Proceedings of the Edinburgh Mathematical Society (1994) 37, 519-520 C

CORRIGENDUM ET ADDENDUM: THE FRATTINI SUBALGEBRA OF A BERNSTEIN ALGEBRA

by JESÚS LALIENA

(Received 5th March 1993)

In a previous paper it is supposed that if A is a Bernstein algebra, every maximal subalgebra, M, verifies that $\dim M = \dim A - 1$. This is not true in general. Therefore Proposition 2 in this paper is not correct. However other results there, where this assertion was used, are correct but their proofs need some modifications now.

1991 Mathematics subject classification: 17 DXX

1. Maximal subalgebras of Bernstein algebras

If we take the commutative algebra A over a field K spanned by $\{e, u_1, u_2, v_1, v_2\}$ such that $eu_i = 1/2u_1$, $u_1v_1 = u_1$, $u_1v_2 = -u_2$, $u_2v_i = u_i$, i = 1, 2 and the other products equals to zero, we have a Bernstein algebra. In this algebra, the subalgebra M spanned by $\{e, v_1, v_2\}$ is maximal subalgebra. So if M is maximal subalgebra of a Bernstein algebra A, we do not always have dim $M = \dim A - 1$. But we will see that if A is also genetic then dim $M = \dim A - 1$ for every M maximal subalgebra.

Lemma 1. Let A be a Bernstein algebra, e a nonzero idempotent in A such that $A = Ke \oplus U_e \oplus V_e$, and M a maximal subalgebra of A. Then U_e^2 , U_e^3 , $(U_e^2)^2 \leq M$.

Proof. Let $N = U_e + U_e^2$. We have that B = Ke + N is a subalgebra of A and a Bernstein algebra. From [1] it is known that a Bernstein algebra A with $A^2 = A$ is genetic. Since $B^2 = B$, we have that N is nilpotent, and from [3] $F(N) = N^2$. But $N^2 = U_e^2 + U_e^3 + (U_e^2)^2$ is an ideal of A because of [4] (or checking it directly). Therefore, using [3], we have $N^2 \leq F(A)$, that is U_3^2 , U_e^3 , $(U_e^2)^2 \leq M$ for every maximal subalgebra M.

Lemma 2. Let M be a maximal subalgebra of a Bernstein algebra A and let e be an idempotent in M. Then either $V_e \leq M$ or $U_e \leq M$.

Proof. Clearly $M = Ke + U'_e + V'_e$ with $U'_e \le U_e$, $V'_e \le V_e$. Now $M + U_e = M$ or $M + U_e \le A$. The former implies that $U'_e = U_e$; the latter implies that $V'_e = V_e$.

Now it is easy to prove the following results.

JESÚS LALIENA

Theorem 3. Let A be a genetic Bernstein algebra. If M is a maximal subalgebra of A, then dim $M = \dim A - 1$. Therefore a vector subspace M of A is a maximal subalgebra if and only if

either (i) M = Ker w,

- or (ii) M has a nonzero idempotent e such that M is one of the following subalgebras
 - (a) $M = K.e \oplus U_e \oplus V'_e$ with $V'_e \leq V_e$ such that $\dim V'_e + 1 = \dim V_e$ and $U^2_e \leq V'_e$; in this case M is an ideal,
 - (b) $M = K \cdot e \oplus U'_e \oplus V_e$ with $U'_e \leq U_e$, dim $U'_e + 1 = \dim U_e$, $U_e V_e + V_e^2 \leq U'_e$,

Proposition 4. Let A be a Bernstein algebra and M a vector subspace of A. Then M is a maximal subalgebra if M is one of the following subspaces:

- (i) $M = \operatorname{Ker} w$,
- (ii) M has a nonzero idempotent e such that

(a) $M = K.e \oplus U_e \oplus V'_e$ with V'_e such that dim $V'_e + 1 = \dim V_e$ and $U^2_e \leq V'_e$. In this case M is an ideal.

(b) $M = K.e \oplus U'_e \oplus V_e$ with $U'_e \leq U_e$, dim $U'_e + 1 = \dim U_e$, $U'_e V_e + V^2_e \leq M$

(c) $M = K \cdot e \oplus U'_e \oplus V_e$ with $U'_e \leq U_e$, such that $\dim U'_e + 1 < \dim U_e$, $U'_e \cdot V_e + V^2_e \leq U'_e$.

Theorem 5. Let A be a Bernstein algebra. Then F(A) is an ideal.

Proof. Let $N = U_e + U_e^2$; then from the proof of Lemma 1, $N^2 \leq F(A)$. Since F(A/N) = 0, then $F(A) \leq N$. Now suppose that $AF(A) \leq F(A)$. Then there is a maximal subalgebra M of A with $AF(A) \leq M$. But $AF(A) \leq AN \leq N$, so $N \leq M$ and A = M + N. Thus $AF(A) = MF(A) + NF(A) \leq M + N^2 \leq M$, a contradiction.

REFERENCES

1. A. N. GRISHKOV, On the Genetic Property of Bernstein algebras, Soviet Math. Dokl. 35 (1987), 489-492.

2. J. LALIENA, The Frattini subalgebra of a Bernstein algebra, Proc. Edinburgh Math. Soc. 34 (1992), 397-403.

3. D. TOWERS, A Frattini theory for algebras, Proc. London Math. Soc. (3) 27 (1973), 440-462.

4. A. WÖRZ-BUSEKROS, Algebras in Genetics (Springer-Verlag. Lectures Notes in Biomathematics 36, Berling Heidelberg 1980).

Departamento de Matemáticas Universidad de la Rioja 26004-Logroño Spain

520