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Abstract

We consider a class of additive Runge—Kutta methods, which include most of the classical alternating direction
or fractionary step methods, for discretizing the time variable in an evolutionary problem whose coefficients depend
on time. Some stability results are proven for these methods which, together with suitable consistency properties,
permit us to show the convergence of these discretizatior201 IMACS. Published by Elsevier Science B.V.

All rights reserved.
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1. Introduction and notation

Let H be a Hilbert space with scalar product, - )), with associated norr- ||, and letu : [0, T] — H
be the solution of the evolution problem:

d
W b awyun =g,

u(0) = uo,

whereA(r) : D(A(t)) € H — H are linear, generally unbounded operators, which we suppose maximal
and coercive for alt, i.e.,

Vg(t) e H, Jv e D(A(r)), such thaw + A(t)v = g(¢r) and
{ Ja > 0 such that(A(f)v, v)) = a|v||?, Yv e D(A(1)).

(1)
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Typically, multidimensional initial-boundary value problems involving partial differential equations
can be formulated in the operational form (1), whet&) are operators which contain the spatial
differential derivatives (for example, elliptic operators if (1) is a parabolic problem).

In [7,13] some existence and uniqueness results, as well as the study of the smoothness in time ar
exposed.

Usually, in an operational formulation of type (1) of an evolutionary initial-boundary value problem,
boundary conditions are included in the election of the dom&i(4(z)), which may change in time for
different reasons, such us the case of evolutionary boundary conditions. For simplicity, we shall study
only the caseD(A(1)) =D C H, forallt € [0, T].

A discretization in time of problem (1), using for example a standard RK method, permits to obtain
approximationd/™ to u(m At) by a recurrence, which can be written in the following way:

U™ = R(=AtA(tn1), -, —AtA(ty ) U™
+ S(AtA(tm,l)» cees AIA(tm,s)a Atg(tm,l)a E) Atg(tm,s))»
where R(—Atz(ty1), ..., —Atz(ty,s)) and S(Atz(tn,1), ..., Atz(tns), Atw(ty 1), ..., Atw(t, ) are

rational approximations oE (¢, t,,.1) and of ftf;”“E(t,th)w(t) dz, respectively, whereE(a, b) =
exp(— [/ z(1) dr).

A time discretization process of type alternating directions or fractional steps usually admits a similar
formulation

U™ = R(=AtA1(tn,1), -, —=AtA1(t ), = At Aoty 1), - ., = ALA, () U™
+ S(AtAl(tm,l)7 ceey Al‘An (tm,s)a Al‘gl(l‘m,l)7 ceey Atgn (tm,s))a
WhereR(_Atzl(tm,l)» ceey _Atzn(tm,x)) andS(Atzl(tm,l)» ) Atzn(tm,s)» A“'Ul(tm,l)» cee »Atwn(tm,x))

are rational approximations of(t,,, t,,+1) and of LZ’*lE(t,thrl)w(t) dt, respectively, where now
z(t) = >0z (), w(t) =21, wi(t), >4 Ai(t) is a decomposition ofA(r) in n simpler addends
and >~7_, gi(t) = g(r). Concretely (see [14,19]), an alternating direction or fractional step method
can be viewed as a time integrator which uses suitable decompositiofi&)oaind g(¢) to compute
approximations ta(z,,) more easily than using standard implicit methods. This is usually carried out by
computing some intermediate fractionary stéfs’, betweenU” andU”**, which are implicit only in

one of the operatorg; (). Such discretization processes can be structured in the following way:

Uozuo, _
Ui =U™+ At Za;’ (—Akj (tm,j)U’"’/ + 8, (tw,))), fori=1,....s, )
j=1

U™t =U" 4+ At b (= Ay (b DU™ + g1 (tn0)),  With ki kj € {1,...,n}.
i=1

If we compare this scheme with a classical time discretization scheme, like a semiexplicit Runge—Kutta
method, it is clear that we can obtain remarkable cost reductions if the stationary problems

(I+aAi(®)v=f (x>0 (3)
are easier than problems of type
(I+aA@®)v=f (x>0 (4)
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in some way. For example, when (1) is a spatial semidiscretization of type central differences in a
rectangular grid of the multidimensional heat conduction equation, the opergteyscan contain the
discretizations of the termsd2u/dx?, and then the linear systems of type (3) will involve tridiagonal
matrices, while the problems of type (4) will involve block tridiagonal matrices and its resolution has a
higher order of computational complexity. A second simple example can be considered if (1) is a system
of coupled partial differential equations; in this case, some schemes of type prediction—correction can be
easily considered by taking

0o ... 0 L,’l 0O ... O Lll L12 Lln ui

0O ... 0 Lo O L L ... Lo, u
A= . ) .2 ) if A= _21 22 ' 2 andu = | 2

o .. 0w%cL, O ..O0 Ly Ly ... Ly, Up

Scheme (2) seems a special kind of one-step method of type Runge—Kutta. In fact, if we fill this

formulation with some null coefficiemls’;, alkj we will obtain the scheme

U° = uy, '
U™ =U"+ At > al (— Aty NU™ + gi(tm,)), fori=1,....s,
j=1k=1 (5)
Ut =U"+ At Y Y b (—Acltn)U™ + giltm.i))
i=1k=1

which is called, for the case= 2, additive Runge—Kutta method in [5] and [6].

Most of the classical alternating direction schemes (see [19]) as well as some new ones of high orders
(see [1,2,12]) can be reformulated by using the special subset (2) of additive Runge—Kutta methods,
which is called fractional step Runge—Kutta methods (see also [18]).

Definition 1.1. A fractional step Runge—Kutta method (abbreviately FSRK), is an additive RK method
satisfying:

ak >0, Vie{l ... s}, ke{l, ...,n}, aszO, Vj>i,

2

DY)+ > laf;| 0= 1651 +> laj;| =0, Visk, Lke{l,....,n}, i, je{l ... s}, (6)
i=1 i=1
afiafi=0, ifk#£l,ie{l, ...,s}, k,le{l,...,n}.

The coefficients of these methods can be organized in a Butcher table of type

o |||l

L@hT AT || T, (7)

where A" = (af;), b* = (bf) andc = (c1,....¢)T withi, j=1,...,sandk =1,...,n.
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Avoiding the null columns ir(%) we can reduce notation (7) to the following:

c | A, (8)

with A= (a;)) = Y0 Al b= (b)) =", b andk” = (ky, ..., k,) wherek; (€ {1,...,n)) satisfy
that

ZZ(\bgsza;j):o, forj=1,....s. 9)
j=1 l;:klj i=1

From now on, we will assume that the operatdrsr) : D; € H — H preserve the maximality and
coercitivity of A(z), i.e.,

Vg(t) € H,3v € D;, such thaw + A; (#)v =g () and
Jo; > 0 such that(4;(H)v, v)) = o;||v]|?, Yv e D;,

fori=1,...,n,andD =;_; D..
In order to abbreviate the formulation of scheme (2) we introduce the following tensorial notation:

givenM = (m;;) € R** andv = (v;) e R’, we denote

(10)

mllIH e mlSIH U11H
: e and v= : € HY,
mS]_IH mSSIH USIH

(11)

M

and we group the stagés™’, as well as the evaluations ¢f(r) and A, (¢) forall i = 1, ..., n, and for
alm=12,...,inthe form

U" = U™ ... U™ e ', G'=(gi(tna) - 8i(tny)" € H",

Ai(tm,l) 0 ... 0
~ 0 Ai(tm,Z) .. 0
Al = . . . € L(D;, H) ™. (12)
0 0 e Ai(tn)

Using (11) and (12), the scheme (2) can be written as follows:

<i+ Atzmgn)ﬁm _aum 4+ S G
i=1 i=1

yrti—pm + At Z(E)T(_A;nﬁm + sz)’
i=1
wheree” = (1,...,1) e R".
With the matrix coefficient structure defined in (6) for scheme (2), it is not difficult to show that this
scheme has unique solution under conditions (10). In fact, we will prove in Lemmas 4.1 and 4.5 that the
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operator( + At Zj’zlﬁfijﬁ) is invertible for some classes of FSRK methods. Consequently, we can
rewrite such schemes in a similar format to (5):

U™ = R(=AtAD, ..., —AtA")U™ 4+ S(ALA™, ..., AtA™, AIG?, ..., AtG™), (13)
where
n n -1
R(—AtAT, . —AtA") =T =5 (b)) AtA" <f+ ZWAM’}‘) e, (14)
i=1 Jj=1

and

S(AtA™, ... AtA™ AtG?, ..., AtG™)

n?

n n -1 n
_ AIZ(E)T@;" i <i+ AIZWA;”) <At2ﬁG’,§’)).
i=1 j=1 k=1

A way to study the convergence of time discretization methods consists of combining the properties
of consistency and contractivity of the discrete transition operator. If we consider FSRK methods,
consistency means that for sufficiently smooth détg), A;(¢), g; (¢) it holds that

|t tmir) — ™| < CAPFE, m=0,1,...,

wherei”*1 is the result of giving one step with (2) takimgt,,) as the starting point™.
On the other hand, as any two exact solutions of 1)) and v(z), obtained with different initial
conditions,ug andvg, show the following contractive behaviour:

Hu(tm + h) - v(tm +h)H < Hu(tm) - v(tm)

it seems natural to search time discretization schemes which preserve this property. So, we shall say tha
a method of type RK applied to (1) is contractive iff

urtt vyt < lum - v, m=0,1,...,
|

whereU™ and V™ are two sequences generated by the algorithm (2) from different initial valbiesid
VO, respectively; if we use (13), it is clear that the contractivity of a FSRK method is equivalent to

|R(—=ArAY, ..., —ArA™)|| < 1.

, forh>=0,

In the caseA(r) = A for all ¢+ € [0, T], there exists a wide range of stability results in different
metrics, mainly in the case of univariate approximati®is- At A) to the semigroup €4 In the case of
considering Hilbert spaces, Crouzeix proved in [7] several contractivity results of ®peArA)|| <1
for certain classes of maximal monotone operatbrsombined suitably withA (9)-acceptable rational
functions R(z). More generally, whem is a densely defined closed linear operator which generates a
bounded strongly continuous semigroup” in a Banach spack, some weaker stability results of type
|R™(—AtA)|| < C/~/At can be seen in [3,8]. More recently, Palencia proved (see [16]) that the factor
1/+/At can be superseded if operatbis 6-sectorial andR (z) is a A (6)-acceptable rational function. In
the case of considering multivariate approximations of gthere exist only some contractivity results
of type [|[R(—AtAq4, ..., —AtA,)| <1, when(4,)!_; is a commutative system of maximal monotone
operators in a Hilbert spadé. Such results can be found in [15].
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It is well known that, in the case of consider standard RK methods for discretizing the time variable
and arbitrary dependencies in time of operatdrs), AN-stability (see [11]) is a necessary condition
to preserve contractivity. It is also well known that AN-stability is satisfied only by simple low order
methods, such as the implicit Euler rule, or by fully implicit methods of high orders, such as some
Gaussian methods.

Nevertheless, in [7], and more recently in [10], it is shown that, under suitable hypotheses of variation
in time for operatorsA(¢), A-stability can be a sufficient condition for a stable integration, at least in
finite intervals of timg0, T'].

Similar situations are produced if we use additive RK methods to discretize the time variable, i.e., a
natural generalization of the AN-stability condition would lead us to preserve the contractivity of the
numerical solutions of problem (1), but this condition could be satisfied only for semiexplicit schemes
of low order or for high order fully implicit schemes of Gaussian type. Therefore, the AN-stability, and
consequently the contractivity for arbitrary variationsA{r), is not present in most of the alternating
direction or fractional step methods, since they can be formulated as semiexplicit FSRK methods. We
will show that A-stability, together with suitable time variations{df; (+)}/_, ensure a stable behaviour
for numerical solutions of scheme (2).

In order to introduce the A-stability for an additive RK method given by (6), in an easy way, we apply
it to the test scalar initial value problem

Y0 =) dy@®. withRe()<0i=1....n,
i=1
y(f0) = yo.
This gives us the recurrence
-1

Vm+1 = <1+Xn:A[)L, (bl)T<I — Xn:Al)\./A]> 6) VYms (15)

i=1 j=1

and substitutingArA; by z;, we obtain what we call the amplification function associated to (6), which is
a rational complex function of complex variableg, z, ..., z,,, defined by
-1

R(Z)ER(Zl,-..,Zn)=1+ZZi(bi)T<I_ZZ]'A/> e.
i=1 j=1

It is clear that the contractivity of solutions, given by (15) is equivalent to the A-stability property
introduced in the following definition.
Definition 1.2. An additive RK method is said A-stable iff
|IR@)| <1, Vze{(z1,....z»)lz;€CandReéz;) <0,Vi=1,...,n}.
We will see that in some problems, considered, for example, in [7,10], A-stability is a sufficient
condition to obtain
|R(=ALAY, ..., —AtA™)| < 4, (16)
whereg is a constant, usually positive, but small, under conditions of type
| Ai (1 )u — A;(Du|| < |t — ¢'|Mi||Ai(D)u||, Vi=1,....n, Vi,t' €[0,T],
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which are related to a Lipschitz variation in the coefficients that define the differential opefators
Obviously, condition (16) will not ensure the preservation of the contractivity, ugles®, but in finite
periods of time we can weaken the contractivity requirement and preserve a stable integration. In this
context we say that a method of type RK is A-stable if the time discretizafithand V", obtained

with such method and with time stexy, of problem (1) and the perturbed problem

V() + Y Ai@v@) =) &) (€[0T,

i=1 i=1
v(0) = uo,
satisfy

m m 37 - . — 0. — —l
|u™—v H<C<Iluo uo|I+;tQ’[l(§XT]Hg,(t) g,(t)H>, Vm=12...M=—". 17)

whereC is independent of\¢.
Thus, it is easy to see that the bound

[S(ALAY, ..., AtAl, AtGY, ..., AtGI)|| < CAtY ||GY| (18)
i=1

together with the bound (16) obtained fR(—ALA™, ..., —AtAnm), will guarantee us the stability, in
finite intervals of time, of the numerical integration process (2). Results (16) and (18) are proved in
Sections 2 and 4, respectively.

To get the bound (16) we will use two main ideas. The first one, developed deeply in [15], is focused in
the fact that a null variation in time of operatots(s) (M; = 0) implies thatR(—Ar A7, ..., —ArA") =
R(—AtA1(t,), ..., —AtA,(t,)) can be a contraction il and, consequently, the FSRK will preserve
the contractivity. Secondly, if we consider smooth variationa @f), thenR(—ArA?”, ..., —AtA™) can
be viewed as a perturbation 8{(—ArA1(t,), ..., —AtA,(t,)) and it will be bounded in the form

|R(=AtAY, ..., —AtA™) — R(=AtA1(ty), ..., —AtA,(1,))]| < CAt.

In the next theorem, which we prove in Section 2, we set conditions to obtain (16).

Theorem 1.1. Let(7) be an A-stable FSRK method such that
Zafi #0, fori=1,...,s (alltheir stages areimplic)t (29)
k=1

and let{A;(z)}!_, be a linear maximal coercive system of operators satisfying:
(a) for eachr € [0, T'] the system of operatofst; (¢)}’_; is commutative and the commutative system

.....

(b) there exist: constantsM; such that

|Ai (1 )u — A; (u|| < |t — /| M; || Ai (D)u|,
Vi=1,...,n, Vt,t €[0, T] andVu € D;. (20)

Then there exists a constafit independent of\r, such that{16) is verified.
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When the operator$A;(¢)}}_, are also self-adjoint we can weaken the A-stability requirements to
obtain (16).

Definition 1.3. An additive RK method is said A(0)-stable iff
|R(X)| <1, Vie{(x1,....x,)|x<0,i=1...,n}.

In similar way of the previous theorem we have proven

Theorem 1.2. Let (7) be an A(0)-stable FSRK method such that satigfi€3 and let{A;(z)}!_; be a
commutative system of self-adjoint linear maximal coercive operators fulf{li@y Then there exists a
constantg such that(16) is verified withg independent oA:.

For problems with a small time variation in operatarsr) it is possible to obtain the stability result
(17) even in infinite-length intervals of time (i.e., f&f = c0), if we impose some additional A-stability
conditions to the additive RK which we use to integrate them. Concretely in Section 2 we will show that
conditions (20) together withf; small permit us to prove a stronger contractivity result of type

[R(—=ALAL, ..., —AtA™)| < e P2 (21)

under some additional stability requirements on functi®(sy, ..., z,) which we introduce in the
following two definitions:

Definition 1.4. An additive RK method is said strongly A-stable if it is A-stable and there exist
¢ <1andM such thatR(z) <c forall z € {(z1,...,z,) | zz€e Cand Réz;)) <0,i=1,...,n, and
lza] + -+ +lza] = M}.

Definition 1.5. An additive RK method is said strongly A(0)-stable if
QD) IRX)| <1 Vxe{(xy,...,x) | x;, <0, i=1,...,n,andx; +---+x, <0}.
(2) There existc < 1 and M such thatR(x) <c¢, Vi € {(x1,...,x,) | x <0, i =1,...,n, and
1] + -+ |x,] = M}
(3) (AR/9x;)(0,0,...,00=—-1,i=1,...,n.

The rest of this paper is structured in three sections. Section 2 is mainly devoted to the proof of the
Theorem 1.1; the proof of Theorem 1.2 and the obtaining of (21) are light variations of this proof which
we also explain in this section. In Section 3 we obtain similar stability results for FSRK methods with
an explicit first stage and with additional restrictions on the coefficients of the last stage of them. Finally,
in Section 4 we will give some technical results which we have used in the previous two sections for
proving Theorems 1.1, 1.2, 3.1 and 3.2.

Henceforth we will use”, C1, C»,, C3, as arbitrary constants independentaf

2. Proof of Theorem 1.1

Let us take ind* any norm induced by the norm & and any norm oRR*, for example:||u||oo, gs =
maxi<i<s llu: |l and|lull1, g =>-;_; llu; ||. Note that any two of these norms Hy are equivalent.
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For each FSRK we denote
A Ay (fn,1) ) Ay (tn)
Am = and A" = : (22)
A, (tm.s) A, (tm)
whereky, ..., k, € {1, ..., n} are defined in (9).

Conditions (6) imposed to the FSRK coefficients permit us to use notation (22) to reduce the expression
(14) since the following equalities are true:
N AAr=AA", S (b)) A =5 A",
i=1 i=1
and, analogously, if we consider

Ai(tm) 0 0
. 0 A;(ty) 0 .
Ar=| T e Hy, (23)
0 0 oo Aty

it is also true that
SO AAr =AA" and > (b7)TAT =D A"
i=1 i=1

Using these notations, we will consider now the following decomposition for the transition operator

R(—=AtAY, ..., —AtA") = R(=AtA1(ty), ..., —AtA,(t,)) + AtP (24)

with
P=0b"(A) I+ AAA™) (A" — AA™) (I + ArAA™) e, (25)

in Lemma 4.4 we will prove that this decomposition is possible under conditions of Theorem 1.1.

As we have supposed that the FSRK method is A-stable and that the commutative system of operator:
{(I — AtA;(1))(I + AtA;(¢))"1}7_; admits unitary dilation, Theorem 2.3 of [15] ensures that

|R(—AtAL(ty), ..., —AtA, (1)) || < L. (26)

Thus, to get (16), it is still to be proven that the operakogiven in (25) is bounded independently of
At. In order to get this bound, we decompose the opertr the form P = P3 P, P, where:

Py =b'(A) (I +AtAA") Te L(H', H),
Py = (AA" — A" (AA") e L(H' HY),
Py = (AA") (I + AtAA™) e e L(H, H),

and we boundPs, P, and P; separately.
Lemma 4.3 ensures that

| P3ll < Cs, (27)
where(Cs is a constant independent Af.
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For boundingP, we rewrite it in the formP, = A(A™ — A™)(A™)~1(A)~; so

B

¥ 1 Am Amy ( Am\ Ll Am Amy ([ Am\~ln
[PV ][ < [JAJ[I(A™ — A™) (A™) “W[|< C[[(A" = A™) (A") "W

whereW = (A)~1v. N
Let us prove now that for aW = (W?,..., W*)T € H* it holds that

wm Am Am\ ( Am\—157 w
(W[ =[l(A™ — A™)(A™) "W < MAr|[W]. (28)
Note that every componemt” of W satisfies
W = (At () — Ag, () (At () W
and using (20) it is deduced that

W] < Nt — b, | M, || Ar, i) (A, (fm,i))71Wi|| = le;| A M, | W'

therefore (28) is verified witl = max_1__{lc;|My,}; thus, we can conclude that
[PV || < NAIMAL|W| < CaM At||V

whereCy = || A | A7Y).
To check that| P1|| < C1/At, with C; independent of¢, it suffices to use Lemma 4.1 for proving that

| (29)

|LO|| = |ACAA™ (7 + ACAA™) 20| < | 0] +||(7 + AcAA™) 0| < €| O]
As At Piu = AtLeu it is clear that

Az P1]| < Ca. (30)
Joining (26), (27), (29) and (30) we deduce
[R(=ALAY, ..., —ALAT)|| <1+ C1CoCaM AL < &

with IB =C1CoCsM=CM. O

Remark 2.1. To prove Theorem 1.2 we carry out a process identical to this one, except that to obtain the
bound (26) we apply Theorem 3.2 of [15].

Remark 2.2. If the FSRK method is strongly A-stable (or similarly if the FSRK method is strongly
A(0)-stable and the operatofg; (r)}/_, are self-adjoint) it is proven in Theorem 4.3 (Theorem 4.6 for the
self-adjoint case) of [15] thalR (—AtA1(t,,), ..., —AtA,(1,))| < e 72" under a coercitivity property

of type (A; (t)v, v) > a|v||? (with « > 0) for anyi =1, ..., n. Using the same reasoning of the proof of
Theorem 1.1, forAr € (0, Azg], it is deduced in these cases that

[R(=AtAL, ..., —AtA™)|| <e P2+ cMar <™,

where g = —p’ + CMeP' 2, Therefore, forM < B'/(Cef'20), i.e., for small time variations of
coefficients of4; (), we can obtain a negatiye and consequently, as we pointed out before, the stability
of scheme (2) also in infinite intervals of time.
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3. Thecase of an explicit first stage

Most of the classical alternating direction or fractional step methods are designed in such a way that
their formulation as FSRK method has an explicit first stage. In order to include such methods in our
analysis it is convenient to give some stability results in this case. Besides, in the development of new
FSRK methods of high order (see [1]) it is interesting to consider reductions in the number of the order
conditions by imposing (classical) restrictions of the fastte = ¢, Vi =1, ..., n, and such restrictions
require that the first stage will be explicit.

A FSRK has only the first stage explicit if it satisfies that

i=1 i=1

Let us callky (€ {1, ...,n}) the integer such that any of the coefficiens 0 or b;* 0.1

In this section we take faz € D; the norm||ul|;, = |lu|| + At||A; (t)u] and inD; x H*~1 any norm
induced by the nornj - ||; ; for the first component, the norm &f for the remaining ones and any norm
of R*; we also denote these equivalent normg|byi; ;. In Dy, x --- x D, we take the norms induced
by the norm|| - |, 1, of Dy, fori =1,...,s, and any norm oR* and we denote these equivalent norms

by Il - llzz, wherek = (ky, . .., k,) andf,, = (tmas - .-, tns). Inthe following results we use these metrics.
Using Lemmas 4.5—-4.8 of Section 4 we can prove the following:

Theorem 3.1. Let us consider an A-stable FSRK method such that satig3iBs (49) and (50) and
let {A;(z)}}_, be a linear maximal coercive system of operators satisfying hypotheses (a) and (b) of
Theoreml.l Then there exists a constgitindependent of\r, such that(16) is verified.

Proof. To bound the perturbatiol® we proceed in a different way with respect to the proof of
Theorem 1.1 sincel is not invertible. In this case, we decompose this operator in the foemP; P, P3
where:

Pa=7(I+ Atﬁ/{’”)_l 1Dy, x H ™= Dy,
P, = .71(15’" — fi’") :Dyy X -+ X Dy, — Dy, x H L,
P = (I_+ At?lfi’")flé : Dyy = Dyy X -+ x Dy,
Lemma 4.7 ensures that
|7+ ACZA™) W g < W), (32)

Applying (49) and (50) as well as™ = (0,...,0,1) we can deduce foZ™ = (Z%,...,Z%) €
Dy, x -+ x Dy, that

17 21000 = 128 lhgta <CN 2025, (33)
Joining (32) and (33) we obtain th&W e Dy, satisfies
1Py, < Call Wiy, (34)

1i k1 does not exist then we will reduce the FSRK method to a FSRK method where all of its stages are implicit, by
eliminating the first stage.
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whereCs is a constant independent af.
To prove thatP; is bounded, we use that thidh component of

V1
(A" —Am) | is  (Ay,(tn) — A, (b)) Vi, fori=1,...,s,
V,
and applying (20) we deduce that

H (Ak,- (tm) - Aki (tm,i)) Vi H < |tm — i |Mk,- HAki (tm,i)vi H < Ici IMk,' Vi

ki’tm,i ’

therefore taking also into account that the first rowdois null, it is deduced, for alVe Dy, x -+ x Dy,
that

1PV |y, < C2M VI, (35)

whereC, = [l Al| andM = max__,{|c;|My,}.
Finally, to boundP; we use that Lemma 4.5 ensures that

(I + ACAA™) 0| <C|0)|,,, . YU €Dy x HL (36)
As Vu € Dy, itis obvious thatu € Dy, x H*~* and
lewllky., < Cllttlliy s (37)
from (36) and (37) we conclude that
|’P1M||,;,t-m < Cullullry, - (38)
Joining (34), (35) and (38) we deduce
[Pull,, . < CiCoCsMlullyys,. O

In a similar way, we can prove for the self-adjoint operator case the following:

Theorem 3.2. Let us consider an A(0)-stable FSRK method such that sat{§figs(49) and (50) and
let {A;(¢)}!_, be a commutative system of self-adjoint linear maximal coercive operators sati&Z@ing
Then there exists a constafitsuch that(16) is verified withg independent of\¢.

A strong A-stability property for the FSRK together with a small variatiod j¢) permits to deduce
the contractivity result (21) using the same reasoning of Section 2, for the case in which all the stages are
implicit.

4, Technical lemmas

Lemma 4.1. Let us consider a FSRK method satisfy(d§) and let{A;(z)}'_, be a system of linear
maximal coercive operators in H. Then the operator

<I_+ AtZEAf”) :Dpy X -+ x Dy, = H",
i=1
associated to such FSRK, is invertible, and the inverse operator is bound#y independently of\r.
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Proof. We will use an induction principle in the components &f to prove that for eacly =
(g1,...,85)" € H*, there exists a uniqué = (U™*,...,U™*)T € H* such that

<i+ AIZM;n)& _z.
i=1

and it holds that|U|| _ ;. < ClIgllv.zs-
Starting with the first stage, conditions (8) and (19) imposed on the coefficients of a FSRK method
imply thatU™ ! is solution of a (stationary) problem of type

Uumt4 Ata’{llAkl(tm,l)Um’l =81, (39)

wherea’l‘ll > 0. As we are supposing thét;(¢)}’_; are maximal and coercive operatorsAh it holds
(see [4]) that

(2 + ArafiAy (1.0) | <
thus
U™ < llgall- (40)
If we rewrite (39) in the form
Ata} Ag, (ty DU = g1 — U™,

and we use (40) as well a§} > 0, then it is clear that

. 2
, withC= 0
ari

To apply the induction principle we assume that

1At Ak, (U™ < CllU™

I
o™ <> gl vi=1,...,j—1,
i=1 (41)

l
At ALt DU™ | < CY gl Vi=1,...,j -1,
i=1
and we prove that (41) is also true for ;.

By using again the restrictions (8) and (19) on the FSRK method coefficientgtttitemponent of/
is solution of the problem

U™ + Ata Ay, (6, YU™ = f;,  with f; =g; — At a5y Ay (6, ) U™ (42)
=1
Again the maximality and coercitivity of the operatdy, (1, ;) ensure that
U™ <1 £5 (43)
and using the induction hypotheses (41) we have that

j-1 j

1Al < gl + C D _[|AtAy G DU™ || < CY Nl (44)
=1 =1
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therefore

™| < Can,n

Using (42)—(44) we can also deduce easily the bound

| Az Ay, (tn, U™ || < CXJ: lgill. O
i=1
Lemma 4.2. Under the same hypotheses of Lemfriathe operator
-1
T" = At Xn:(E)TA;" <1’+ At Xn:WA;") H'— H,
i=1 j=1
is bounded independently of. I

Proof. We consider now/™ = T™g, whereg = (g1,...,g,)' € H*; T™ can be staged as

U™ = At b Ay (tn,)U™,  where
i=1
) =1 . 45
(I+Atafi"Aki(tm,,~))U’”” = g; —Al‘zafjjAkj(l‘m’j)Um“/, for i =1...,5, ( )
j=1

with ki,kj € {1, .. .,I’l}.
Thus, as we proved (41) fér=1, ..., s, it is immediately deduced that

(o™= T"g|| < Cliglls.as- (46)
O

Remark 4.1. Itis clear that (46) permits us to deduce (18) since

S(AtAY, ..., AtAT, AIGY, ..., AtG™) = At Y (D) G — AIT"g,

whereg = Y1_, AKGY.
Using the notations (22) and (23), introduced in Section 2, we will prove the following lemmas:

Lemma 4.3. Let us consider a FSRK method satisfy((1®) and let {4, (¢)}/_, be a system of linear
maximal coercive operators in H. Then the operator

<I_+ AtZEAZ") : Dy, X -+ x Dy, — H’,
i=1
associated to such FSRK, is invertible, and the inverse operator is bound#£d independently oAz.

Proof. Itis identical to the proof of Lemma 4.1.0
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Lemma4.4. Letus consider a FSRK method satisfyfth§) and let{A; (¢)}!_; be a system of linear max-

imal coercive operators. Then the decomposi(ia4), (25) for the operatorﬁ(—AtAm, e, —Atﬁ{f) is
valid.

Proof. Asthe FSRK method satisfies (19),=>_"_, A’ is invertible; using notation (22) we can rewrite
(14) as follows:

R(=AtA?, ... —AtA") =T — AfB' (A) " AA™ (T + ACAA™) e,
and using the same notation we can decompgtiseAr Ay (t,,), ..., —At A,(t,)) in a similar format:
I—AB(A) "AA" (T + ArAA™) e =T -5 (A) (I - (I + ArAA™) Y.
In this way, it is immediately seen that
R(=AtA7, ..., —AtA")=T—Db"(A) e +b (A) (I + AtAA™) e, (47)
and, analogously, it is deduced that
=T

R(=AtAy(ty), ... —AtA(t,)) =1 =B (A) e +Bb (A) (I + aArAA™) e, (48)
Using (47) and (48) we obtain
R(—ArA”, ..., —AtA™)
= R(=A1 A1), ..., —ALAL ) + 5 (A) (T + AtAA™) ™ = (T + ArAA™) He;

from this, it is immediately deduced (24), (25)0

Now we will expose briefly some similar results that we use to prove Theorems 3.1 and 3.2 for the
case of an explicit first stage.

Lemma 4.5. Let us consider a FSRK method satisfy{{83) and let{A,(¢)}'_, be a system of linear
maximal coercive operators in H. Then the operator

<I_+ AtZEﬁf”) 1Dy X - X Dy, — Dy x H 7,
i=1
associated to such FSRK method, is invertible, and the inverse operator verifies
n -1
<i+ Atzm;.n> 0

i=1

- <C||U]y,,,
.
whereC is independent of\z.
Proof. The proof of this lemma is similar to the corresponding to Lemma 4.1, excepting that, in this
case, the first stage is
U™t =g,
thus, it is obvious that

10"y, = Nl
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and

| At Ay, &) U™ Y| < llgtllkgm- O

Applying an identical reasoning to the one used in Lemmas 4.2 and 4.3 except for the first stage, we
have proved the following two results:

Lemma 4.6. Under the same hypotheses of Lemtrathe operator
n n -1
i=1 j=1

satisfies| 7" g|| < Clg k., forall g =(g1,..., 8" € Dy, x H* ™.

If besides
8 €Dy, al#0 (49)
and ?
©,....0 DA =), Vi=1...n, (50)

thenU™ = T™g € Dy, and the operatod™ : Dy, x H*~? x Dy, — Dy, is bounded independently of,
i.e.,

s—1
17",  <C (nglukl,tm +3 Mgl + g, ||kl,z,,l+l> .
i=2

Proof. It is sufficient to write now the operat@™ in the form (45) and repeat the calculations of the
proof of Lemma 4.1, together with the indications of the Lemma 4.5 for the first stage.

When the additional hypotheses (49) and (50) are verified, welise- g, — U™*, g, € Dy, and
U™* € Dy, to deduce that/"™ € Dy, =Dy,. O

Note that the last result permits us to deduce the bound (18) in the |hokm,,,. ;-
As in the case without explicit stages, we will give an intermediate technical result, which is proved
like Lemma 4.5.

Lemma 4.7. Let us consider a FSRK method satisfy({33) and let{A;(z)}'_, be a system of linear
maximal coercive operators in H. Then the operator

<I_+ AtZEAf”) :Dyy X -+ X Dy, = Dyy X H L,
i=1

with A;" defined in(23), associated to such FSRK, is invertible, and the inverse operator is bounded in
Dy, x H*71, independently oA:.

2The classical alternating direction methods formulated as FSRK methods with the first stage explicit satisfy (50) or, in other
words, the last fractionary step calculaté€+1. This condition is closely related to the concepiestability studied in [7].
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Lemma 4.8. Let us consider a FSRK method satisfy{8d) and (50) and let{A;(¢)}!_, be a system of
linear maximal coercive operators. Then it holds

R(—=AtAY, ..., —AtA™) = R(=AtA1(ty), ..., —AtA,(t,)) + AtP
with
P=T"(I+ AtAA™) "A(A™ — A") (I + AtAA™) e : Dy — Dy,
u— Pu

and witht" = (0, ..., 0, 1).

Proof. To prove this lemma we have to use only that the hypotheses (50) implies"that "4 and
repeat the reasoning employed to prove Lemma 4.4, excepting that hew(0, ..., 0, Iy) plays the
role of bT(A)~t. O
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