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Stability results for fractional step discretizations of time
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Abstract

We consider a class of additive Runge–Kutta methods, which include most of the classical alternating direction
or fractionary step methods, for discretizing the time variable in an evolutionary problem whose coefficients depend
on time. Some stability results are proven for these methods which, together with suitable consistency properties,
permit us to show the convergence of these discretizations. 2001 IMACS. Published by Elsevier Science B.V.
All rights reserved.
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1. Introduction and notation

LetH be a Hilbert space with scalar product(( ·, · )), with associated norm‖ ·‖, and letu : [0, T ] →H

be the solution of the evolution problem:
du(t)

dt
+A(t) u(t) = g(t),

u(0) = u0,

(1)

whereA(t) : D(A(t)
)⊆ H → H are linear, generally unbounded operators, which we suppose maximal

and coercive for allt , i.e.,{∀g(t) ∈ H, ∃v ∈D(A(t)), such thatv +A(t)v = g(t) and
∃α > 0 such that((A(t)v, v)) � α‖v‖2, ∀ v ∈ D(A(t)).
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Typically, multidimensional initial-boundary value problems involving partial differential equations
can be formulated in the operational form (1), whereA(t) are operators which contain the spatial
differential derivatives (for example, elliptic operators if (1) is a parabolic problem).

In [7,13] some existence and uniqueness results, as well as the study of the smoothness in time are
exposed.

Usually, in an operational formulation of type (1) of an evolutionary initial-boundary value problem,
boundary conditions are included in the election of the domainsD(A(t)), which may change in time for
different reasons, such us the case of evolutionary boundary conditions. For simplicity, we shall study
only the caseD

(
A(t)

)≡D ⊆ H , for all t ∈ [0, T ].
A discretization in time of problem (1), using for example a standard RK method, permits to obtain

approximationsUm to u(m�t) by a recurrence, which can be written in the following way:

Um+1 = R
(−�tA(tm,1), . . . ,−�tA(tm,s)

)
Um

+S
(
�tA(tm,1), . . . ,�tA(tm,s),�tg(tm,1), . . . ,�tg(tm,s)

)
,

whereR(−�tz(tm,1), . . . ,−�tz(tm,s)) and S(�tz(tm,1), . . . ,�tz(tm,s),�tw(tm,1), . . . ,�tw(tm,s)) are
rational approximations ofE(tm, tm+1) and of

∫ tm+1
tm

E(t, tm+1)w(t)dt , respectively, whereE(a, b) ≡
exp(− ∫ b

a z(t)dt).
A time discretization process of type alternating directions or fractional steps usually admits a similar

formulation

Um+1 = R
(−�tA1(tm,1), . . . ,−�tA1(tm,s),−�tA2(tm,1), . . . ,−�tAn(tm,s)

)
Um

+S
(
�tA1(tm,1), . . . ,�tAn(tm,s),�tg1(tm,1), . . . ,�tgn(tm,s)

)
,

whereR(−�tz1(tm,1), . . . ,−�tzn(tm,s)) andS(�tz1(tm,1), . . . ,�tzn(tm,s),�tw1(tm,1), . . . ,�twn(tm,s))

are rational approximations ofE(tm, tm+1) and of
∫ tm+1
tm

E(t, tm+1)w(t)dt , respectively, where now
z(t) = ∑n

i=1 zi(t), w(t) =∑n
i=1wi(t),

∑n
i=1Ai(t) is a decomposition ofA(t) in n simpler addends

and
∑n

i=1gi(t) = g(t). Concretely (see [14,19]), an alternating direction or fractional step method
can be viewed as a time integrator which uses suitable decompositions ofA(t) and g(t) to compute
approximations tou(tm) more easily than using standard implicit methods. This is usually carried out by
computing some intermediate fractionary stepsUm,i , betweenUm andUm+1, which are implicit only in
one of the operatorsAi(t). Such discretization processes can be structured in the following way:

U0 = u0,

Um,i = Um +�t

i∑
j=1

a
kj
ij

(−Akj (tm,j )U
m,j + gkj (tm,j )

)
, for i = 1, . . . , s,

Um+1 = Um +�t

s∑
i=1

b
ki
i

(−Aki (tm,i)U
m,i + gki (tm,i)

)
, with ki, kj ∈ {1, . . . , n}.

(2)

If we compare this scheme with a classical time discretization scheme, like a semiexplicit Runge–Kutta
method, it is clear that we can obtain remarkable cost reductions if the stationary problems(

I + αAi(t)
)
v = f (α > 0) (3)

are easier than problems of type(
I + αA(t)

)
v = f (α > 0) (4)
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in some way. For example, when (1) is a spatial semidiscretization of type central differences in a
rectangular grid of the multidimensional heat conduction equation, the operatorsAi(t) can contain the
discretizations of the terms−∂2u/∂x2

i , and then the linear systems of type (3) will involve tridiagonal
matrices, while the problems of type (4) will involve block tridiagonal matrices and its resolution has a
higher order of computational complexity. A second simple example can be considered if (1) is a system
of coupled partial differential equations; in this case, some schemes of type prediction–correction can be
easily considered by taking

Ai =


0 . . . 0 Li1 0 . . . 0
0 . . . 0 Li2 0 . . . 0
...

...
...

...
...

0 . . . 0 Lin 0 . . . 0

 if A =


L11 L12 . . . L1n

L21 L22 . . . L2n
...

. . .
...

Ln1 Ln2 . . . Lnn

 andu =


u1

u2
...

un

 .

Scheme (2) seems a special kind of one-step method of type Runge–Kutta. In fact, if we fill this
formulation with some null coefficientsbkj , ak

ij , we will obtain the scheme



U0 = u0,

Um,i = Um +�t

s∑
j=1

n∑
k=1

ak
ij

(−Ak(tm,j )U
m,j + gk(tm,j )

)
, for i = 1, . . . , s,

Um+1 = Um +�t

s∑
i=1

n∑
k=1

bki
(−Ak(tm,i)U

m,i + gk(tm,i)
)
,

(5)

which is called, for the casen = 2, additive Runge–Kutta method in [5] and [6].
Most of the classical alternating direction schemes (see [19]) as well as some new ones of high orders

(see [1,2,12]) can be reformulated by using the special subset (2) of additive Runge–Kutta methods,
which is called fractional step Runge–Kutta methods (see also [18]).

Definition 1.1. A fractional step Runge–Kutta method (abbreviately FSRK), is an additive RK method
satisfying:

ak
ii � 0, ∀i ∈ {1, . . . , s}, k ∈ {1, . . . , n}, ak

ij = 0, ∀j > i,

|bkj | +
s∑

i=1

|ak
ij | �= 0⇒ |blj | +

s∑
i=1

|al
ij | = 0, ∀l �= k, l, k ∈ {1, . . . , n}, i, j ∈ {1, . . . , s},

al
iia

k
ii = 0, if k �= l, i ∈ {1, . . . , s}, k, l ∈ {1, . . . , n}.

(6)

The coefficients of these methods can be organized in a Butcher table of type

c A1 A2 . . . An

(b1)T (b2)T . . . (bn)T,
(7)

whereAk = (ak
ij ), b

k = (bki ) andc = (c1, . . . , cs)
T with i, j = 1, . . . , s andk = 1, . . . , n.
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Avoiding the null columns in
( Ai

(bi)T

)
we can reduce notation (7) to the following:

kT

c A

bT

, (8)

with A ≡ (a
kj
ij ) =∑n

i=1Ai , b ≡ (b
kj
j ) =∑n

i=1 b
i andkT = (k1, . . . , kn) wherekj (∈ {1, . . . , n}) satisfy

that
s∑

j=1

n∑
l=1
l �=kj

(∣∣blj ∣∣+ s∑
i=1

∣∣al
ij

∣∣)= 0, for j = 1, . . . , s. (9)

From now on, we will assume that the operatorsAi(t) :Di ⊆ H → H preserve the maximality and
coercitivity ofA(t), i.e.,{∀g(t) ∈ H,∃v ∈Di , such thatv +Ai(t)v = g(t) and

∃αi > 0 such that((Ai(t)v, v)) � αi‖v‖2, ∀v ∈Di ,
(10)

for i = 1, . . . , n, andD =⋂n
i=1Di .

In order to abbreviate the formulation of scheme (2) we introduce the following tensorial notation:
givenM ≡ (mij ) ∈ R

s×s andv ≡ (vi) ∈ R
s, we denote

M ≡
m11IH . . . m1sIH

...
. . .

...

ms1IH . . . mssIH

 ∈ Hs×s and v̄ ≡
v1IH

...

vsIH

 ∈ Hs,
(11)

and we group the stagesUm,i , as well as the evaluations ofgi(t) andAi(t) for all i = 1, . . . , n, and for
all m = 1,2, . . . , in the form

Ũm = (
Um,1, . . . ,Um,s

)T ∈ Hs, Gm
i = (

gi(tm,1), . . . , gi(tm,s)
)T ∈ Hs,

Âm
i =


Ai(tm,1) 0 . . . 0

0 Ai(tm,2) . . . 0
...

...
. . .

...

0 0 . . . Ai(tm,s)

 ∈L(Di ,H )s×s . (12)

Using (11) and (12), the scheme (2) can be written as follows:

(
Ī +�t

n∑
i=1

AiÂm
i

)
Ũm = ēUm +�t

n∑
i=1

AiGm
i ,

Um+1 = Um +�t

n∑
i=1

(
bi
)T(−Âm

i Ũ
m +Gm

i

)
,

whereeT = (1, . . . ,1) ∈ R
s .

With the matrix coefficient structure defined in (6) for scheme (2), it is not difficult to show that this
scheme has unique solution under conditions (10). In fact, we will prove in Lemmas 4.1 and 4.5 that the
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operator(Ī + �t
∑n

i=1AiÂm
i ) is invertible for some classes of FSRK methods. Consequently, we can

rewrite such schemes in a similar format to (5):

Um+1 = R̃
(−�tÂm

1 , . . . ,−�tÂm
n

)
Um + S̃

(
�tÂm

1 , . . . ,�tÂm
n ,�tGm

1 , . . . ,�tGm
n

)
, (13)

where

R̃
(−�tÂm

1 , . . . ,−�tÂm
n

)= Ī −
n∑

i=1

(
bi
)T
�tÂm

i

(
Ī +

n∑
j=1

Aj�tÂm
j

)−1

ē, (14)

and

S̃
(
�tÂm

1 , . . . ,�tÂm
n ,�tGm

1 , . . . ,�tGm
n

)
= �t

n∑
i=1

(
bi
)T(

Gm
i − Âm

i

(
Ī +�t

n∑
j=1

Aj Âm
j

)−1(
�t

n∑
k=1

AkGm
k

))
.

A way to study the convergence of time discretization methods consists of combining the properties
of consistency and contractivity of the discrete transition operator. If we consider FSRK methods,
consistency means that for sufficiently smooth datau(tm), Ai(t), gi(t) it holds that∥∥u(tm+1)− ûm+1∥∥� C�tp+1, m = 0,1, . . . ,

whereûm+1 is the result of giving one step with (2) takingu(tm) as the starting pointum.
On the other hand, as any two exact solutions of (1),u(t) and v(t), obtained with different initial

conditions,u0 andv0, show the following contractive behaviour:∥∥u(tm + h)− v(tm + h)
∥∥�

∥∥u(tm)− v(tm)
∥∥, for h � 0,

it seems natural to search time discretization schemes which preserve this property. So, we shall say that
a method of type RK applied to (1) is contractive iff∥∥Um+1 − V m+1∥∥�

∥∥Um − Vm
∥∥, m = 0,1, . . . ,

whereUm andV m are two sequences generated by the algorithm (2) from different initial valuesU0 and
V 0, respectively; if we use (13), it is clear that the contractivity of a FSRK method is equivalent to∥∥R̃(−�tÂm

1 , . . . ,−�tÂm
n

)∥∥� 1.

In the caseA(t) = A for all t ∈ [0, T ], there exists a wide range of stability results in different
metrics, mainly in the case of univariate approximationsR(−�tA) to the semigroup e−�tA. In the case of
considering Hilbert spaces, Crouzeix proved in [7] several contractivity results of type‖R(−�tA)‖ � 1
for certain classes of maximal monotone operatorsA combined suitably withA(θ)-acceptable rational
functionsR(z). More generally, whenA is a densely defined closed linear operator which generates a
bounded strongly continuous semigroup e−tA, in a Banach spaceX, some weaker stability results of type
‖Rm(−�tA)‖ � C/

√
�t can be seen in [3,8]. More recently, Palencia proved (see [16]) that the factor

1/
√
�t can be superseded if operatorA is θ -sectorial andR(z) is aA(θ)-acceptable rational function. In

the case of considering multivariate approximations of e−tA, there exist only some contractivity results
of type ‖R(−�tA1, . . . ,−�tAn)‖ � 1, when(Ai)

n
i=1 is a commutative system of maximal monotone

operators in a Hilbert spaceH . Such results can be found in [15].
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It is well known that, in the case of consider standard RK methods for discretizing the time variable
and arbitrary dependencies in time of operatorsA(t), AN-stability (see [11]) is a necessary condition
to preserve contractivity. It is also well known that AN-stability is satisfied only by simple low order
methods, such as the implicit Euler rule, or by fully implicit methods of high orders, such as some
Gaussian methods.

Nevertheless, in [7], and more recently in [10], it is shown that, under suitable hypotheses of variation
in time for operatorsA(t), A-stability can be a sufficient condition for a stable integration, at least in
finite intervals of time[0, T ].

Similar situations are produced if we use additive RK methods to discretize the time variable, i.e., a
natural generalization of the AN-stability condition would lead us to preserve the contractivity of the
numerical solutions of problem (1), but this condition could be satisfied only for semiexplicit schemes
of low order or for high order fully implicit schemes of Gaussian type. Therefore, the AN-stability, and
consequently the contractivity for arbitrary variations ofAi(t), is not present in most of the alternating
direction or fractional step methods, since they can be formulated as semiexplicit FSRK methods. We
will show that A-stability, together with suitable time variations of{Ai(t)}ni=1 ensure a stable behaviour
for numerical solutions of scheme (2).

In order to introduce the A-stability for an additive RK method given by (6), in an easy way, we apply
it to the test scalar initial value problemy′(t) =

n∑
i=1

λiy(t), with Re(λi) � 0, i = 1, . . . , n,

y(t0) = y0.

This gives us the recurrence

ym+1 =
(

1+
n∑

i=1

�tλi

(
bi
)T(

I −
n∑

j=1

�tλjAj

)−1

e

)
ym, (15)

and substituting�tλi by zi , we obtain what we call the amplification function associated to (6), which is
a rational complex function ofn complex variablesz1, z2, . . . , zn, defined by

R(z̄) ≡ R(z1, . . . , zn) = 1+
n∑

i=1

zi
(
bi
)T(

I −
n∑

j=1

zjAj

)−1

e.

It is clear that the contractivity of solutionsym given by (15) is equivalent to the A-stability property
introduced in the following definition.

Definition 1.2. An additive RK method is said A-stable iff∣∣R(z̄)
∣∣� 1, ∀z̄ ∈ {(z1, . . . , zn) | zi ∈ C and Re(zi) � 0,∀i = 1, . . . , n

}
.

We will see that in some problems, considered, for example, in [7,10], A-stability is a sufficient
condition to obtain∥∥R̃(−�tÂm

1 , . . . ,−�tÂm
n

)∥∥� eβ�t , (16)

whereβ is a constant, usually positive, but small, under conditions of type∥∥Ai

(
t ′
)
u−Ai(t)u

∥∥�
∣∣t − t ′

∣∣Mi

∥∥Ai(t)u
∥∥, ∀i = 1, . . . , n, ∀t, t ′ ∈ [0, T ],
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which are related to a Lipschitz variation in the coefficients that define the differential operatorsAi(t).
Obviously, condition (16) will not ensure the preservation of the contractivity, unlessβ � 0, but in finite
periods of time we can weaken the contractivity requirement and preserve a stable integration. In this
context we say that a method of type RK is A-stable if the time discretizationsUm andV m, obtained
with such method and with time step�t , of problem (1) and the perturbed problemv′(t)+

n∑
i=1

Ai(t)v(t) =
n∑

i=1

g̃i (t) (t ∈ [0, T ]),

v(0) = ũ0,

satisfy

∥∥Um − V m
∥∥� C

(
‖u0 − ũ0‖ +

n∑
i=1

max
t∈[0,T ]

∥∥gi(t)− g̃i(t)
∥∥), ∀m = 1,2, . . . ,M = T

�t
, (17)

whereC is independent of�t .
Thus, it is easy to see that the bound∥∥S̃(�tÂm

1 , . . . ,�tÂm
n ,�tGm

1 , . . . ,�tGm
n

)∥∥� C�t

n∑
i=1

∥∥Gm
i

∥∥ (18)

together with the bound (16) obtained for̃R(−�tÂm
1 , . . . ,−�tÂm

n ), will guarantee us the stability, in
finite intervals of time, of the numerical integration process (2). Results (16) and (18) are proved in
Sections 2 and 4, respectively.

To get the bound (16) we will use two main ideas. The first one, developed deeply in [15], is focused in
the fact that a null variation in time of operatorsAi(t) (Mi = 0) implies thatR̃(−�tÂm

1 , . . . ,−�tÂm
n ) ≡

R(−�tA1(tm), . . . , −�tAn(tm)) can be a contraction inH and, consequently, the FSRK will preserve
the contractivity. Secondly, if we consider smooth variations ofAi(t), thenR̃(−�tÂm

1 , . . . ,−�tÂm
n ) can

be viewed as a perturbation ofR(−�tA1(tm), . . . ,−�tAn(tm)) and it will be bounded in the form∥∥R̃(−�tÂm
1 , . . . ,−�tÂm

n

)−R
(−�tA1(tm), . . . ,−�tAn(tm)

)∥∥� C�t.

In the next theorem, which we prove in Section 2, we set conditions to obtain (16).

Theorem 1.1. Let (7) be an A-stable FSRK method such that
n∑

k=1

ak
ii �= 0, for i = 1, . . . , s (all their stages are implicit) (19)

and let{Ai(t)}ni=1 be a linear maximal coercive system of operators satisfying:
(a) for eacht ∈ [0, T ] the system of operators{Ai(t)}ni=1 is commutative and the commutative system

of contractions{(I −�tAi(t))(I +�tAi(t))
−1}i∈{1,...,n} admits a unitary dilation,

(b) there existn constantsMi such that∥∥Ai

(
t ′
)
u−Ai(t)u

∥∥�
∣∣t − t ′

∣∣Mi

∥∥Ai(t)u
∥∥,

∀i = 1, . . . , n, ∀t, t ′ ∈ [0, T ] and∀u ∈Di . (20)

Then there exists a constantβ, independent of�t , such that(16) is verified.
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When the operators{Ai(t)}ni=1 are also self-adjoint we can weaken the A-stability requirements to
obtain (16).

Definition 1.3. An additive RK method is said A(0)-stable iff∣∣R(x̄)
∣∣� 1, ∀x̄ ∈ {(x1, . . . , xn) | xi � 0, i = 1, . . . , n

}
.

In similar way of the previous theorem we have proven

Theorem 1.2. Let (7) be an A(0)-stable FSRK method such that satisfies(19) and let {Ai(t)}ni=1 be a
commutative system of self-adjoint linear maximal coercive operators fulfilling(20). Then there exists a
constantβ such that(16) is verified withβ independent of�t .

For problems with a small time variation in operatorsAi(t) it is possible to obtain the stability result
(17) even in infinite-length intervals of time (i.e., forM = ∞), if we impose some additional A-stability
conditions to the additive RK which we use to integrate them. Concretely in Section 2 we will show that
conditions (20) together withMi small permit us to prove a stronger contractivity result of type∥∥R̃(−�tÂm

1 , . . . ,−�tÂm
n

)∥∥� e−β�t (21)

under some additional stability requirements on functionsR(z1, . . . , zn) which we introduce in the
following two definitions:

Definition 1.4. An additive RK method is said strongly A-stable if it is A-stable and there exist
c < 1 andM such thatR(z̄) < c for all z̄ ∈ {(z1, . . . , zn) | zi ∈ C and Re(zi) � 0, i = 1, . . . , n, and
|z1| + · · · + |zn| � M}.
Definition 1.5. An additive RK method is said strongly A(0)-stable if

(1) |R(x̄)| < 1, ∀x̄ ∈ {(x1, . . . , xn) | xi � 0, i = 1, . . . , n, andx1 + · · · + xn < 0}.
(2) There existc < 1 andM such thatR(x̄) < c, ∀x̄ ∈ {(x1, . . . , xn) | xi � 0, i = 1, . . . , n, and

|x1| + · · · + |xn| � M}.
(3) (∂R/∂xi)(0,0, . . . ,0) = −1, i = 1, . . . , n.

The rest of this paper is structured in three sections. Section 2 is mainly devoted to the proof of the
Theorem 1.1; the proof of Theorem 1.2 and the obtaining of (21) are light variations of this proof which
we also explain in this section. In Section 3 we obtain similar stability results for FSRK methods with
an explicit first stage and with additional restrictions on the coefficients of the last stage of them. Finally,
in Section 4 we will give some technical results which we have used in the previous two sections for
proving Theorems 1.1, 1.2, 3.1 and 3.2.

Henceforth we will useC,C1,C2,C3, as arbitrary constants independent of�t .

2. Proof of Theorem 1.1

Let us take inHs any norm induced by the norm ofH and any norm ofRs , for example:‖u‖∞,Hs =
max1�i�s ‖ui‖ and‖u‖1,Hs =∑s

i=1 ‖ui‖. Note that any two of these norms inHs are equivalent.



B. Bujanda, J.C. Jorge / Applied Numerical Mathematics 38 (2001) 69–86 77

For each FSRK we denote

Âm =
Ak1(tm,1)

. . .

Aks (tm,s)

 and Ǎm =
Ak1(tm)

. . .

Aks (tm)

 , (22)

wherek1, . . . , ks ∈ {1, . . . , n} are defined in (9).
Conditions (6) imposed to the FSRK coefficients permit us to use notation (22) to reduce the expression

(14) since the following equalities are true:
n∑

i=1

AiÂm
i = AÂm,

n∑
i=1

(
bi
)T

Âm
i = b

T
Âm,

and, analogously, if we consider

Ǎm
i =


Ai(tm) 0 . . . 0

0 Ai(tm) . . . 0
...

...
. . .

...

0 0 . . . Ai(tm)

 ∈L(Di ,H )s×s, (23)

it is also true that
n∑

i=1

AiǍm
i = AǍm and

n∑
i=1

(
bi
)T
Ǎm

i = b
T
Ǎm.

Using these notations, we will consider now the following decomposition for the transition operator

R̃
(−�tÂm

1 , . . . ,−�tÂm
n

)= R
(−�tA1(tm), . . . ,−�tAn(tm)

)+�tP (24)

with

P = b
T(A )−1(

Ī +�tAǍm
)−1(AǍm −AÂm

)(
Ī +�tAÂm

)−1
ē; (25)

in Lemma 4.4 we will prove that this decomposition is possible under conditions of Theorem 1.1.
As we have supposed that the FSRK method is A-stable and that the commutative system of operators

{(I −�tAi(t))(I +�tAi(t))
−1}ni=1 admits unitary dilation, Theorem 2.3 of [15] ensures that∥∥R(−�tA1(tm), . . . ,−�tAn(tm)

)∥∥� 1. (26)

Thus, to get (16), it is still to be proven that the operatorP given in (25) is bounded independently of
�t . In order to get this bound, we decompose the operatorP in the formP = P3P2P1 where:

P3 ≡ b
T(A )−1(

Ī +�tAǍm
)−1 ∈ L

(
Hs,H

)
,

P2 ≡ (
AǍm −AÂm

)(
AÂm

)−1 ∈ L
(
Hs,H s

)
,

P1 ≡ (
AÂm

)(
Ī +�tAÂm

)−1
ē ∈ L

(
H,Hs

)
,

and we boundP3, P2 andP1 separately.
Lemma 4.3 ensures that

‖P3‖ � C3, (27)

whereC3 is a constant independent of�t .
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For boundingP2 we rewrite it in the formP2 =A(Ǎm − Âm)(Âm)−1(A )−1; so∥∥P2Ṽ
∥∥�

∥∥Ā∥∥∥∥(Ǎm − Âm
)(
Âm
)−1

W̃
∥∥� C

∥∥(Ǎm − Âm
)(
Âm
)−1

W̃
∥∥,

whereW̃ = (A )−1Ṽ .
Let us prove now that for all̃W = (W 1, . . . ,Ws)T ∈ Hs it holds that∥∥W̃m

∥∥≡ ∥∥(Ǎm − Âm
)(
Âm
)−1

W̃
∥∥� M�t

∥∥W̃∥∥. (28)

Note that every componentWm,i of W̃m satisfies

Wm,i = (
Aki (tm)−Aki (tm,i)

)(
Aki (tm,i)

)−1
Wi,

and using (20) it is deduced that∥∥Wm,i
∥∥� |tm − tm,i |Mki

∥∥Aki (tm,i)
(
Aki (tm,i)

)−1
Wi
∥∥= |ci |�tMki

∥∥Wi
∥∥;

therefore (28) is verified withM = maxi=1,...,s{|ci|Mki }; thus, we can conclude that∥∥P2Ṽ
∥∥� ‖A‖M�t

∥∥W̃∥∥� C2M�t
∥∥Ṽ ∥∥, (29)

whereC2 = ‖A‖‖A−1‖.
To check that‖P1‖ � C1/�t , with C1 independent of�t , it suffices to use Lemma 4.1 for proving that∥∥LŨ∥∥= ∥∥�tAÂm

(
Ī +�tAÂm

)−1
Ũ
∥∥�

∥∥Ũ∥∥+ ∥∥(Ī +�tAÂm
)−1

Ũ
∥∥� C

∥∥Ũ∥∥.
As �tP1u = �tLēu it is clear that

‖�tP1‖ � C1. (30)

Joining (26), (27), (29) and (30) we deduce∥∥R̃(−�tÂm
1 , . . . ,−�tÂm

n

)∥∥� 1+C1C2C3M�t � eβ�t

with β = C1C2C3M = CM . ✷
Remark 2.1. To prove Theorem 1.2 we carry out a process identical to this one, except that to obtain the
bound (26) we apply Theorem 3.2 of [15].

Remark 2.2. If the FSRK method is strongly A-stable (or similarly if the FSRK method is strongly
A(0)-stable and the operators{Ai(t)}ni=1 are self-adjoint) it is proven in Theorem 4.3 (Theorem 4.6 for the
self-adjoint case) of [15] that‖R(−�tA1(tm), . . . ,−�tAn(tm))‖ � e−β ′�t under a coercitivity property
of type (Ai(t)v, v) � α‖v‖2 (with α > 0) for anyi = 1, . . . , n. Using the same reasoning of the proof of
Theorem 1.1, for�t ∈ (0,�t0], it is deduced in these cases that∥∥R̃(−�tÂm

1 , . . . ,−�tÂm
n

)∥∥� e−β ′�t +CM�t � eβ�t ,

where β = −β ′ + CMeβ
′�t0. Therefore, forM < β ′/(Ceβ

′�t0), i.e., for small time variations of
coefficients ofAi(t), we can obtain a negativeβ, and consequently, as we pointed out before, the stability
of scheme (2) also in infinite intervals of time.
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3. The case of an explicit first stage

Most of the classical alternating direction or fractional step methods are designed in such a way that
their formulation as FSRK method has an explicit first stage. In order to include such methods in our
analysis it is convenient to give some stability results in this case. Besides, in the development of new
FSRK methods of high order (see [1]) it is interesting to consider reductions in the number of the order
conditions by imposing (classical) restrictions of the formAie = c, ∀i = 1, . . . , n, and such restrictions
require that the first stage will be explicit.

A FSRK has only the first stage explicit if it satisfies that
n∑

i=1

ai
11 = 0 and

n∑
i=1

ai
jj �= 0, ∀j = 2, . . . , s. (31)

Let us callk1 (∈ {1, . . . , n}) the integer such that any of the coefficientsa
k1
i1 �= 0 orbk1

1 �= 0.1

In this section we take foru ∈ Di the norm‖u‖i,t = ‖u‖ + �t‖Ai(t)u‖ and inDi × Hs−1 any norm
induced by the norm‖ · ‖i,t for the first component, the norm ofH for the remaining ones and any norm
of R

s ; we also denote these equivalent norms by‖ · ‖i,t . In Dk1 × · · · × Dks we take the norms induced
by the norm‖ · ‖ki ,tm,i

of Dki , for i = 1, . . . , s, and any norm ofRs and we denote these equivalent norms
by ‖ · ‖k̄,t̄m

wherek̄ = (k1, . . . , ks) andt̄m = (tm,1, . . . , tm,s). In the following results we use these metrics.
Using Lemmas 4.5–4.8 of Section 4 we can prove the following:

Theorem 3.1. Let us consider an A-stable FSRK method such that satisfies(31), (49) and (50) and
let {Ai(t)}ni=1 be a linear maximal coercive system of operators satisfying hypotheses (a) and (b) of
Theorem1.1. Then there exists a constantβ, independent of�t , such that(16) is verified.

Proof. To bound the perturbationP we proceed in a different way with respect to the proof of
Theorem 1.1 sinceA is not invertible. In this case, we decompose this operator in the formP = P1P2P3

where:

P3 ≡ τT(Ī +�tAǍm
)−1 : Dk1 ×Hs−1 → Dk1,

P2 ≡ A
(
Ǎm − Âm

) : Dk1 × · · · ×Dks → Dk1 ×Hs−1,

P1 ≡ (
Ī +�tAÂm

)−1
ē : Dk1 → Dk1 × · · · ×Dks .

Lemma 4.7 ensures that∥∥(Ī +�tAǍm
)−1

W̃
∥∥
k̄,t̄m

� C
∥∥W̃∥∥

k1,tm
. (32)

Applying (49) and (50) as well asτT = (0, . . . ,0,1) we can deduce for̃ZT = (Z1, . . . ,Zs) ∈
Dk1 × · · · ×Dks that∥∥τ TZ̃

∥∥
k1,tm+1

= ∥∥Zs
∥∥
k1,tm+1

� C
∥∥Z̃∥∥

k̄,t̄m
. (33)

Joining (32) and (33) we obtain thatP3W̃ ∈Dk1 satisfies∥∥P3W̃
∥∥
k1,tm+1

� C3
∥∥W̃∥∥

k1,tm
, (34)

1 If k1 does not exist then we will reduce the FSRK method to a FSRK method where all of its stages are implicit, by
eliminating the first stage.
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whereC3 is a constant independent of�t .
To prove thatP2 is bounded, we use that theith component of

(
Ǎm − Âm

)V1
...

Vs

 is
(
Aki (tm)−Aki (tm,i)

)
V i, for i = 1, . . . , s,

and applying (20) we deduce that∥∥(Aki (tm)−Aki (tm,i)
)
V i
∥∥� |tm − tm,i |Mki

∥∥Aki (tm,i)V
i
∥∥� |ci |Mki

∥∥V i
∥∥
ki ,tm,i

;
therefore taking also into account that the first row ofA is null, it is deduced, for all̃V∈ Dk1× · · · ×Dks ,
that ∥∥P2Ṽ

∥∥
k1,tm

� C2M
∥∥Ṽ ∥∥

k̄,t̄m
, (35)

whereC2 = ‖A‖ andM = maxi=2,...,s{|ci|Mki }.
Finally, to boundP1 we use that Lemma 4.5 ensures that∥∥(Ī +�tAÂm

)−1
Ũ
∥∥
k̄,t̄m

� C
∥∥Ũ∥∥

k1,tm
, ∀Ũ ∈Dk1 ×Hs−1. (36)

As ∀u ∈Dk1 it is obvious that̄eu ∈Dk1 ×Hs−1 and

‖ēu‖k1,tm � C‖u‖k1,tm; (37)

from (36) and (37) we conclude that∥∥P1u
∥∥
k̄,t̄m

� C1‖u‖k1,tm. (38)

Joining (34), (35) and (38) we deduce∥∥Pu
∥∥
k1,tm+1

� C1C2C3M‖u‖k1,tm. ✷
In a similar way, we can prove for the self-adjoint operator case the following:

Theorem 3.2. Let us consider an A(0)-stable FSRK method such that satisfies(31), (49) and (50) and
let {Ai(t)}ni=1 be a commutative system of self-adjoint linear maximal coercive operators satisfying(20).
Then there exists a constantβ such that(16) is verified withβ independent of�t .

A strong A-stability property for the FSRK together with a small variation inAi(t) permits to deduce
the contractivity result (21) using the same reasoning of Section 2, for the case in which all the stages are
implicit.

4. Technical lemmas

Lemma 4.1. Let us consider a FSRK method satisfying(19) and let {Ai(t)}ni=1 be a system of linear
maximal coercive operators in H. Then the operator(

Ī +�t

n∑
i=1

AiÂm
i

)
: Dk1 × · · · ×Dks → Hs,

associated to such FSRK, is invertible, and the inverse operator is bounded inHs , independently of�t .
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Proof. We will use an induction principle in the components ofHs to prove that for each̃g ≡
(g1, . . . , gs)

T ∈ Hs, there exists a uniquẽU ≡ (Um,1, . . . ,Um,s)T ∈ Hs such that(
Ī +�t

n∑
i=1

AiÂm
i

)
Ũ = g̃,

and it holds that
∥∥Ũ∥∥∞,Hs � C‖g̃‖1,Hs .

Starting with the first stage, conditions (8) and (19) imposed on the coefficients of a FSRK method
imply thatUm,1 is solution of a (stationary) problem of type

Um,1 +�ta
k1
11Ak1(tm,1)U

m,1 = g1, (39)

whereak1
11 > 0. As we are supposing that{Ai(t)}ni=1 are maximal and coercive operators inH , it holds

(see [4]) that∥∥(I +�ta
k1
11Ak1(tm,1)

)−1∥∥� 1;
thus ∥∥Um,1∥∥� ‖g1‖. (40)

If we rewrite (39) in the form

�ta
k1
11Ak1(tm,1)U

m,1 = g1 −Um,1,

and we use (40) as well asak1
11 > 0, then it is clear that∥∥�tAk1(tm,1)U

m,1∥∥� C
∥∥Um,1∥∥, with C = 2

a
k1
11

.

To apply the induction principle we assume that

∥∥Um,l
∥∥� C

l∑
i=1

‖gi‖, ∀l = 1, . . . , j − 1,

∥∥�tAkl (tm,l)U
m,l
∥∥� C

l∑
i=1

‖gi‖, ∀l = 1, . . . , j − 1,

(41)

and we prove that (41) is also true forl = j .
By using again the restrictions (8) and (19) on the FSRK method coefficients, thej th component of̃U

is solution of the problem

Um,j +�ta
ij
jjAkj (tm,j )U

m,j = fj , with fj = gj −�t

j−1∑
l=1

a
kl
j lAkl (tm,l)U

m,l. (42)

Again the maximality and coercitivity of the operatorAkj (tm,j ) ensure that∥∥Um,j
∥∥� ‖fj‖, (43)

and using the induction hypotheses (41) we have that

‖fj‖ � ‖gj‖ +C

j−1∑
l=1

∥∥�tAkl (tm,l)U
m,l
∥∥� C

j∑
l=1

‖gl‖, (44)
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therefore∥∥Um,j
∥∥� C

j∑
i=1

‖gi‖.

Using (42)–(44) we can also deduce easily the bound

∥∥�tAkj (tm,j )U
m,j
∥∥� C

j∑
i=1

‖gi‖. ✷
Lemma 4.2. Under the same hypotheses of Lemma4.1, the operator

T m ≡ �t

n∑
i=1

(
bi
)T
Âm

i

(
Ī +�t

n∑
j=1

Aj Âm
j

)−1

: Hs → H,

is bounded independently of�t .

Proof. We consider nowUm = T mg̃, whereg̃ = (g1, . . . , gs)
T ∈ Hs; T m can be staged as

Um =�t

s∑
i=1

b
ki
i Aki (tm,i)U

m,i, where

(
I +�ta

ki
ii Aki (tm,i)

)
Um,i = gi −�t

i−1∑
j=1

a
kj
ij Akj (tm,j )U

m,j , for i = 1, . . . , s,

with ki, kj ∈ {1, . . . , n}.

(45)

Thus, as we proved (41) forl = 1, . . . , s, it is immediately deduced that∥∥Um
∥∥= ∥∥T mg̃

∥∥� C‖g̃‖1,Hs . (46)✷
Remark 4.1. It is clear that (46) permits us to deduce (18) since

S̃
(
�tÂm

1 , . . . ,�tÂm
n ,�tGm

1 , . . . ,�tGm
n

)= �t

n∑
i=1

(
bi
)T
Gm

i −�tT mg̃,

whereg̃ =∑n
k=1AkGm

k .

Using the notations (22) and (23), introduced in Section 2, we will prove the following lemmas:

Lemma 4.3. Let us consider a FSRK method satisfying(19) and let {Ai(t)}ni=1 be a system of linear
maximal coercive operators in H. Then the operator(

Ī +�t

n∑
i=1

AiǍm
i

)
: Dk1 × · · · ×Dks → Hs,

associated to such FSRK, is invertible, and the inverse operator is bounded inHs , independently of�t .

Proof. It is identical to the proof of Lemma 4.1.✷
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Lemma 4.4. Let us consider a FSRK method satisfying(19)and let{Ai(t)}ni=1 be a system of linear max-
imal coercive operators. Then the decomposition(24), (25) for the operatorR̃(−�tÂm

1 , . . . ,−�tÂm
n ) is

valid.

Proof. As the FSRK method satisfies (19),A =∑n
i=1Ai is invertible; using notation (22) we can rewrite

(14) as follows:

R̃
(−�tÂm

1 , . . . ,−�tÂm
n

)= Ī −�tb
T(A )−1AÂm

(
Ī +�tAÂm

)−1
ē,

and using the same notation we can decomposeR(−�tA1(tm), . . . ,−�t An(tm)) in a similar format:

Ī −�tb
T(A )−1AǍm

(
Ī +�tAǍm

)−1
ē = Ī − b

T(A )−1(
Ī − (Ī +�tAǍm

)−1)
ē.

In this way, it is immediately seen that

R̃
(−�tÂm

1 , . . . ,−�tÂm
n

)= Ī − b
T(A )−1

ē + b
T(A )−1(

Ī +�tAÂm
)−1

ē, (47)

and, analogously, it is deduced that

R
(−�tA1(tm), . . . ,−�tAn(tm)

)= Ī − b
T(A )−1

ē + b
T(A )−1(

Ī +�tAǍm
)−1

ē. (48)

Using (47) and (48) we obtain

R̃
(−�tÂm

1 , . . . ,−�tÂm
n

)
= R

(−�tA1(tm), . . . ,−�tAn(tm)
)+ b

T(A )−1[(
Ī +�tAÂm

)−1 − (Ī +�tAǍm
)−1]

ē;
from this, it is immediately deduced (24), (25).✷

Now we will expose briefly some similar results that we use to prove Theorems 3.1 and 3.2 for the
case of an explicit first stage.

Lemma 4.5. Let us consider a FSRK method satisfying(31) and let {Ai(t)}ni=1 be a system of linear
maximal coercive operators in H. Then the operator(

Ī +�t

n∑
i=1

AiÂm
i

)
: Dk1 × · · · ×Dks → Dk1 ×Hs−1,

associated to such FSRK method, is invertible, and the inverse operator verifies∥∥∥∥∥
(
Ī +�t

n∑
i=1

AiÂm
i

)−1

Ũ

∥∥∥∥∥
k̄,t̄m

� C
∥∥Ũ∥∥

k1,tm
,

whereC is independent of�t .

Proof. The proof of this lemma is similar to the corresponding to Lemma 4.1, excepting that, in this
case, the first stage is

Um,1 = g1,

thus, it is obvious that∥∥Um,1∥∥
k1,tm

= ‖g1‖k1,tm,
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and ∥∥�tAk1(tm)U
m,1∥∥� ‖g1‖k1,tm. ✷

Applying an identical reasoning to the one used in Lemmas 4.2 and 4.3 except for the first stage, we
have proved the following two results:

Lemma 4.6. Under the same hypotheses of Lemma4.5, the operator

T m ≡ �t

n∑
i=1

(
bi
)T
Âm

i

(
Ī +�t

n∑
j=1

Aj Âm
j

)−1

: Dk1 ×Hs−1 → H

satisfies‖T mg̃‖ � C‖g̃‖k1,tm for all g̃ ≡ (g1, . . . , gs)
T ∈ Dk1 ×Hs−1.

If besides

gs ∈Dk1, ak1
ss �= 0 (49)

and 2

(0, . . . ,0,1)Ai = (
bi
)T
, ∀i = 1, . . . , n, (50)

thenUm ≡ T mg̃ ∈Dk1 and the operatorT m : Dk1 ×Hs−2 ×Dk1 → Dk1 is bounded independently of�t ,
i.e.,

∥∥T mg̃
∥∥
k1,tm+1

� C

(
‖g1‖k1,tm +

s−1∑
i=2

‖gi‖ + ‖gs‖k1,tm+1

)
.

Proof. It is sufficient to write now the operatorT m in the form (45) and repeat the calculations of the
proof of Lemma 4.1, together with the indications of the Lemma 4.5 for the first stage.

When the additional hypotheses (49) and (50) are verified, we useUm = gs − Um,s , gs ∈ Dk1 and
Um,s ∈Dk1, to deduce thatUm ∈Dks ≡ Dk1. ✷

Note that the last result permits us to deduce the bound (18) in the norm‖ · ‖k1,tm+1.
As in the case without explicit stages, we will give an intermediate technical result, which is proved

like Lemma 4.5.

Lemma 4.7. Let us consider a FSRK method satisfying(31) and let {Ai(t)}ni=1 be a system of linear
maximal coercive operators in H. Then the operator(

Ī +�t

n∑
i=1

AiǍm
i

)
: Dk1 × · · · ×Dks → Dk1 ×Hs−1,

with Ǎm
i defined in(23), associated to such FSRK, is invertible, and the inverse operator is bounded in

Dk1 ×Hs−1, independently of�t .

2 The classical alternating direction methods formulated as FSRK methods with the first stage explicit satisfy (50) or, in other
words, the last fractionary step calculatesUm+1. This condition is closely related to the concept ofĀ-stability studied in [7].
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Lemma 4.8. Let us consider a FSRK method satisfying(31) and (50) and let{Ai(t)}ni=1 be a system of
linear maximal coercive operators. Then it holds

R̃
(−�tÂm

1 , . . . ,−�tÂm
n

)= R
(−�tA1(tm), . . . ,−�tAn(tm)

)+�tP

with

P = τT(Ī +�tAǍm
)−1A

(
Ǎm − Âm

)(
Ī +�tAÂm

)−1
ē : Dk1 → Dk1,

u → Pu

and withτT = (0, . . . ,0,1).

Proof. To prove this lemma we have to use only that the hypotheses (50) implies thatbT = τTA and
repeat the reasoning employed to prove Lemma 4.4, excepting that nowτ T = (0, . . . ,0, IH ) plays the
role ofbT(A)−1. ✷
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