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Abstract

In this paper we analyze some applications of the category of exterior
spaces to the study of dynamical systems (flows). We study the notion of
an absorbing open subset of a dynamical system; i.e., an open subset that
contains the “future part” of all the trajectories. The family of all absorbing
open subsets is a quasi-filter which gives the structure of an exterior space
to the flow. The limit space and end space of an exterior space are used to
construct the limit spaces and end spaces of a dynamical system. On the
one hand, for a dynamical system two limits spaces Lr(X) and L̄r(X) are
constructed and their relations with the subflows of periodic, Poisson stable
points and Ω-limits of X are analyzed. On the other hand, different end
spaces are also associated to a dynamical system having the property that
any positive semi-trajectory has an end point in these end spaces. This type
of construction permits us to consider the subflow containing all trajectories
finishing at an end point a. When a runs over the set of all end points, we
have an induced decomposition of a dynamical system as a disjoint union of
stable (at infinity) subflows.
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1 Introduction

It is well known the importance of the purely topological behavior of a con-
tinuous dynamical system, i.e., an additive action R × X → X in many, radi-
cally different in principle, situations (differential equations, non linear analysis,
transformation groups, et cetera). On the other hand, exterior homotopy theory
([2, 5, 7, 9]) has also proven to be very useful in the study of topological aspects
of several settings such as proper homotopy theory and its numerical invariants
or shape theory. In this paper we describe some basic ideas that permit a new
treatment of the study of dynamical systems under an exterior approach. The
key to establish such a link is the notion of absorbing open region. Given a flow
R × X → X on a topological space X, an open set E is said to be r-exterior if the
trajectory of every point of X is, from some time on, totally contained in E, that
is, for any x ∈ X, there is t0 ∈ R such that t · x ∈ E for every t ≥ t0. This way
X has the structure of an exterior space. Using exterior spaces we construct two
limit subflows Lr(X) and L̄r(X) associated with a flow X. One of the important
results of our study (see Corollary 6.14) is the following:

If X is a locally compact T3 flow, then Lr(X) = P(X) and L̄r(X) = Ω(X); further-
more we have that

Lr(X) = P(X) ⊂ Poisson(X) ⊂ Ω(X) ⊂ Ω(X) = L̄r(X),

where P(X) is the subflow of periodic points, Poisson(X) is the subflow of posi-
tively Poisson stable points and Ω(X) =

⋃
x∈X ω(x) (being ω(x) the omega limit

set of the point x ∈ X). Under the condition of being regular at infinity (see
Proposition 3.14), we have that Lr(X) = L̄r(X) and in some cases we can also
ensure that L̄r(X) is compact. The constructions Lr, L̄r induce classifications (for
flows) of the following type: Two flows X, Y are said to be L̄r-equivalent if there is
a flow morphism f : X → Y such that L̄r( f ) is a homotopy equivalence. This will
determine equivalence classes of flows having, for instance, the same number of
critical points or the ‘same type’ of periodic trajectories.

Besides, with the use again of exterior spaces, we construct ‘slightly different’
end spaces π̌r

0(X), čr(X), ˇ̄π0
r
(X), ˇ̄cr(X), which coincide when X is locally path-

connected and regular at infinity. In this case, the end spaces have a pro-discrete
topology (with additional conditions, a pro-finite topology). The importance of
this end space is that each right semi-trajectory of the flow has an end point in this
space. This fact allows one to give a set map χ̄ : X → ˇ̄cr(X) and the corresponding
χ̄-decomposition of the flow

X =
⊔

a∈ ˇ̄cr(X)

X̄(r,a).

In general, there will be end points which are not reached by right semi-trajectories
and end points of semi-trajectories that are not reached by right semi-trajectories
contained in the limit subflow. In this paper, we give sufficient conditions to
ensure that an end point can be reached by right semi-trajectories of L̄r(X) (see
Proposition 4.8). These end spaces will be used (not in this work) to construct
completions (compactification under some topological and dynamical conditions)
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of a flow. These completions are related to Freundenthal compactifications [4, 6,
12] and will permit us to apply some nice properties of compact flows to a more
general class of topological flows. It is important to observe that applying the re-
sults of this paper to the reversed flow we will obtain all the corresponding dual
concepts, constructions and properties.

The authors would like to thank the referee for his/her thorough review and
useful comments that helped to improve this paper.

2 Preliminaries on exterior spaces and dynamical systems

2.1 The categories of proper and exterior spaces

A continuous map f : X → Y is said to be proper if for every closed compact
subset K of Y, f−1(K) is a compact subset of X. The category of topological spaces
and the subcategory of spaces and proper maps will be denoted by Top and P,
respectively. This last category and its corresponding proper homotopy category
are very useful for the study of non-compact spaces. Nevertheless, one has the
problem that P does not have enough limits and colimits and then we can not
develop the usual homotopy constructions such as loops, homotopy limits and
colimits, et cetera. An answer to this problem is given by the notion of exterior
space. The new category of exterior spaces and maps is complete and cocomplete
and contains as a full subcategory the category of spaces and proper maps, see
[7, 9]. We refer to [2, 5, 8, 10, 11] for further properties and applications of exterior
homotopy, and to [18] for a survey of proper homotopy.

Definition 2.1. Let (X, t) be a topological space, where X is the underlying set
and t its topology. An externology on (X, t) is a non-empty collection ε (also de-
noted by ε(X)) of open subsets which is closed under finite intersections and such
that if E ∈ ε, U ∈ t and E ⊂ U then U ∈ ε. The members of ε are called exterior
open subsets. An exterior space (X, ε, t) consists of a space (X, t) together with
an externology ε. Given an exterior space (X, ε, t) it is useful to work with an
exterior base (or just a base of the externology), which is nothing else than a subcol-
lection β ⊂ ε such that for every E ∈ ε there exists F ∈ β with F ⊂ E. A map
f : (X, ε, t) → (X′ , ε′, t′) is said to be an exterior map if it is continuous and
f−1(E) ∈ ε, for all E ∈ ε′.

The category of exterior spaces and maps will be denoted by E. Given a space
(X, tX), we can always consider the trivial exterior space taking ε = {X} or the
total exterior space if one takes ε = tX. An important example of externology
on a given topological space X is the one constituted by the complements of all
closed-compact subsets of X, that will be called the cocompact externology and
usually written as εc(X). The category of spaces and proper maps can be consid-
ered as a full subcategory of the category of exterior spaces via the full embedding
(·)c : P →֒ E. The functor (·)c carries a space X to the exterior space Xc which is
provided with the topology of X and the externology εc(X). A map f : X → Y is
carried to the exterior map f c : Xc → Yc given by f c = f . It is easy to check that
a continuous map f : X → Y is proper if and only if f = f c : Xc → Yc is exterior.
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An important role in this paper will be played by the following construction
(·)×̄(·): Let (X, ε(X), tX ) be an exterior space, (Y, tY) a topological space and
for y ∈ Y we denote by (tY)y the family of open neighborhoods of Y at y. We
consider on X ×Y the product topology tX×Y and the externology ε(X×̄Y) given
by those E ∈ tX×Y such that for each y ∈ Y there exist Uy ∈ (tY)y and Ty ∈ ε(X)
such that Ty × Uy ⊂ E. This exterior space will be denoted by X×̄Y in order to
avoid a possible confusion with the product externology. This construction gives
a functor

(·)×̄(·) : E × Top → E.

When Y is a compact space, we have that E is an exterior open subset if and only if
it is an open subset and there exists G ∈ ε(X) such that G × Y ⊂ E. Furthermore,
if Y is a compact space and ε(X) = εc(X), then ε(X×̄Y) coincides with εc(X × Y)
the externology of the complements of closed-compact subsets of X × Y. We also
note that if Y is a discrete space, then E is an exterior open subset if and only if it
is open and for each y ∈ Y there is Ty ∈ ε(X) such that Ty × {y} ⊂ E.

This bar construction provides a natural way to define exterior homotopy in E.
Indeed, if I denotes the closed unit interval, given exterior maps f , g : X → Y, it
is said that f is exterior homotopic to g if there exists an exterior map H : X×̄I → Y
(called exterior homotopy) such that H(x, 0) = f (x) and H(x, 1) = g(x), for all x ∈
X. The corresponding homotopy category of exterior spaces will be denoted by
πE. Similarly, the usual homotopy category of topological spaces will be denoted
by πTop.

2.2 Dynamical Systems and Ω-Limits

Next we recall some elementary concepts about dynamical systems.

Definition 2.2. A dynamical system (or flow) on a topological space X is a con-
tinuous map ϕ : R×X → X, ϕ(t, x) = t · x, such that

(i) 0 · x = x, ∀x ∈ X;

(ii) t · (s · x) = (t + s) · x, ∀x ∈ X, ∀t, s ∈ R.

A flow on X will be denoted by (X, ϕ) and when no confusion is possible, we use
X for short.

For a subset A ⊂ X, we denote inv(A) = {x ∈ A |R · x ⊂ A}.

Definition 2.3. A subset S of a flow X is said to be invariant if inv(S) = S.

Given a flow ϕ : R×X → X one has a subgroup {ϕt : X → X | t ∈ R} of
homeomorphisms, ϕt(x) = ϕ(t, x), and a family of motions {ϕx : R → X | x ∈
X}, ϕx(t) = ϕ(t, x).

Definition 2.4. Given two flows ϕ : R×X → X, ψ : R×Y → Y, a flow morphism
f : (X, ϕ) → (Y, ψ) is a continuous map f : X → Y such that f (t · x) = t · f (x) for
every t ∈ R and for every x ∈ X.
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We note that if S ⊂ X is invariant, S has a flow structure and the inclusion is a
flow morphism. We denote by F the category of flows and flow morphisms.

We recall some basic fundamental examples: (1) X = R with the action ϕ : R×
X → X, ϕ(t, s) = t + s. (2) X = S1 = {z ∈ C | |z| = 1} with ϕ : R × X → X,
ϕ(t, z) = e2πitz. (3) X = {0} with the trivial action ϕ : R × X → X given by
ϕ(t, 0) = 0. In all these cases, the flows only have one trajectory.

Definition 2.5. For a flow X, the ω-limit set (or right-limit set, or positive limit
set) of a point x ∈ X is given as follows:

ω(x) = {y ∈ X | ∃ a net tδ → +∞ such that tδ · x → y}.

If A denotes the closure of a subset A of a topological space, we note that the
subset ω(x) admits the alternative definition

ω(x) =
⋂

t≥0

[t,+∞) · x

which has the advantage of showing that ω(x) is closed.

Definition 2.6. The Ω-limit set of a flow X is the following invariant subset:

Ω(X) =
⋃

x∈X

ω(x)

Now we introduce the basic notions of critical, periodic and Poisson stable
points.

Definition 2.7. Let X be a flow. A point x ∈ X is said to be a critical point
(or rest point, or equilibrium point) if for every t ∈ R, t · x = x. We denote by
C(X) the invariant subset of critical points of X.

Definition 2.8. Let X be a flow. A point x ∈ X is said to be periodic if there is
t ∈ R, t 6= 0 such that t · x = x. We denote by P(X) the invariant subset of
periodic points of X.

It is clear that a critical point is a periodic point. Then

C(X) ⊂ P(X).

If x ∈ X is a periodic point but not critical, then there is a real t 6= 0 such that
t · x = x and t is called a period of x. The smallest positive period t0 of x is called
the fundamental period of x.

Definition 2.9. Let (X, ϕ) be a flow. A point x ∈ X is said to be positively Poisson
stable if there is a net tδ → +∞ such that tδ · x → x; that is, x ∈ ω(x). We will
denote by Poisson(X) the invariant subset of positively Poisson stable points of
X.

The reader can easily check that

P(X) ⊂ Poisson(X) ⊂ Ω(X).

The notions above can be dualized by considering the notions of α-limit set of
a point x, negatively Poisson stable points, et cetera.

Remark 2.10. Observe that when X satisfies the first axiom of countability (for instance,
when X is metrizable) we can consider sequences instead of nets in definitions 2.5 and
2.9.
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3 End Spaces and Limit Spaces of an exterior space

In this section we will deal with special limit constructions associated to any
exterior space.

3.1 The functors L, π̌0, č : E → Top

Given an exterior space X = (X, ε(X)), its externology ε(X) is an inverse system
of spaces. Then we define the limit space of (X, ε(X)) as the topological space

L(X) = lim ε(X).

Note that for each E′ ∈ ε(X) the canonical map lim ε(X) → E′ is continuous and
factorizes as lim ε(X) → ∩E∈ε(X)E → E′. Therefore the canonical map lim ε(X) →
∩E∈ε(X)E is continuous. Moreover, by the universal property of the limit, the

family of maps ∩E∈ε(X)E → E′, E′ ∈ ε(X) induces a continuous map ∩E∈ε(X)E →

lim ε(X). This implies that the canonical map lim ε(X) → ∩E∈ε(X)E defines a
natural homeomorphism.

We recall that for a topological space Y, π0(Y) denotes the set of path-compo-
nents of Y and we have a canonical map Y → π0(Y) which induces a quotient
topology on π0(Y). Similarly, if c(Y) denotes the set of connected components
of a space Y, we have a similar quotient map Y → c(Y). We remark that if Y is
locally path-connected (respect., locally connected), then π0(Y) (respect., c(Y)) is
a discrete space.

It is also interesting to note that for any topological space Y, there exists a
canonical commutative diagram of natural maps:

Y

||②②
②②
②②
②②
②

!!❈
❈❈

❈❈
❈❈

❈

π0(Y) // c(Y)

Definition 3.1. Given an exterior space X = (X, ε(X)) the limit space of X is the
topological subspace

L(X) = lim ε(X) = ∩E∈ε(X)E.

The end space of X is the inverse limit

π̌0(X) = lim π0ε(X) = lim
E∈ε(X)

π0(E)

provided with the inverse limit topology of the spaces π0(E).
The c-end space of X is the inverse limit

č(X) = lim c ε(X) = lim
E∈ε(X)

c(E)

provided with the inverse limit topology of the spaces c(E). The elements of
π̌0(X) or č(X) will be called end points of X.
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An end point a ∈ π̌0(X) is represented by the filter base

{UE
a |UE

a is a path-component of E, E ∈ ε(X)}.

We note that a locally path-connected exterior space (X, ε(X)) induces the
following family of exterior spaces

{(X, ε(X, a)) | a ∈ π̌0(X)}

where ε(X, a) is the externology generated by the filter base

{UE
a |UE

a is a path-component of E, E ∈ ε(X)}.

The end points of č(X) have similar properties.
It is interesting to observe that if X is an exterior space and X is locally path-

connected (respect., locally connected), then π̌0(X) (respect., č(X)) is a prodis-
crete space. On the other hand, given any exterior space (X, ε(X)), we have a
canonical commutative diagram of natural maps

L(X)
e0

zz✈✈
✈✈
✈✈
✈✈
✈

e

##●
●●

●●
●●

●

π̌0(X)
θ

// č(X)

Definition 3.2. Given an exterior space X = (X, ε(X)), an end point a ∈ π̌0(X)
(respect., a ∈ č(X)) is said to be e0-representable (respect., e-representable) if there
is x ∈ L(X) such that e0(x) = a (respect., e(x) = a). Notice that the maps
e0 : L(X) → π̌0(X), e : L(X) → č(X) induce an e0-decomposition and an e-decom-
position

L(X) =
⊔

a∈π̌0(X)

L0
a(X), L(X) =

⊔

a∈č(X)

La(X)

where L0
a(X) = e−1

0 (a) and La(X) = e−1(a). These special subsets will be respec-
tively called the e0-component of the end a ∈ π̌0(X) and the e-component of the end
a ∈ č(X) in the limit L(X).

We denote by e0L(X) and eL(X) the corresponding subsets of representable
end points. It is clear that

L(X) =
⊔

a∈e0L(X)

L0
a(X), L(X) =

⊔

a∈eL(X)

La(X)

and for b ∈ eL(X) one has that

Lb(X) =
⊔

a∈(θ−1(b)∩e0L(X))

L0
a(X).

Example 3.3. Let M : R → (0, 1) be an increasing continuous map such that
lims→−∞ M(s) = 0 and lims→+∞ M(s) = 1 and take A = {e2πis | s ∈ R},
B = {M(s)e2πis | s ∈ R}. Consider X = A∪ B ⊂ C provided with the relative topology
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(observe that X is not locally connected). On the topological space X the flow ϕ : R ×

X → X is given by ϕ(t, e2πis) = e2πi(t+s), ϕ(t, M(s)e2πis) = M(t + s)e2πi(t+s).
It is clear that this flow has two trajectories A, B. If for each natural number n we
denote Bn = {M(s)e2πis | s ≥ n}, then a base of an externology on X is given by
{En = A ∪ Bn | n ∈ N}. Since A, Bn are path-connected and Bn = En is connected, it
follows that π0(En) = {A, Bn} and c(En) = {En}. Therefore

π̌0(X) = {∗A, ∗B}, č(X) = {∗}

For this example we have L(X) = A, the e0-decomposition

L0
∗A

= A, L0
∗B

= ∅

and the e-decomposition L∗ = A. This means that ∗B is not e0-representable.

It is not difficult to check that the functor L preserves homotopies and the
functors π̌0, č are invariant by exterior homotopy.

Lemma 3.4. Suppose that X and Y are exterior spaces and f , g : X → Y exterior maps.

(i) If H : X×̄I → Y is an exterior homotopy from f to g, then L(H) = H|L(X)×I :

L(X×̄ I) = L(X) × I → L(Y) is a homotopy from L( f ) to L(g);

(ii) If f is exterior homotopic to g, then π̌0( f ) = π̌0(g) and č( f ) = č(g).

As a consequence of this lemma one has:

Proposition 3.5. The functors L, π̌0, č : E → Top induce functors

L : πE → πTop, π̌0, č : πE → Top.

It is interesting to observe that the functor L : E → Top admits in a natural
way a left adjoint: Given a topological space X, recall that we can consider on X
the trivial externology εtr(X) = {X}. This construction gives the exterior space
Xtr = (X, εtr(X)) and induces the canonical functor (·)tr : Top → E, X 7→ Xtr .
The reader can straightforwardly check the following result:

Proposition 3.6. The functor (·)tr : Top → E is left adjoint to the functor L : E → Top.
Moreover, this pair of adjoint functors induces an adjunction on the homotopy categories:
(·)tr : πTop → πE, L : πE → πTop.

3.2 The functors L̄, ˇ̄π0, ˇ̄c : E → Top

The externology of an exterior space X = (X, ε(X)) and the closure operator of
the underlying topological space induce the following inverse system ε̄(X) =
{E | E ∈ ε(X)}. Using this new inverse system, we can rewrite notions and anal-
ogous results of subsection above as follows:
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Definition 3.7. Given an exterior space X = (X, ε(X)) the bar-limit space of X is
the topological subspace

L̄(X) = lim ε̄(X) = ∩E∈ε(X)E.

The bar-end space of X is the inverse limit

ˇ̄π0(X) = lim π0 ε̄(X) = lim
E∈ε(X)

π0(E)

provided with the inverse limit topology of the spaces π0(E).
The c-bar-end space of X is the inverse limit

ˇ̄c(X) = lim c ε̄(X) = lim
E∈ε(X)

c(E)

provided with the inverse limit topology of the spaces c(E).

Given any exterior space X = (X, ε(X)), we have a canonical diagram of nat-
ural maps

L̄(X)
ē0

zz✈✈
✈✈
✈✈
✈✈
✈

ē

##❋
❋❋

❋❋
❋❋

❋

ˇ̄π0(X)
θ̄

// ˇ̄c(X)

and there canonical natural maps L(X) ⊂ L(X) ⊂ L̄(X), π̌0(X) → ˇ̄π0(X),
č(X) → ˇ̄c(X) such that the following diagram is commutative:

L(X)

zz✈✈
✈✈
✈✈
✈✈
✈

##●
●●

●●
●●

●

��

π̌0(X) //

��

č(X)

��

L̄(X)

zz✈✈
✈✈
✈✈
✈✈
✈

##❋
❋❋

❋❋
❋❋

❋

ˇ̄π0(X) // ˇ̄c(X)

Definition 3.8. Given an exterior space X = (X, ε(X)), an end point a ∈ ˇ̄π0(X)
(respect., a ∈ ˇ̄c(X)) is said to be ē0-representable (respect., ē-representable) if there
is x ∈ L̄(X) such that ē0(x) = a (respect., ē(x) = a). The maps ē0 : L̄(X) →
π̌0(X), ē : L̄(X) → č(X) induce an ē0-decomposition and an ē-decomposition

L̄(X) =
⊔

a∈ ˇ̄π0(X)

L̄0
a(X), L̄(X) =

⊔

a∈ ˇ̄c(X)

L̄a(X)

where L̄0
a(X) = ē−1

0 (a) (respect., L̄a(X) = ē−1(a)) will be called the ē0-component
(respect., ē-component) of the end a ∈ ˇ̄π0(X) (respect., a ∈ ˇ̄c(X)) in the limit L̄(X).
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We denote by ē0L̄(X) and ēL̄(X) the corresponding subsets of representable
end points. It is clear that we have a commutative diagram

L(X)

zz✉✉
✉✉
✉✉
✉✉
✉

$$❍
❍❍

❍❍
❍❍

❍❍

��

e0L(X) //

��

eL(X)

��

L̄(X)

zz✉✉
✉✉
✉✉
✉✉
✉

##❍
❍❍

❍❍
❍❍

❍❍

ē0L̄(X) // ēL̄(X)

We also have the following similar results:

Lemma 3.9. Suppose that X, Y are exterior spaces and f , g : X → Y exterior maps.

(i) If H : X×̄I → Y is an exterior homotopy from f to g, then L̄(H) = H|L̄(X)×I :

L̄(X×̄I) = L̄(X)× I → L̄(Y) is a homotopy from L̄( f ) to L̄(g);

(ii) If f is exterior homotopic to g, then ˇ̄π0( f ) = ˇ̄π0(g) and ˇ̄c( f ) = ˇ̄c(g).

As a consequence of this lemma we have:

Proposition 3.10. The functors L̄, ˇ̄π0, ˇ̄c : E → Top induce functors

L̄ : πE → πTop, ˇ̄π0, ˇ̄c : πE → Top.

In Proposition 3.6 a left adjoint has been constructed for the functor L. Nev-
ertheless in the case of functor L̄ we have the following alternative result whose
proof is a simple checking:

Proposition 3.11. Suppose that X and Y are exterior spaces and X satisfies that for every
E ∈ ε(X), E = X. Then we have the following canonical injective map

HomE(X, Y) → HomTop(Xt, L̄(Y)),

where Xt denotes the underlying topological space of X. Therefore, if Eden denotes the
full subcategory of exterior spaces X satisfying that for every E ∈ ε(X), E = X, then
L̄ : Eden → Top is a faithful functor.

3.3 Topological and exterior properties and canonical maps

Let X = (X, ε(X)) be an exterior space and consider ε̄(X) = {E | E ∈ ε(X)}.

Definition 3.12. An exterior space X = (X, ε(X)) is said to be regular at infinity
(respect., locally compact at infinity) if for every E ∈ ε(X), there exists E′ ∈ ε(X)
such that E′ ⊂ E (respect., E′ is compact and E′ ⊂ E).

Obviously, locally compact at infinity implies regular at infinity.
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Example 3.13. As an example of a regular at infinity exterior space we can take any
Hausdorff locally compact space X provided with its cocompact externology. Now, if K
is a compact subset of X and we take the externology given by all the neighborhoods of K
in X, then we obtain a new exterior space which is locally compact at infinity. Next, we
describe an exterior space which is not regular at infinity: Consider the following planar
differential system

dα

dt
= f (α, β),

dβ

dt
= a f (α, β)

where f is a C1-function such that f (α, β) > 0, f (α + 1, β) = f (α + 1, β + 1) =
f (α, β + 1) and a is an irrational fixed number. This system induces a flow on the torus
X = S1 × S1, which satisfies that each trajectory is dense in X. Take the externology
ε(X) constituted by those open subsets E such that for any x ∈ X there is t0 ∈ R such
that t · x ∈ E, for all t ≥ t0. Then one can check that the exterior space (X, ε(X)) is not
regular at infinity.

The proofs of the next two propositions are straightforward and left to the
reader.

Proposition 3.14. If an exterior space X = (X, ε(X)) is regular at infinity, then

(i) L(X) = L̄(X);

(ii) π̌0(X) = ˇ̄π0(X), e0L(X) = ē0L̄(X);

(iii) č(X) = ˇ̄c(X), eL(X) = ēL̄(X).

Proposition 3.15. Suppose that X = (X, ε(X)) is an exterior space.

(i) If X is locally path-connected, then π̌0(X) = č(X), e0L(X) = eL(X);

(ii) If X is locally path-connected and regular at infinity, then π̌0(X) = ˇ̄π0(X) =
č(X) = ˇ̄c(X), e0L(X) = ē0L̄(X) = eL(X) = ēL̄(X).

Proposition 3.16. If an exterior space X = (X, ε(X)) is locally compact at infinity, then
L(X) = L̄(X) is compact.

Proof. Since X is regular at infinity, by Proposition 3.14, L(X) = L̄(X). Take
E0 ∈ ε(X) such that E0 is compact; then the closed subset L̄(X) satisfies L̄(X) ⊂
E0. Therefore L(X) = L̄(X) is compact.

Theorem 3.17. Let X = (X, ε(X)) be an exterior space and suppose that X is locally
path-connected and locally compact at infinity. Then,

(i) L(X) = L̄(X) is compact;

(ii) e0L(X) = ē0 L̄(X) = eL(X) = ēL̄(X) = π̌0(X) = ˇ̄π0(X) = č(X) = ˇ̄c(X)(any
end point is representable by a point of the limit);

(iii) π̌0(X) = ˇ̄π0(X) = č(X) = ˇ̄c(X) is a profinite compact space;
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(iv) If a ∈ π̌0(X) = ˇ̄π0(X) = č(X) = ˇ̄c(X), then La(X) = L̄a(X) = L0
a(X) =

L̄0
a(X) is a non-empty continuum.

Proof. As a consequence of Propositions 3.15 and 3.16, it follows (i), π̌0(X) =
ˇ̄π0(X) = č(X) = ˇ̄c(X) and e0L(X) = ē0L̄(X) = eL(X) = ēL̄(X).

Now take E0 ∈ ε(X) such that E0 is compact. Then ε̄′(X) = {E | E ∈ ε(X), E ⊂
E0} is cofinal and we have L̄(X) = ∩E∈ε̄′(X)E and ˇ̄c(X) = limE∈ε̄′(X) c(E).

Note that any end a can be represented by {F}F∈c(E),E∈ε̄′(X). Since F is a non-

empty component of E ⊂ E0, it follows that F is closed (F is a continuum). We
also have that the family of closed subset {F}F∈c(E),E∈ε̄′(X) satisfies the finite in-

tersection property. Since E0 is compact, one has that La(X) =
⋂

F∈c(E),E∈ε̄′(X) F

is a non-empty continuum (see Theorem 6.1.20 in [3]). Therefore this end is rep-
resentable by points of the limit space. Since the map e : L(X) → π̌0(X) is con-
tinuous and L(X) is compact it follows that π̌0(X) is compact. Moreover, since
π̌0(X) ∼= lim π0(E) is prodiscrete, taking into account that π̌0(X) is compact, we
have that π̌0(X) is a profinite compact space.

Remark 3.18. For an ANR exterior space X, under some topological conditions the shape
of the limit space is determined by the resolution ε(X). Some applications of shape theory
to dynamical systems can be seen in [15, 17].

4 The category of exterior flows

We are going to consider the exterior space R ≡ (R, r), where r is the following
externology:

r = {U |U is open and there is n ∈ N such that (n,+∞) ⊂ U}.

Note that a base for r is given by B(r) = {(n,+∞)|n ∈ N}.
The exterior space R plays an important role in the definition of exterior flow

below. Such notion mixes the structures of dynamical system and that of exterior
space:

Definition 4.1. Let M be an exterior space, Mt denote the underlying topological
space and Md denote the set M provided with the discrete topology. An exterior
flow is a continuous flow ϕ : R×Mt → Mt such that ϕ : R×̄Md → M is exterior
and for any t ∈ R, the map Ft : M×̄I → M, Ft(x, s) = ϕ(ts, x), s ∈ I, x ∈ M, is
also exterior.

An exterior flow morphism of exterior flows f : M → N is a flow morphism such
that f is exterior. We will denote by EF the category of exterior flows and exterior
flow morphisms.

Given an exterior flow (M, ϕ) ∈ EF, one also has a flow (Mt, ϕ) ∈ F. This
gives a forgetful functor

(·)t : EF → F.

Now given a continuous flow X = (X, ϕ), an open N ∈ tX is said to be
r-exterior if for any x ∈ X there is Tx ∈ r such that Tx · x ⊂ N. It is easy to
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check that the family of r-exterior subsets of X is an externology, denoted by
εr(X), which gives an exterior space Xr = (X, εr(X)) such that ϕ : R×̄Xd → Xr is
exterior and Ft : Xr×̄I → Xr, Ft(x, s) = ϕ(ts, x), is also exterior for every t ∈ R.
Therefore (Xr, ϕ) is an exterior flow which is said to be the exterior flow associated
to X. When there is no possibility of confusion, (Xr, ϕ) will be briefly denoted by
Xr. Then we have a functor

(·)r : F → EF.

Note that for a flow (X, ϕ), if E is an open subset such that E is compact, then
E is an r-exterior subset if and only if E is an “absorbing region” in the sense of
Definition 1.4.2 in [1].

The forgetful functor and the given constructions of exterior flows are related
as follows:

Proposition 4.2. The functor (·)r : F → EF is left adjoint to the forgetful functor
(·)t : EF → F. Moreover (·)t (·)

r = id and F can be considered as a full subcategory
of EF via (·)r.

Proof. Let X be in F and M be in EF. If f : Xr → M is a morphism in EF, then
it is clear that f : X = (Xr)t → Mt is a morphism in F. Now take g : X → Mt a
morphism in F and E ∈ ε(M). Given any x ∈ X one has g(x) ∈ M and, taking into

account that M is an exterior flow, there exists Tg(x) such that Tg(x) · g(x) ⊂ E.

This implies that Tg(x) · x ⊂ g−1(E). Therefore g−1(E) ∈ ε(Xr) = εr(X).

4.1 End Spaces and Limit Spaces of an exterior flow

In section 3 we have defined the end and limit spaces of an exterior space. In
particular, since any exterior flow X is an exterior space, we can consider the end
spaces π̌0(X), č(X), ˇ̄π0(X), ˇ̄c(X) and the limit spaces L(X), L̄(X). Notice that one
has the following properties:

Proposition 4.3. Suppose that X = (X, ϕ) is an exterior flow. Then

(i) The spaces L(X), L̄(X) are invariant;

(ii) There are trivial flows induced on π̌0(X), č(X), ˇ̄π0(X) and ˇ̄c(X).

Proof. (i) We have that L(X) = ∩E∈ε(X)E. Note that for any s ∈ R, ϕs(E) ∈ ε(X)

if and only if E ∈ ε(X). Then ϕs(L(X)) = ϕs(∩E∈ε(X)E) = ∩E∈ε(X)ϕs(E) =

∩E∈ε(X)E = L(X). In a similar way, it can be checked that L̄(X) is also invari-
ant.

(ii) For any s ∈ R, consider the exterior homotopy Fs : X×̄I → X, Fs(x, t) =
ϕ(ts, x), from idX to ϕs. By Lemma 3.4, it follows that id = π̌0(ϕs). Therefore
the induced action is trivial. In the other cases the proof is similar using Lemma
3.9.

As an immediate consequence one has functors L, π̌0, č, L̄, ˇ̄π0, ˇ̄c : EF → F.



950 J. M. Garcı́a Calcines – L. J. Hernández Paricio – M. T. Rivas Rodrı́guez

Proposition 4.4. The functors L, π̌0, č, L̄, ˇ̄π0, ˇ̄c : EF → F induce functors

L, L̄ : πEF → πF, π̌0, č, ˇ̄π0, ˇ̄c : πEF → F,

where the homotopy categories are constructed in a canonical way.

4.2 The end point of a trajectory and the induced decompositions of an

exterior flow

For an exterior flow X, one has that each trajectory has an end point given as
follows: Given x ∈ X and E ∈ ε(X), there is Tx ∈ r such that Tx · x ⊂ E.
We can suppose that Tx is path-connected and therefore so is Tx · x. This way
there is a unique path-component χ0(x, E) (respect., component χ(x, E)) of E
such that Tx · x ⊂ χ0(x, E) ⊂ E (respect., Tx · x ⊂ χ(x, E) ⊂ E). This gives
set maps χ0(·, E) : X → π0(E) and χ0 : X → π̌0(X) (respect., χ(·, E) : X → c(E)
and χ : X → č(X)) such that the following diagram commutes:

L(X)

e0

��✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞

e

��
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺

��

X

χ0zz✉✉
✉✉
✉✉
✉✉
✉✉

χ
##❍

❍❍
❍❍

❍❍
❍❍

π̌0(X) θ
// č(X)

These maps permit us to divide a flow in simpler subflows.

Definition 4.5. Let X be an exterior flow. We will consider X0
a = (χ0)

−1(a),
a ∈ π̌0(X) and Xb = χ−1(b), b ∈ č(X). The invariant spaces X0

a and Xb will
be called the χ0-basin at a ∈ π̌0(X) and the χ-basin at b ∈ č(X), respectively.

The maps χ0 and χ induce the following partitions of X in simpler subflows

X =
⊔

a∈π̌0(X)

X0
a , X =

⊔

b∈č(X)

Xb

that will be called respectively, the χ0-decomposition and the χ-decomposition of the
exterior flow X.

Similarly, given x ∈ X, if χ0(x, E) is the path-component of E such that Tx · x ⊂
χ0(x, E) ⊂ E, then we also have that Tx · x ⊂ χ0(x, E) ⊂ χ̄0(x, E) ⊂ E, where
χ̄0(x, E) is the unique path-component of E containing Tx · x. In the same way as
above, we have maps χ̄0(·, E) : X → π0(E) and χ̄0 : X → ˇ̄π0(X). Analogously,
we obtain set maps χ̄(·, E) : X → c(E) and χ̄ : X → ˇ̄c(X) such that the following
diagram commutes:

L̄(X)

ē0

��✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞

ē

��
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺

��

X

χ̄0zz✉✉
✉✉
✉✉
✉✉
✉✉

χ̄ ##❍
❍❍

❍❍
❍❍

❍❍

ˇ̄π0(X) θ̄
// ˇ̄c(X)
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Remark 4.6. It is important to note that the maps χ0, χ, χ̄0, χ̄ need not be continuous.

As in the case above we can consider the corresponding χ̄0-basin and χ̄-basin,
denoted by X̄0

a = (χ̄0)
−1(a), X̄a = χ̄−1(a), respectively, and their induced decom-

positions. We also note that the following diagram commutes:

X
χ0

||①①
①①
①①
①①
①

χ̄0

""❋
❋❋

❋❋
❋❋

❋

χ

��☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛

χ̄

��
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸

π̌0(X)

��

// ˇ̄π0(X)

��

č(X) // ˇ̄c(X)

Definition 4.7. Let X be an exterior flow. An end point a ∈ π̌0(X) is said to be
χ0-representable (similarly for χ, χ̄0, χ̄) if there is x ∈ X such that χ0(x) = a.

Denote by χ0(X) the space of χ0-representable end points (similarly, χ(X),
χ̄0(X), χ̄(X)). Since the χ-decompositions of X are compatible with the e-decom-
positions of the limit subspace, we have the following commutative diagram of
representable end points:

e0L(X) //

$$❏
❏❏

❏❏
❏❏

❏❏

��

eL(X)

$$❍
❍❍

❍❍
❍❍

❍❍

��

χ0(X) //

��

χ(X)

��

ē0L̄(X) //

$$❏
❏❏

❏❏
❏❏

❏❏
ēL̄(X)

$$❍
❍❍

❍❍
❍❍

❍❍

χ̄0(X) // χ̄(X)

Proposition 4.8. Let X be an exterior flow. Then

(i) ω(x) ⊂ L̄χ̄(x)(X), for any x ∈ X;

(ii) If a ∈ ˇ̄c(X) is χ̄-representable (that is, X̄a = χ̄−1(a) 6= ∅) and there exists x ∈ X̄a

such that ω(x) 6= ∅, then a is ē-representable.

Proof. (i) If y ∈ ω(x), then y ∈ ∩T∈rT · x. On the other hand, given E ∈ ε(X), if
χ̄(a, E) is the connected component of E determined by a, since χ̄(x) = a, there
is T ∈ r such that T · x ⊂ χ̄(a, E). Therefore y ∈ χ̄(a, E) for every E ∈ ε(X) and
y ∈ L̄(X). This implies that ē(y) = a for any y ∈ ω(x), and ω(x) ⊂ L̄χ̄(x)(X). (ii)
follows from (i).

Proposition 4.9. Let X be an exterior flow and denote γ+(x) = {t · x | t ≥ 0} for

x ∈ X. If γ+(x) ∩ L̄(X) 6= ∅, then χ̄(x) is ē-representable.

Proof. We note that γ+(x) = γ+(x) ∪ ω(x). If x ∈ L̄(X), then χ̄(x) = ē(x), so

χ̄(x) is ē-representable. If x 6∈ L̄(X), then γ+(x)∩ L̄(X) = ∅ and γ+(x)∩ L̄(X) =
ω(x). Then ω(x) 6= ∅ and, by Proposition 4.8 above, χ̄(x) is ē-representable.
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5 End and Limit spaces of a flow via exterior flows

Recall that we have considered the functor:

(·)r : F → EF

and the functors:
L, π̌0, č, L̄, ˇ̄π0, ˇ̄c : EF → F.

Therefore we can consider the composites:

Lr := L(·)r, π̌r
0 := π̌0(·)

r, čr := č(·)r, L̄r := L̄(·)r, ˇ̄π0
r

:= ˇ̄π0(·)
r, ˇ̄cr := ˇ̄c(·)r

to obtain functors Lr, π̌r
0, čr, L̄r, ˇ̄π0

r
, ˇ̄cr : F → F.

In this way, given a flow X, we have the end spaces π̌r
0(X) = π̌0(X

r), čr(X) =
č(Xr), the limit space Lr(X) = L(Xr), the bar-end spaces ˇ̄π0

r
(X) = ˇ̄π0(X

r),
ˇ̄cr(X) = ˇ̄c(Xr) and the bar-limit space L̄r(X) = L̄(Xr).

Similarly, using the associated exterior flow Xr, we denote

X0
(r,a) = (χ0)

−1(a), a ∈ π̌r
0(X)

X(r,a) = χ−1(a), a ∈ čr(X)

The maps χ0, χ induce the following partitions of X in simpler subflows

X =
⊔

a∈π̌r
0(X)

X0
(r,a), X =

⊔

a∈čr(X)

X(r,a)

that will be called respectively, the χ0-decomposition and the χ-decomposition of
the flow X. Now take

X̄0
(r,a) = (χ̄0)

−1(a), a ∈ ˇ̄π0
r
(X)

X̄(r,a) = χ̄−1(a), a ∈ ˇ̄cr(X)

the maps χ̄0, χ̄ induce the χ̄0-decomposition and the χ̄-decomposition of the flow
X :

X =
⊔

a∈ ˇ̄π0
r
(X)

X̄0
(r,a), X =

⊔

a∈ ˇ̄cr(X)

X̄(r,a).

It is interesting to consider the following equivalence of categories: Given
any flow ϕ : R × X → X, one can consider the reversed flow ϕ′ : R × X → X
defined by ϕ′(r, x) = ϕ(−r, x), for every (r, x) ∈ R × X. The correspondence,
(X, ϕ) → (X, ϕ′), gives rise to a functor

(·)′ : F → F

which is an equivalence of categories and verifies (·)′(·)′ = id. Using the com-
posites

Ll := (·)′Lr(·)′, π̌l
0 := (·)′π̌r

0(·)
′ , čl := (·)′ čr(·)′
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L̄l := (·)′ L̄r(·)′, ˇ̄π0
l

:= (·)′ ˇ̄π0
r
(·)′, ˇ̄cl := (·)′ ˇ̄cr(·)′

we obtain new functors Ll, π̌l
0, čl, L̄l, ˇ̄π0

l
, ˇ̄cl : F → F and the decompositions

X =
⊔

a∈π̌l
0(X)

X0
(l,a), X =

⊔

a∈čl(X)

X(l,a)

X =
⊔

a∈ ˇ̄π0
l
(X)

X̄0
(l,a), X =

⊔

a∈ ˇ̄cl(X)

X̄(l,a).

Remark 5.1. All decompositions above can be considered as generalizations for a contin-
uous flow of the disjoint union of “stable” (or “unstable” for the dual case) submanifolds
of a differentiable flow(see [14], [15], [16]).

We note that the decompositions of a flow X are compatible with decomposi-
tions of limit subspaces.

For a Morse function [13] f : M → R, where M is a compact T2 Riemannian
manifold, one has that the opposite of the gradient of the f induces a flow with
a finite number of critical points. In this case, we have that M is locally path-
connected and the flow is locally compact at infinity. Then we have all the prop-
erties obtained by Theorem 3.17. For instance we can take the height function of
a 2-torus:

Example 5.2. Let ϕ : R × (S1 × S1) → S1 × S1 be the flow induced by the opposite of
the gradient of the height function with four critical points:

In this example, the limit space, end space and decomposition of the flow and the reverse
flow are given in the following table:
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Lr = {P0, P1, P2, P3} π̌r
0 = {P0, P1, P2, P3}

Lr
Pi
= {Pi}

X(r,P3) = {P3} X(r,P2) = {P2} ∪ γ3
2 ∪ γ̃3

2

X(r,P1)
= {P1} ∪ γ2

1 ∪ γ̃2
1 X(r,P0) = (S1 × S1) \

⋃3
i=1 X(r,Pi)

Ll = {P0, P1, P2, P3} π̌l
0 = {P0, P1, P2, P3}

Ll
Pi
= {Pi}

X(l,P0)
= {P0} X(l,P1)

= {P1} ∪ γ1
0 ∪ γ̃1

0

X(l,P2)
= {P2} ∪ γ2

1 ∪ γ̃2
1 X(l,P3)

= (S1 × S1) \
⋃2

i=0 X(l,Pi)

Now we consider a flow induced by a linear differential equation on R2 that
also induces a new flow on the Alexandrov one-point compactification S2 = R2 ∪
{∞}.

Example 5.3. Consider on S2 the flow induced by ϕ(t, (u1, u2)) = (etλ1 u1, etλ2u2),
u1, u2 ∈ R, ϕ(t, ∞) = ∞, (λ1 > 0, λ2 < 0)

The limit spaces, end spaces and decomposition of the flow (S2, φ) (as well as the reverse
flow) are given in the following table:

Lr = {0, ∞} π̌r
0 = {0, ∞}

Lr
0 = {0} Lr

∞ = {∞}
X(r,0) = {0} × R X(r,∞) = ((R \ {0})× R)∪ {∞}

Ll = {0, ∞} π̌l
0 = {0, ∞}

Ll
0 = {0} Ll

∞ = {∞}
X(l,0) = R × {0} X(l,∞) = (R × (R \ {0})) ∪ {∞}
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6 Relations between limit and end spaces of a flow and its dy-

namical properties

6.1 Periodic points

The relation of the limit space of a flow or an exterior flow and the subflow of
periodic points is analyzed in the following results:

Lemma 6.1. If X is an exterior flow, then P(X) ⊂ L(X). In particular, if X is a flow,
then P(X) ⊂ Lr(X).

Proof. Take x a periodic point and E ∈ ε(X) arbitrary. Then there exists T ∈ r
such that T · x ⊂ E. Since x is periodic, T · x = R · x and taking into account that
x ∈ R · x, we have that that x ∈ E.

Lemma 6.2. Let X be a flow and suppose that X is a T1-space. Then, for every x ∈ X
the following statements are equivalent:

(i) x is a non-periodic point;

(ii) X \ {x} is an r-exterior subset of X.

Proof. In order to prove (i) implies (ii) take y ∈ X; if the trajectory of y is different
of the trajectory of x, then for every T ∈ r, T · y ⊂ X \ {x}. If y is in the trajectory of
x, considering that x is not periodic, one can find T ∈ r such that T · y ⊂ X \ {x}.
Then, one has that X \ {x} ∈ εr(X). Conversely, suppose that x is a periodic point.
By Lemma 6.1 above X \ {x} is not r-exterior.

Using these two lemmas we obtain the following result.

Theorem 6.3. Let X be a flow and suppose that X is a T1-space. Then

P(X) = Lr(X).

Proof. Let x ∈ X \ P(X). Then, by Lemma 6.2, one has that X \ {x} ∈ εr(X) and

P(X) = X \ (
⋃

x 6∈P(X)

{x}) =
⋂

x 6∈P(X)

X \ {x} ⊃
⋂

E∈εr(X)

E = Lr(X).

Now the result follows from Lemma 6.1.

Taking into account the theorem above, if X is flow and X is a T1 space, then
we also have that

Lr(X) = P(X) ⊂ Poisson(X) ⊂ Ω(X) ⊂ X.
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6.2 Limit spaces and invariant sets

Lemma 6.4. Given a flow ϕ : R × X → X and A ⊂ X we have that

inv(A) =
⋂

t∈R

ϕt(A).

Proof. If x ∈ inv(A), then R · x ⊂ A. Notice that x = ϕt(ϕ−t(x)) ∈ ϕt(A) so
x ∈

⋂
t∈R ϕt(A). Conversely, if x ∈

⋂
t∈R ϕt(A), then for any t ∈ R there is at ∈ A

such that x = ϕt(at). This implies that ϕ−t(x) = at ∈ A for all t, and therefore
x ∈ inv(A).

Then, by Proposition 4.3, we obtain:

Proposition 6.5. If X is an exterior flow, then

(i) L(X) = limE∈ε(X) E = limE∈ε(X) inv(E);

(ii) L̄(X) = limE∈ε(X) E = limE∈ε(X) inv(E).

Next we give a characterization of the points lying in the difference
L̄(X) \ L(X). Its proof is routine and left to the reader. Here Fr(.) denotes the
frontier (or boundary) operator.

Proposition 6.6. Let X be an exterior flow and x ∈ L̄(X). Then x ∈ L̄(X) \ L(X) if
and only if there exist E ∈ ε(X) and t ∈ R such that t · x ∈ Fr(E).

Note that propositions above can be applied to Lr(X) and L̄r(X) for a contin-
uous flow X.

6.3 Limits and Ω-limits

In the following result, we analyse the relationship between the Ω-limit and the
bar-limit induced by an externology.

Lemma 6.7. If X is an exterior flow, then

Ω(X) ⊂ L̄(X)

Proof. If E ∈ ε(X), then for every x ∈ X there exists T ∈ r such that T · x ⊂ E and
therefore T · x ⊂ E. By definition this implies that ω(x) ⊂ L̄(X) for every x ∈ X.
Hence Ω(X) ⊂ L̄(X).

And now some technical results.

Proposition 6.8. Let X be an exterior flow, ε(X) its externology and x ∈ X. Then there
exists Vx ∈ (tX)x such that X \ Vx ∈ ε(X) if and only if x 6∈ L̄(X).
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Proof. If X \ Vx ∈ ε(X), then, taking into account that Vx ∩ (X \ Vx) = ∅, we

have that x 6∈ X \ Vx. Since X \ Vx ∈ ε(X), it follows that x 6∈
⋂

E∈ε(X) E = L̄(X).

Conversely, if x 6∈ L̄(X), then there exists E ∈ ε(X) such that x 6∈ E. If Int(.)
denotes the the interior operator, then taking Vx = X \ E = Int(X \ E) we have
that X \ Vx = Int(X \ Vx) = Int(E) ⊃ E. Consequently, X \ Vx ∈ ε(X).

Corollary 6.9. Let X be an exterior flow, ε(X) its externology and x ∈ X. If there exists

Vx ∈ (tX)x such that X \ Vx ∈ ε(X), then x 6∈ Ω(X).

Proof. It is a consequence of Proposition 6.8 and Lemma 6.7.

Corollary 6.10. Let X be a flow and x ∈ X. If there exists Vx ∈ (tX)x such that X \ Vx

is r-exterior, then x 6∈ Ω(X).

Lemma 6.11. Let X be a flow and X is a locally compact regular space. If x 6∈ Ω(X),
then there exists Vx ∈ (tX)x such that X \ Vx is r-exterior.

Proof. Suppose that x 6∈ Ω(X). Since X is locally compact, there is a compact
neighborhood K at x such that K ∩ Ω(X) = ∅. Take y ∈ X and assume that
for every T ∈ r, T · y ∩ K 6= ∅. Then there is a sequence tn → +∞ such that
tn · y ∈ K. Being K compact, one can take a subsequence tni

→ +∞ such that
tni

· y → u ∈ K. This fact implies that u ∈ K ∩ ω(y) ⊂ K ∩ Ω(X), which is a
contradiction. Therefore, there is T such that T · y ∩ K = ∅. By the regularity of
X there exists Vx ∈ (tX)x such that Vx ⊂ K and X \ Vx is r-exterior.

Corollary 6.12. Let X be a flow. If X is a locally compact regular space, then L̄r(X) ⊂

Ω(X).

Proof. If x 6∈ Ω(X), by the lemma above, there exists Vx ∈ (tX)x such that X \ Vx

is r-exterior. By Proposition 6.8, it follows that x 6∈ L̄r(X).

By the corollary above and Lemma 6.7, we obtain the following result.

Theorem 6.13. Let X be a flow. If X is a locally compact regular space, then L̄r(X) =

Ω(X).

Corollary 6.14. Let X be a flow. If X is a locally compact T3 space, then

Lr(X) = P(X) ⊂ Poisson(X) ⊂ Ω(X) ⊂ Ω(X) = L̄r(X).

Proof. This is a consequence of Theorems 6.3 and 6.13.
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[5] J.I. EXTREMIANA, L.J. HERNÁNDEZ AND M.T. RIVAS. Postnikov factoriza-
tions at infinity, Top. and its Appl., 153, 370-393, (2005).
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