andK∗ are subfields ofM, with K = E(c) and
K∗ =E(c∗) 
=K. Thereforec+c∗ /∈E andM =E(c, c∗)=E(c+c∗), becauseM has no
subfields which are stable under∗. In particular,S∩S∗ = CA(K)∩CA(K

∗)= CA(c, c
∗)=

CA(M). ✷
Proposition 3.7. LetM/E be a finite field extension, and letϕ ∈ Aut(M) such thatϕ 
= Id,
ϕ2 = Id, ϕ(E)⊆E, andM/E contains no properϕ-invariant intermediate subfields. The
either:

(i) M/E has no proper intermediate subfields, or
(ii) ϕ|E 
= Id and, in this case, ifL = {x ∈ M: ϕ(x)= x} andF = E ∩ L, it follows that

M/F is a separable field extension,L/F has no intermediate subfields and ifK is a
minimal subfield such thatE � K � M thenϕ(K) 
=K andM = alg(K,ϕ(K)).

Proof. Suppose thatM/E has intermediate subfields and letK be a minimal one, that is
K is a field such thatE � K � M. The hypotheses imply then thatϕ(K) 
=K, K =E(c),
ϕ(K)=E(ϕ(c)), with c + ϕ(c) /∈E andM =E(c,ϕ(c))=E(c + ϕ(c)).

If ϕ|E = Id, sinceϕ(c + ϕ(c)) = c + ϕ(c) it follows that ϕ = Id, a contradiction
Thereforeϕ|E 
= Id. Let L = {x ∈ M | ϕ(x) = x}, F = E ∩ L. If M ′ is a field such tha
F � M ′ � L, thenE � E(M ′) � M andE(M ′) is ϕ-invariant, a contradiction. Therefo
L/F has no intermediate subfields and, therefore, eitherL/F is a purely inseparable fiel
extension of degreep with p = charF , but then[M : E] = p, andp = [M : E] = [M :
K][K : E], a contradiction, orL/F is separable, that is,M/F is separable becauseM/L

is a Galois extension.✷
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Lemma 3.2 shows that the situation in case (ii) of Proposition 3.7 actually occurs
Finally, [7, Theorem 4] is completed to:

Theorem 3.8. LetA be a finite dimensional central∗-simple algebra overE and letB be
a maximal subalgebra ofA overE. ThenB ∩ B∗ is a maximal∗-subalgebra ofA if and
only if either:

(i) B is of type(i) in Theorem1.6, B = eAe ⊕ eAf ⊕ fAf with eV ∩ f ∗V = 0, eV or
f ∗V , whereV denotes an irreducible leftA-module.

(ii) B is of type(ii) in Theorem1.6:B = C(K), withK∗ =K.
(iii) ∗ is of the second kind,B = CA(K) with K/E a separable field extension witho

intermediate subfields,K 
= K∗ andalg(K,K∗)=M is a field such thatM/E has no
∗-stable intermediate subfields. In this caseB ∩B∗ = CA(K)∩CA(K

∗)= CA(M).

The three possibilities above are mutually exclusive.

Proof. Assume first thatB ∩ B∗ is a maximal∗-subalgebra ofA. If B is of type (i) in
Theorem 1.6, the argument in [7, Theorem 4] gives (i). OtherwiseB = CA(K), with K/E

a field extension without intermediate subfields. IfK =K∗ we are in case (ii) (soB∩B∗ =
B is maximal). If K 
= K∗ andG = alg(K,K∗), B ∩ B∗ = CA(G). Now, if B ∩ B∗
were contained inS(W) for some proper subspaceW , thenB ∩ B∗ ⊆ S(W) ∩ S(W)∗
and, by maximality,B ∩B∗ = S(W) ∩ S(W)∗, a contradiction with Proposition 2.4. Thu
CA(B ∩ B∗) (⊇ G) is a division algebra by Corollary 2.3, and so isG. As in the proof
of [7, Theorem 4] we pick a minimal fieldL such thatF � L ⊆ F(c + c∗) whereF =
{x ∈E: x∗ = x} andK =E(c). NowL= F(d) with d∗ = d . Consider the field extensio
E(d) of E, which is∗-stable. IfK � E(d), by the Double Centralizer Theorem it follow
that CA(E(d)) � CA(K) = B, andB ∩ B∗ = CA(K) ∩ CA(K

∗) � CA(E(d)), because
E(d)⊆E(c+c∗)⊆ alg(K,K∗). But this is a contradiction with the maximality ofB∩B∗,
becauseCA(E(d)) is a∗-subalgebra. ThereforeK ⊆ E(d) and soK∗ ⊆ E(d)∗ = E(d).
Hencec+c∗ ∈E(d), that is,c+c∗ ∈ L= F(d)= {x ∈E(d): x∗ = x} andL= F(c+c∗),
E(d) = E(c + c∗) = E(c, c∗) = alg(K,K∗) and F 
= E (otherwiseL = E(d) would
contain proper subfields:K andK∗). Finally the result follows by applying Corollary 3.
and Proposition 3.7 withM = E(d) = alg(K,K∗). The uniqueness follows easily fro
Lemma 3.5 and the Double Centralizer Theorem.✷

Theorem 3.4 gives examples of the situation in case (iii) above. In both types (i
(iii), B = CA(M) whereM =M∗ is a field such thatE � M ⊂A andM/E has no prope
intermediate∗-subfields.

4. Associative superalgebras with superinvolution

In this section, the maximal superalgebras in associative superalgebras with sup
lution will be studied. IfA is an associative superalgebra over a fieldF , let us remind that a
superinvolution∗ overA is an even linear map (that is, a map that appliesA¯ in A¯ andA¯
0 0 1
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n a
in A1̄), ∗ :A→A, such that for everya, b ∈A, a∗∗ = a and(ab)∗ = (−1)āb̄b∗a∗. A super-
involution∗ is said to be of the first kind if∗|Z = Id (recall thatZ =Z(A)0̄), otherwise it
is said to be of the second kind. IfA is an associative superalgebra with superinvolutio∗,
(A,∗) is said to be simple ifA has no proper (graded)∗-stable ideals and central if it i
unital andZ(A,∗)(= {z ∈ Z: z∗ = z})= F1.

From [9, Lemma 11] it is known that ifA is an associative superalgebra w
superinvolution∗, A0̄ is an artinian algebra and(A,∗) is simple, then either:

(1) there exists an idealB of A such thatB is simple andA = B ⊕ B∗. In this case
A0̄ = B0̄ ⊕ B ∗̄

0
is artinian and so isB0̄. ThereforeB is artinian and simple an

(A,∗)∼= (B ⊕Bsop,exch) (where exch denotes the exchange superinvolution), o
(2) A is an artinian simple superalgebra and then, eitherA ∼= Mn(∆) with ∆ a division

superalgebra, orA∼=Mp,q(D) with D a division algebra.

But something can be added. IfA ∼= Mp,q(D), with D a division algebra, sinc
A0̄

∼=Mp(D)⊕Mq(D) and 1∗ = 1, then eithere∗
i = ei for i = 1,2 ore∗

1 = e2 ande∗
2 = e1,

wheree1 ande2 are the unital elements of the simple ideals ofA0̄: Mp(D) andMq(D).
So in case (2) above the following possibilities appear:

(i) A∼=Mn(∆) with ∆ a division superalgebra.
(ii) A∼=Mp,q(D),A0̄

∼=Mp(D)×Mq(D) andMp(D),Mq(D) are∗-stable simple ideal
of A0̄. In this caseA1̄ = e1A1̄e2 ⊕ e2A1̄e1, wheree1 ande2 are the unital element
of Mp(D) andMq(D) respectively, and sincee∗

i = ei , it follows that∗ exchanges the
two irreducibleA0̄-subbimodules ofA1̄.

(iii) A ∼= Mp,q(D), A0̄
∼= Mp(D) × Mq(D), but ∗ exchanges the simple ideals ofA0̄:

Mp(D) andMq(D). ThenMp(D) ∼= Mq(D)op and hencep = q andA ∼= Mp,p(D).
Here∗ fixes the two irreducibleA0̄-subbimodules ofA1̄.

Lemma 4.1. Let (A,∗) be a superalgebra with superinvolution over a fieldF . If C is a
maximal∗-subalgebra ofA, thenC = B ∩B∗ withB a maximal subalgebra ofA.

Proof. If C is a maximal∗-subalgebra ofA overF thenC ⊆ B, with B a maximalF -
subalgebra ofA. ButC = C∗ ⊆ B∗, thereforeC ⊆ B ∩B∗. SinceB∩B∗ is a∗-subalgebra
of A, the maximality ofC impliesC = B ∩B∗. ✷

Thus to determine the maximal∗-subalgebras of a finite dimensional central supera
bra with superinvolution(A,∗) overF it suffices to determine the conditions forB ∩ B∗
to be a maximal∗-subalgebra ofA, for a maximalF -subalgebraB of A.

The following theorem can be proved following verbatim the non graded case (se
Thus the proof is omitted.

Theorem 4.2. Let (A,∗) be a superalgebra with superinvolution over a fieldF . If
(A,∗)∼= (B ⊕Bsop,exch) withB a finite dimensional central simple superalgebra, the
subalgebraS ofA is a maximal∗-subalgebra ofA if and only if either:
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(i) S = C ⊕Csop, for a maximal subalgebraC of B.
(ii) (B,−) is a central simple superalgebra overF with superinvolution− of the first kind

andS = {(b, b̄)α ∈B ⊕Bsop: bα ∈ Bα}.

Proposition 4.3. Let (A,∗) be a finite dimensional central superalgebra with superinvo
tion of the second kind over a fieldF . Assume thatA is simple, and letE =Z (a quadratic
Galois field extension ofF ). Let S be a∗-subalgebra ofA overF . ThenS is a maximal
∗-subalgebra ofA overF if and only if either:

(i) S is a maximal∗-subalgebra ofA overE.
(ii) S is a central simple superalgebra overF , and(E ⊗F S,σ ⊗ ∗|S)∼= (A,∗) (α⊗ s �→

αs), whereσ is the Galois automorphism of the extensionE/F .

Proof. Suppose thatS is a maximal∗-subalgebra ofA overF and considerES. SinceS ⊆
ES ⊆A andES is ∗-stable, by maximality eitherS =ES orES =A. If S =ES thenS is
anE-subalgebra and thereforeS is a maximal subalgebra ofA overE such thatS∗ = S. If
A=ES, then as in the proof of Corollary 2.6,S is a prime finite dimensional superalgeb
and hence a simple superalgebra. LetK = Z(S)0̄. SinceA = ES, F ⊆ K � E. Hence
K = F andE ⊗F S ∼= A.

The converse follows as in Corollary 2.6.✷
Therefore, it is enough to deal withE-subalgebras and check under what conditio

given a maximalE-subalgebraB, B ∩B∗ is a maximal∗-subalgebra. The last results de
with this problem for the different possibilities forB.

Theorem 4.4. LetA be a finite dimensional central simple superalgebra of even type
the fieldE and letV be an irreducibleA-module. Let∗ be a superinvolution onA and letB
be a maximal subalgebra ofA overE of type(i) in Theorem2.2. ThenB∩B∗ is a maximal
∗-subalgebra ofA if and only ifB = eAe ⊕ eAf ⊕ fAf = S(eV ) with eV ∩ f ∗V = 0,
eV or f ∗V . These conditions are equivalent toV = f ∗V ⊕ eV , e∗e = 0, or ff ∗ = 0,
respectively.

Proof. First notice that ifB = eAe ⊕ eAf ⊕ fAf = S(eV ) (with e a nontrivial even
idempotent,f = 1 − e and V an irreducible module), thenB∗ = e∗Ae∗ ⊕ f ∗Ae∗ ⊕
f ∗Af ∗ = S(f ∗V ). Suppose thatB ∩ B∗ is a maximal∗-subalgebra ofA. Let ∆ =
EndA(V ) . If eV ∩f ∗V 
= 0, eV,f ∗V , theneV ∩f ∗V is a((B∩B∗)op⊗E ∆)-submodule
of V . HenceB∩B∗ ⊆ S(eV ∩f ∗V ), with S(eV ∩f ∗V ) a maximal subalgebra ofA of type
(i) in Theorem 2.2. SinceB ∩ B∗ is maximal,B ∩ B∗ = S(eV ∩ f ∗V ) ∩ S(eV ∩ f ∗V )∗.
But this is a contradiction with the last statement of Proposition 2.4.

Conversely, ifeV ∩ f ∗V = 0, eV or f ∗V , then from Proposition 2.4 the only maxim
subalgebras ofA containingB ∩B∗ = S(eV )∩ S(f ∗V ) areS(eV ) andS(f ∗V ), because
the conditioneV ∩f ∗V = 0 implies, by dimension count, thateV ⊕f ∗V = V , sincef ∗V
andf V have the same dimension (for instance, as modules for the division algebr∆0̄).
ThereforeB ∩B∗ is a maximal∗-subalgebra ofA.

The last assertion follows as in [7, Theorem 4].✷
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that
Therefore, withB as is the previous theorem, there is an idempotent 0
= e ∈ A0̄ such
thatB ∩ B∗ = S(eV ) ∩ S((1 − e∗)V ) with eithereV ∩ (1 − e∗)V = 0 or (changinge by
f ∗ if necessary)e∗e = 0. As in [7],B ∩B∗ can be better described by an adequate elec
of this idempotente involved. In [9, Theorem 7] it is proved that ifA = End∆(V ) for
a division superalgebra∆ and a right graded∆-moduleV , any superinvolution inA is
induced by a nondegenerate hermitian or skew-hermitian superformhν : V ×V →∆; that
is, hν is a biadditive map satisfying:

hν(vα,wβ) ∈∆α+β+ν,

hν(vαdδ,wβ)= (−1)(α+ν)δd̄δhν(vα,wβ),

hν(vα,wβdδ)= hν(vα,wβ)dδ,

hν(vα,wβ)= (−1)αβε hν(wβ, vα),

for any vα ∈ Vα , wb ∈ Vβ , dδ ∈ ∆δ, whereε = 1 if hν is hermitian andε = −1 if hν is
skew-hermitian, and wherēis a superinvolution of∆. This superformhν is said to be
tracic if for any α = 0,1 and anyvα ∈ Vα , hν(vα, vα)= c + (−1)αεc̄ with c ∈∆ν . Notice
that if the characteristic is
= 2 andhν(vα, vα) = d , thend = (−1)αεd̄ , sohν(vα, vα) =
d/2+ (−1)αεd̄/2, thus any superform is then tracic.

Lemma 4.5. LetV be a finite dimensional right module over a division superring∆ and
let hν :V ×V →∆ be a nondegenerate hermitian or skew-hermitian tracic form such
V =U ⊕W with U andW subspaces such thathν(U,U)= 0 anddimU = dimW . Then
there is a subspacẽW of V such thatV =U ⊕ W̃ andhν(W̃ , W̃ )= 0.

Proof. It is enough to give an homogeneous basis{x1, . . . , xn, y1, . . . , yn} of V (as a
∆-module) such that{x1, . . . , xn} is a basis ofU , hν(xi, yj ) = δij and hν(xi, xj ) =
hν(yi, yj ) = 0 for any i, j . If ∆1̄ 
= 0 andν = 1, take 0
= µ ∈ ∆1̄ with µ̄ = ±µ (this
is always possible) and definẽh by h̃(x, y) = µhν(x, y). Then, if dσδ = (−1)δµd̄δµ−1

for anydδ ∈ ∆, δ = 0̄, 1̄, σ is a new superinvolution of∆ andh̃ satisfiesh̃(vα,wβdδ) =
h̃(vα,wβ)dδ and, if µ̄= ε′µ with ε′ = ±1:

h̃(vα,wβ)= µhν(vα,wβ)= (−1)αβµεhν(wβ, vα)

= (−1)αβ(−1)ν+β+αεhν(wβ, vα)
σµ

= (−1)αβ(−1)1+β+α
(−εε′)hν(wβ, vα)

σµσ

= (−1)αβ
(−εε′)(µhν(wβ, vα)

)σ
soh̃ is −εε′-hermitian. Besides, ifhν(vα, vα)= c+ (−1)αεc̄, for c ∈∆1̄, thenh̃(vα, vα)=
µ(c + (−1)αεc̄) = µc + (−1)αεµc̄µ−1µ = µc − (−1)αεcσµ = µc + (−1)αεε′cσµσ =
µc + (−1)α(−εε′)(µc)σ , soh̃ is tracic too.
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Hence, if∆1̄ 
= 0, we may assumeν = 0; but thenh = hν |V0̄×V0̄
is ε-hermitian and by

the proof of [7, Lemma 3], there is a∆0̄-basis{x1, . . . , xn, y1, . . . , yn} of V0̄ (and hence a
∆-basis ofV ) with the required properties.

Now assume∆1̄ = 0. If ν = 0, hν |V0̄ × V0̄ is ε-hermitian andhν |V1̄ × V1̄ is (−ε)-
hermitian, so the arguments in [7, Lemma 3] apply to both situations and one obta
required basis by joining the obtained bases inV0̄ andV1̄.

Finally, assume∆1̄ = 0 andν = 1. Thenh1̄(V0̄,V0̄)= 0 = h1̄(V1̄,V1̄) (so any suchh1̄ is
trivially tracic). Take{x1, . . . , xr } to be any∆-basis ofU0̄ and, sinceh1̄ :U0̄ ×W1̄ →∆ is
a nondegenerate sesquilinear form, a basis{y1, . . . , yr } can be chosen inW1̄ such that
h1̄(xi, yj ) = δij for any i, j (notice thath1̄(xi, xj ) = 0 = h1̄(yi, yj ) for any i, j since
h1̄(V0̄,V0̄) = 0 = h1̄(V1̄,V1̄)). In the same way, take bases{xr+1, . . . , xn} of U1̄ and
{zr+1, . . . , zn} of W0̄ with h1̄(xi, zj ) = δij for any i, j = r + 1, . . . , n. Finally, for any
i = 1, . . . , n− r consider the elementyr+i = zr+i − ε

∑r
l=1xlh1̄(yl, zr+i ), which satisfies

also thath1̄(xr+j , yr+i ) = δij for any j = 1, . . . , r. But now, for anyj = 1, . . . , r and
i = 1, . . . , n− r,

h1̄(yj , yr+i)= h1̄(yj , zr+i )− ε

r∑
l=1

h1̄(yj , xl)h1̄(yl, zr+i )

= h1̄(yj , zr+i )− εh1̄(yj , xj )h1̄(yj , zr+i )

= h1̄(yj , zr+i )− ε2h1̄(yj , zr+i )= 0. ✷
Proposition 4.6. Let A be a finite dimensional central simple superalgebra of even
over the fieldE with a superinvolution∗, and letB be a maximal subalgebra ofA overE
of type(i) in Theorem2.2such thatB ∩B∗ is a maximal∗-subalgebra ofA. Then:

(i) If there is an idempotent0 
= e ∈ A0̄ such thatB ∩ B∗ = S(eV ) ∩ S((1 − e∗)V )
and eV ∩ (1 − e∗)V = 0, then e can be chosen such thate = e∗. In this case
B ∩B∗ = eAe⊕ (1− e)A(1− e).

(ii) If there is an idempotent0 
= e ∈ A0̄ such thatB ∩ B∗ = S(eV ) ∩ S((1 − e∗)V )
and e∗e = 0 and if the involution∗ on A is induced by a nondegenerate trac
hermitian or skew-hermitian superform onV , thene can be chosen such thate, e∗
and (1 − e)(1 − e∗) are orthogonal idempotents with1 = e + e∗ + (1 − e)(1 − e∗)
((1− e)(1− e∗) may be0). In this case

B ∩B∗ = (
eA+Ae∗) ⊕ (1− e)

(
1− e∗)A(1− e)

(
1− e∗)

= eAe⊕ e∗Ae∗ ⊕ (1− e)
(
1− e∗)A(1− e)

(
1− e∗) ⊕ eAe∗

⊕ eA(1− e)
(
1− e∗) ⊕ (1− e)

(
1− e∗)Ae∗.

Proof. In case (i), as in [7, Lemma 2],V = eV ⊕ (1 − e∗)V and if hν is a nonde-
generate hermitian or skew-hermitian superform onV inducing∗, hν(eV, (1 − e∗)V ) =
hν(V, e

∗(1− e∗)V )= 0, soeV and(1− e∗)V are orthogonal subspaces. Take the pro
tion g ∈A0̄ of V ontoeV parallel to(1− e∗)V . By orthogonality,g = g2 = g∗, gV = eV

andg is the idempotent looked for.
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In case (ii), letf = 1− e, thene∗f = e∗(e+ f )= e∗1= e∗, sof ∗e = e. Hence

ff ∗f = ff ∗(1− e)= ff ∗ − ff ∗e = ff ∗ − f e = ff ∗,(
ff ∗)2 = ff ∗ff ∗ = ff ∗f ∗ = ff ∗.

Also e(ff ∗) = 0, (ff ∗)e = f e = 0, ande∗(ff ∗) = e∗f ∗ = 0 = (ff ∗)e∗, soff ∗ is an
idempotent orthogonal to bothe and e∗. Besides, sinceeV ⊆ f ∗V , one hasef ∗V ⊆
eV = eeV ⊆ ef ∗V , so ef ∗V = eV . Moreover, 1− e∗ − ff ∗ = f ∗ − ff ∗ = ef ∗, so
V = e∗V ⊕ (ff ∗)V ⊕ (1 − e∗ − ff ∗)V = (eV ⊕ e∗V )⊕ ff ∗V . Let hν be an hermitian
or skew-hermitian nondegenerate superform onV inducing∗. Sincee∗ff ∗ = 0 = eff ∗,
eV ⊕ e∗V is orthogonal toff ∗V , and sincee∗e = 0, hν(eV, eV ) = 0. By the previous
lemma, there is another isotropic subspaceU of eV ⊕ e∗V such thateV ⊕ e∗V = eV ⊕U ,
so V = eV ⊕ U ⊕ ff ∗V . Let g be the projection ontoeV parallel toU ⊕ ff ∗V .
Theng = g2 ∈ A0̄ andgV = eV . Sincehν(V,g∗gV ) = hν(gV,gV ) = hν(eV, eV ) = 0,
g∗g = 0. Let a be the orthogonal projection ontoeV ⊕ e∗V = gV ⊕ U parallel to
ff ∗V . By orthogonalitya = a2 = a∗. Also, hν((a − g)V, (a − g)V ) = hν(U,U) = 0,
so 0= (a − g∗)(a − g) = a − g − g∗ andg∗ = a − g is the projection ontoU parallel to
eV ⊕ ff ∗V . Finally,gg∗ = g(a − g)= 0 and(1− g)(1− g∗)= 1− g− g∗ = 1− a is the
projection ontoff ∗V parallel toeV ⊕ e∗V . Thus,g, g∗ and(1− g)(1− g∗) are mutually
orthogonal idempotents whose sum is 1 andg is the idempotent looked for.✷

Now, let us consider the maximal subalgebras of types (ii) and (iii) in Theorem 2.2

Theorem 4.7. Let A be a finite dimensional central simple even superalgebra oveE

with a superinvolution∗. Let B = CA(K) be a maximal superalgebra ofA over E of
type (ii) in Theorem2.2. ThenB ∩ B∗ is a maximal∗-subalgebra ofA if and only if
M∗ = alg(K,K∗) is a field such thatM/E has no∗-stable intermediate subfields.(Notice
thatB ∩B∗ = CA(K)∩CA(K

∗)= CA(M).)

Proof. If B is of type (ii) in Theorem 2.2 andB = CA(K) thenB∗ = CA(K
∗).

If K∗ = K thenB ∩ B∗ = B is a maximal subalgebra ofA and hence a maximal∗-
subalgebra ofA.

If K∗ 
= K, we follow the steps in the proof of Theorem 3.8: by Corollary 2.3,B ∩B∗
is contained in a maximal subalgebra of type (i) in Theorem 2.2 unlessCA(B ∩ B∗)
is a division superalgebra. But ifB ∩ B∗ ⊆ S(W) for some proper subspaceW , then
B ∩ B∗ ⊆ S(W) ∩ S(W)∗. SinceB ∩ B∗ is a maximal∗-subalgebra, it follows tha
B ∩ B∗ = S(W) ∩ S(W)∗ . But S(W)∗ is again a maximal subalgebra ofA of type
(i) in Theorem 2.2 (see the proof of Theorem 4.4), and this gives a contradiction
Proposition 2.4. HenceCA(B ∩ B∗) = G, a division superalgebra. Now writeK = E(c),
thenK∗ =E(c∗). SinceK 
=K∗, c+ c∗ /∈E . Therefore∗ acts as the identity on the fie
F(c+ c∗)⊆G with F = {x ∈E | x∗ = x}. As in the proof of Theorem 3.8, pick a minim
field L such thatF � L ⊆ F(c + c∗) and deduce thatM = alg(K,K∗) = E(c + c∗)
satisfies thatM/E has no proper intermediate∗-stable subfields (thus being in the situati
of Lemma 3.2).
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The converse is a consequence of the “super” versions of Lemma 3.5 and Corolla
(with A an even finite dimensional central simple superalgebra,∗ a superinvolution andK
orM contained inA0̄). ✷
Theorem 4.8. Let A be a finite dimensional central simple even superalgebra oveE.
LetB be a maximal subalgebra of type(iii) in Theorem2.2, soB = CA(u) with u ∈ A1̄,
0 
= u2 ∈E. ThenB ∩B∗ is a maximal∗-subalgebra ofA if and only ifu∗ ∈Eu.

Proof. SupposeB ∩ B∗ is a maximal∗-subalgebra andu∗ /∈ Eu. Thereforeuu∗ /∈E and
B ∩B∗ = CA(u,u

∗)⊆ CA(uu
∗).

As in the previous proof,B ∩B∗ is not contained in a maximal subalgebra of type (i
Theorem 2.2 and, therefore,K = CA(B ∩B∗) is a division superalgebra.

HenceE(uu∗) ⊆ CA(B ∩ B∗) = K andE(uu∗) is a ∗-stable field extension ofE.
Let L be a minimal∗-stable subfield such thatE � L ⊆ E(uu∗). Then B ∩ B∗ =
CA(u,u

∗) ⊆ CA(uu
∗) ⊆ CA(L). By maximality,B ∩ B∗ = CA(L) ⊆ CA(u). ThenE1 +

Eu = CA(CA(u)) ⊆ CA(CA(L)) = L by the Double Centralizer Theorem, and th
u ∈ L ⊆ A0̄, a contradiction. Henceu∗ ∈ Eu. Besides, ifu∗ = λu, λ ∈ E thenλλ∗ = 1
(u= (u∗)∗ = λu∗ = λλ∗u).

Conversely, ifu∗ ∈ Eu thenB ∩ B∗ = B is a maximal subalgebra ofA overE and
hence it is a maximal∗-subalgebra ofA. ✷

The final case to be considered is the case of the central simple odd superalgebr

Theorem 4.9. Let A be a finite dimensional central simple odd superalgebra oveE.
Suppose thatA = A0̄ ⊕ A0̄u, with u ∈ Z(A)1̄ such that0 
= u2 ∈ E. LetB be a maximal
subalgebra ofA overE. ThenB ∩B∗ is a maximal∗-subalgebra ofA if and only if either:

(i) B = B0̄ ⊕ B0̄u, with B0̄ a maximal subalgebra ofA0̄ and B0̄ ∩ B ∗̄
0

a maximal
∗-subalgebra ofA0̄.

(ii) B =A0̄.
(iii) A0̄ is a Z2-graded algebra: A0̄ = C0̄ ⊕ C1̄, with C∗̄

0
= C0̄ and C∗̄

1
= C1̄, and

B = C0̄ ⊕C1̄u.

Proof. We recall thatu∗ ∈Z(A)1̄ and henceu∗ = λu with λ ∈E.
If B is of type (i) in Theorem 2.3,B∩B∗ = (B0̄∩B ∗̄

0
)⊕(B0̄∩B ∗̄

0
)u and, by maximality,

B0̄ ∩B ∗̄
0

is a maximal∗-subalgebra ofA0̄, with B0̄ a maximal subalgebra ofA0̄.
Conversely, ifB ∩ B∗ ⊆ T , with T a subalgebra ofA such thatT ∗ = T , then

B0̄ ∩ B ∗̄
0

⊆ T0̄ = T ∗̄
0

. HenceB0̄ ∩ B ∗̄
0

= T0̄. Sinceu ∈ B ∩ B∗, it follows thatu ∈ T and
T1̄ = T0̄u ⊆ B ∩B∗. ThereforeB ∩B∗ is a maximal∗-subalgebra ofA.

If B is of type (ii) in Theorem 2.3, that is,B = A0̄, thenB ∩ B∗ = A0̄ is a maximal
subalgebra ofA and, therefore, a maximal∗-subalgebra ofA.

If B is of type (iii) in Theorem 2.3, thenA0̄ is aZ2-graded algebra:A0̄ = C0̄ ⊕C1̄, and
B = C0̄ ⊕ C1̄u. Notice thatA = B ⊕ Bu and, sinceu /∈ B, B ∩ B∗ � Z(A)(B ∩ B∗) =
(B ∩ B∗)+ (B ∩ B∗)u. But Z(A)(B ∩B∗) is ∗-stable, so by maximalityA = B ⊕Bu =
(B ∩B∗)+ (B ∩B∗)u and henceB = B∗, that is,C∗ = C¯ andC∗ = C¯ .
0̄ 0 1̄ 1
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The converse is clear:B∩B∗ = B is a maximal subalgebra ofA and thus it is a maxima
subalgebra of(A,∗). ✷
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