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Abstract. In this paper we obtain a characterization of the convergence of the

partial sum operator related to Fourier–Jacobi expansions in Morrey spaces.

1. Introduction and main results

For α, β > −1, we consider the Jacobi functions

p(α,β)n (x) = d(α,β)n P (α,β)
n (x)(1− x)α/2(1 + x)β/2, x ∈ (−1, 1), n = 0, 1, 2, . . . ,

where P
(α,β)
n denotes the Jacobi polynomial of order (α, β) and degree n, and

1

d
(α,β)
n

=

(∫ 1

−1

(
P (α,β)
n (x)

)2
(1− x)α(1 + x)β dx

)1/2

.

The system of functions {p(α,β)n }n≥0 is orthonormal and complete in L2(−1, 1) with
the Lebesgue measure. Given an appropriate function f , its Fourier expansion
respect to the Jacobi functions, which we call Fourier–Jacobi expansion, is given
by

f ∼
∞∑
k=0

a
(α,β)
k (f)p

(α,β)
k , a

(α,β)
k (f) =

∫ 1

−1

p
(α,β)
k (t)f(t) dt.

The convergence of the partial sum operator for the Fourier–Jacobi expansions,
given by

Snf =

n∑
k=0

a
(α,β)
k (f)p

(α,β)
k ,

which is equivalent to the uniform boundedness of Sn, has been widely analyzed
in different kinds of spaces. In the case of the Fourier series related to the Jacobi
polynomials in Lp spaces the first known results are due to Pollard [12] and Wing
[18] who treated the case α, β ≥ −1/2. In [10], Muckenhoupt extended the analysis
to the whole range α, β > −1 and included some weights. With the sufficient
conditions on the weights given in Muckenhoupt’s paper and by using the results
about the necessary conditions in, for instance, [7] (about this question see [2, 8, 5]
also), the result for Fourier–Jacobi functions establishes that

∥Snf∥Lp(−1,1) ≤ C∥f∥Lp(−1,1) ⇐⇒ 4

3
< p < 4.

A complete study of the boundedness properties of the partial sum operator in
Lp,∞ spaces can be seen in [4].
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2 A. ARENAS AND Ó. CIAURRI

Our target in this paper is the study of the convergence of the Fourier–Jacobi
expansions in Morrey spaces. To this end, for 1 ≤ p < ∞ and 0 ≤ λ < 1 we define
the Morrey space Lp,λ(−1, 1) as the set of functions f on (−1, 1) such that

∥f∥p,λ := sup
x∈(−1,1),r>0

(
1

rλ

∫
B(x,r)

|f(t)|p dt

)1/p

< ∞,

where B(x, r) = {t ∈ (−1, 1) : |t− x| ≤ r}. It is clear that Lp,λ(−1, 1) are Banach
spaces. Morrey spaces can be defined in a more general way but this is enough for
our purposes. The Lp(−1, 1) spaces with the Lebesgue measure correspond with
the case λ = 0.

Morrey spaces were introduced by Morrey, see [9], in the setting of partial differ-
ential equations. In the last years, some classical operators from harmonic analysis
have been analyzed in the setting of Morrey spaces, see, for instance, [1], [13], [15],
[16], and the references therein.

Specially relevant for our purposes will be the boundedness with weights of the
Hilbert transform given in [15, Theorem 4.7 and Corollary 4.8]. In particular, we
will use the following version of that result: if

Hf(x) =

∫ 1

−1

f(t)

x− t
dt

and

wk(x) =

k∏
j=1

|x− xj |γj ,

with −1 ≤ x1 < x2 < · · · < xk−1 < xk ≤ 1, then for 1 < p < ∞ and 0 ≤ λ < 1 it
holds that

(1) ∥wkHf∥p,λ ≤ C∥wkf∥p,λ ⇐⇒ λ− 1

p
< γj < 1 +

λ− 1

p
, j = 1, . . . , k.

Our result about convergence of Fourier-Jacobi expansions on Morrey spaces is
the following.

Theorem 1. Let 0 ≤ λ < 3/4, 1 < p < ∞, and α, β ≥ 0. Then

Snf −→ f, in Lp,λ(−1, 1),

if and only if
4

3
(1− λ) < p < 4(1− λ).

As a first step to prove Theorem 1 we start by establishing the equivalence
between the convergence of the partial sums and the uniform boundedness of the
operator Sn in Morrey spaces.

Theorem 2. Let 0 ≤ λ < 1, 1 ≤ p < ∞ and α, β > −1. Then

Snf −→ f, in Lp,λ(−1, 1),

if and only if

∥Snf∥p,λ ≤ C∥f∥p,λ,
where C is a constant independent of n and f .
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So, Theorem 1 will follow from the uniform boundedness of the partial sum
operator in Morrey spaces. The next theorem contains a characterization of the
interval of values of p for which this estimate holds.

Theorem 3. Let 0 ≤ λ < 3/4, 1 < p < ∞, and α, β ≥ 0. Then

(2) ∥Snf∥p,λ ≤ C∥f∥p,λ,

where C is a constant independent of n and f , if and only if

(3)
4

3
(1− λ) < p < 4(1− λ).

The region where the partial sum Sn converges in Morrey spaces is the shadowed
one shown in Figure 1. Outside and in the border of that region the convergence
is not possible. As it occurs in Lp spaces, we think that in the border, with
dashed lines in the figure and corresponding with the values p = 4(1 − λ) and
p = max{4(1−λ)/3, 1}, some kind of weak boundedness of the partial sum operator
should hold.

0 1
4

3
4

1
λ

1

4
3

4

p

p
=
4(1−

λ
)

p = 4
3 (1 − λ)

Figure 1: The region where the partial sum operator converges.

The proofs of Theorem 2 and Theorem 3 will be contained in Sections 2 and 3,
respectively. In the last section, we include the proof of some auxiliary results.

2. Proof of Theorem 2

Theorem 2 is a standard consequence of Banach-Steinhaus Theorem and the
following proposition.

Proposition 4. Let 1 ≤ p < ∞, 0 ≤ λ < 1, and α, β > −1. Then, span{p(α,β)n } is
dense in Lp,λ(−1, 1).

Proof. The case λ = 0 is well known and our proof for 0 < λ < 1 relies on it.

Let us suppose that span{p(α,β)n } is not dense in Lp,λ(−1, 1), for 0 < λ < 1.
Then, by a standard consequence of Hahn-Banach Theorem [14, Theorem 5.19],
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there exists a non-zero functional T on Lp,λ(−1, 1) such that Tp
(α,β)
n = 0, for all

n ≥ 0.
It is easy to check that for p ≤ r and λ ≤ µ, we have

Lr,µ(−1, 1) ⊂ Lp,λ(−1, 1) ⊂ Lp,0(−1, 1) = Lp(−1, 1).

So, by Hahn-Banach Theorem [14, Theorem 5.16], we can extend the functional T to
Lp(−1, 1). Then, there exists a unique function g ∈ Lq(−1, 1), with p−1 + q−1 = 1,
such that

Tf =

∫ 1

−1

f(x)g(x) dx, for each f ∈ Lp(−1, 1).

But the condition 0 = Tp
(α,β)
n implies a

(α,β)
n (g) = 0 and g = 0. Then T = 0 and

this is a contradiction because T was non-zero. □

Proof of Theorem 2. By the Banach-Steinhaus Theorem [14, Theorem 5.8], the con-
vergence implies the uniform boundedness.

On the other hand, for each f ∈ Lp,λ(−1, 1) and given ε > 0, by Proposition

4, there exists g ∈ span{p(α,β)n } such that ∥f − g∥p,λ < ε. Moreover there exists
N > 0 such that Sn(g) = g, for each n ≥ N . Then

∥Snf − f∥p,λ ≤ ∥Snf − Sng∥p,λ + ∥g − f∥p,λ
≤ (C + 1)∥g − f∥p,λ ≤ (C + 1)ε,

for n ≥ N and Snf −→ f in Lp,λ(−1, 1). □

3. Proof of Theorem 3

Before starting with the proof we are going to collect some facts that we will
use.

Given a function g defined in (−1, 1), for each 1 ≤ p < ∞ and 0 < λ < 1, we
define

∥g∥∗q,λ := inf
x∈(−1,1)

∫ ∞

0

rλ/p−1∥χ(B(x,r))cg∥Lq(−1,1) dr,

where (B(x, r))c = (−1, 1) \B(x, r) and p−1 + q−1 = 1.
With the previous definition we can give an appropriate version of Hölder in-

equality for Morrey spaces (see [3, Lemma 4.1]). In our case it reads so.

Lemma 1. Let 1 ≤ p < ∞, p−1 + q−1 = 1, and 0 < λ < 1. Then the inequality

(4)

∫ 1

−1

|f(x)g(x)| dx ≤ C∥f∥p,λ∥g∥∗q,λ,

holds with a constant C independent of f and g.

It is interesting to know some facts about the norm of certain functions in Morrey
spaces. From [16, Remark 4.4] we see that, for a ∈ (−1, 1) and νp > −1, the
function |x− a|νχB(x0,r0) ∈ Lp,λ(−1, 1) if and only if νp ≥ λ− 1, with λ > 0, and

(5) ∥|x− a|νχB(x0,r0)∥p,λ ≃ |B(x0, r0)|(1+νp−λ)/p.

With respect to the functions p
(α,β)
n we prove the following result.
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Lemma 2. Let 1 ≤ p < ∞ and α, β ≥ 0. Then

(6) ∥p(α,β)n ∥p,λ ≃

{
1, if p ≤ 4(1− λ),

n1/2−2(1−λ)/p, if p > 4(1− λ),

for 0 < λ ≤ 3/4, and

(7) ∥p(α,β)n ∥p,0 ≃


1, if p < 4,

(log n)1/4, if p = 4,

n1/2−2/p, if p > 4.

The estimates in the previous lemma will be deduced by using a very sharp bound
for the Jacobi polynomials arising from a Hilb type formula for Jacobi polynomials
(see [17, Theorem 8.21.12]). In fact, we have

(8) n1/2|P (α,β)
n (x)| ≤ C(1− x+ n−2)−α/2−1/4(1 + x+ n−2)−β/2−1/4,

for α, β > −1. Then, for α, β ≥ 0, we deduce in an easy way (note that d
(α,β)
n ∼

n1/2) the bounds

(9) |p(α,β)n (x)| ≤ C(h+,n(x) + h−,n(x)),

where h±,n(x) = (1± x+ n−2)−1/4, and

(10) |p(α,β)n (x)| ≤ C(1− x2)−1/4,

for α, β ≥ 0.
To complete the boundedness of Sn, we will use Lemma 2 and to that end we

have to estimate ∥g∥∗q,λ for the functions h±,n. That is the content of the next
lemma.

Lemma 3. Let 1 ≤ p < ∞ and α, β > 0. Then ∥h±,n∥∗q,λ ≤ C, for p ≥ 4(1−λ)/3.

Moreover, to analyze the norm of some functions in Morrey spaces, we have to
recall the following theorem from [7].

Theorem 5. Let dµ = w(x) dx be a measure on (−1, 1). If {pn}n≥0 is the sequence
of orthonormal polynomials on L2((−1, 1), dµ), then(∫ 1

−1

∣∣∣ g(x)

w(x)1/2(1− x2)1/4

∣∣∣pw(x) dx)1/p ≤ C lim inf
n→∞

(∫ 1

−1

|pn(x)g(x)|pw(x) dx
)1/p

,

for 0 < p ≤ ∞ and for each measurable function g on (−1, 1).

As an immediate consequence of the previous result, we have

(11) ∥(1− x2)−1/4g(x)∥p,λ ≤ C lim inf
n→∞

∥p(α,β)n (x)g(x)∥p,λ.

The last tool that we need to complete the proof of the theorem is an easy
observation related to the boundedness of the Hilbert transform with weights that
will be used to complete the necessity of the conditions (3).

Lemma 4. Let H be the Hilbert transform on (−1, 1) and let us suppose that

∥uHg∥p,λ ≤ C∥vg∥p,λ, vg ∈ Lp,λ(−1, 1),

for two nonnegative weights u and v. Then for r, s ∈ (−1, 1) such that r ≤ s we
have the inequality

(12)

(∫ r

−1

|f(t)|
s− t

dt

)
∥uχ(r,s)∥p,λ ≤ C∥vfχ(−1,r)∥p,λ, vf ∈ Lp,λ(−1, 1),
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with the same constant C.

The proofs of Lemma 2, Lemma 3, and Lemma 4 will be done in the last section.

Proof of Theorem 3. Let us start by assuming the conditions (3) to prove the uni-
form boundedness of the partial sum operators Sn. They can be written as

Snf(x) =

∫ 1

−1

Kn(x, t)f(t) dt,

where

Kn(x, t) =

n∑
k=0

p
(α,β)
k (x)p

(α,β)
k (t).

Now, we consider Pollard decomposition of the kernel, see [11],

Kn(x, t) = anT1(n, x, t) + anT2(n, x, t) + bnT3(n, x, t),

where

T1(n, x, t) = p
(α,β)
n+1 (x)

(1− t2)1/2p
(α+1,β+1)
n (t)

x− t
,

T2(n, x, t) = T1(n, t, x) and T3(n, x, t) = p
(α,β)
n+1 (x)p

(α,β)
n+1 (t). Moreover the sequences

an and bn are bounded. This leads to

Snf(x) = anW1,nf(x)− anW2,nf(x) + bnW3,nf(x),

with

W1,nf(x) = p
(α,β)
n+1 (x)H((1− (·)2)1/2p(α+1,β+1)

n f)(x),

W2,nf(x) = (1− x2)1/2p(α+1,β+1)
n (x)H(p

(α,β)
n+1 f)(x),

and

W3,nf(x) = p
(α,β)
n+1 (x)

∫ 1

−1

p
(α,β)
n+1 (t)f(t) dt.

Now, taking into account the estimate (10), the boundedness in Lp,λ(−1, 1) of
W1,n and W2,n will follow from the inequalities

∥(1− x2)±1/4Hg(x)∥p,λ ≤ C∥(1− x2)±1/4g(x)∥p,λ.
Then, by using (1), it is enough that

λ− 1

p
<

−1

4
< 1 +

λ− 1

p
and

λ− 1

p
<

1

4
< 1 +

λ− 1

p
,

and this is implied by (3).
To treat W3,n we start by using (4), then

∥W3,nf∥p,λ ≤ ∥p(α,β)n+1 ∥p,λ
∫ 1

−1

|p(α,β)n+1 (t)f(t)| dt ≤ ∥p(α,β)n+1 ∥p,λ∥p(α,β)n+1 ∥∗q,λ∥f∥p,λ.

Now, from (8), we have ∥p(α,β)n+1 ∥∗q,λ ≤ C(∥h−,n+1∥∗q,λ+∥h+,n+1∥∗q,λ). So, to conclude
the estimate it is enough to apply Lemma 2 and Lemma 3. Indeed,

∥W3,nf∥p,λ ≤ C∥p(α,β)n+1 ∥p,λ(∥h−,n+1∥∗q,λ + ∥h+,n+1∥∗q,λ)∥f∥p,λ ≤ C∥f∥p,λ.

Let us show that conditions (3) are necessary for the uniform boundedness. We
consider the operators Tnf(x) = Snf(x)− Sn−1f(x), then it is clear that

Tnf(x) = a(α,β)n (f)p(α,β)n (x).
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By using the uniform boundedness for Sn, we have

(13) ∥Tnf∥p,λ = |a(α,β)n (f)|∥p(α,β)n ∥p,λ ≤ C∥f∥p,λ,
with a constant C independent of n and f .

Taking f = sgn(p
(α,β)
n ), (13) becomes

∥p(α,β)n ∥1,0∥p(α,β)n ∥p,λ ≤ C.

So, by using (7), the inequality ∥p(α,β)n ∥p,λ ≤ C has to be verified and this fact
implies, by (6), p ≤ 4(1− λ).

Now, by considering f = sgn(p
(α,β)
n )|p(α,β)n |q−1, with p−1 + q−1 = 1, in (13), we

have
∥p(α,β)n ∥qq,0∥p(α,β)n ∥p,λ∥p(α,β)n ∥−q/p

q,λ ≤ C.

Analyzing the different cases of the previous inequality for p ≤ 4(1 − λ) with the
estimates in Lemma 2, we deduce the restriction p ≥ 4(1− λ)/3.

To conclude the necessity of (3), we have to check that for the cases p = 4(1−λ)/3
and p = 4(1− λ) the inequality (2) is not possible.

For p = 4(1 − λ) the operators W2,n and W3,n are uniformly bounded. Let us
see that W1,n is unbounded. We proceed by contradiction. If W1,n is bounded, we
have the equivalent estimate

∥p(α,β)n+1 Hg∥p,λ ≤ C∥(1− (·)2)−1/2(p(α+1,β+1)
n )−1g∥p,λ.

Now, from (12) with s = 1 and f(t) = χ(0,r)(t)p
(α+1,β+1)
n (t)(1 − t2)1/4, for r > 0,

we have∫ r

0

p
(α+1,β+1)
n (t)(1− t2)1/4

1− t
dt∥p(α,β)n χ(r,1)∥p,λ ≤ C∥(1− t2)−1/4χ(0,r)∥p,λ.

By using (11), we obtain the inequality∫ r

0

dt

1− t
∥(1− t)−1/4χ(r,1)∥p,λ ≤ C∥(1− t)−1/4χ(0,r)∥p,λ,

which, by (5), is equivalent to − log(1− r) ≤ C and this is impossible.
In the case p = 4(1 − λ)/3, W1,n and W3,n are bounded. Let us suppose that

W2,n is also bounded. Thus, we have the equivalent inequality

∥(1− (·))1/2p(α+1,β+1)
n+1 Hg∥p,λ ≤ ∥(p(α,β)n )−1g∥p,λ.

Then we can consider (12) with s = 1, r = 1/2 and f(t) = (p
(α,β)
n (t))4(1 − t), to

obtain

(14)

∫ 1/2

−1

(p(α,β)n (t))4 dt∥(1− (·)2)1/2p(α+1,β+1)
n χ(1/2,1)∥p,λ

≤ C∥(1− t)(p(α,β)n )3χ(−1,1/2)∥p,λ.
It is clear that

∥(1− t)(p(α,β)n )3χ(−1,1/2)∥p,λ ≤ C∥(1 + t)1/4χ(−1,1/2)∥p,λ ≤ C,

where in the last step we have used (5). Following the estimate in [6] to evaluate
the Lp-norm of Jacobi polynomials, we have∫ 1/2

−1

(p(α,β)n (t))4 dt ∼ log n.
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Finally, we observe that, for any ε > 0 and n big enough,

∥(1− (·)2)1/2p(α+1,β+1)
n χ(1/2,1)∥p,λ ≥ lim inf

n→
∥(1− (·)2)1/2p(α+1,β+1)

n χ(1/2,1)∥p,λ − ε

≥ ∥(1− (·)2)1/4χ(1/2,1)∥p,λ − ε ≥ C,

by using again (5). In this way, (14) implies log n ≤ C and this is not possible. □

4. Proof of Lemmas

Proof of Lemma 2. The case λ = 0 is well known and it can be done, with the
proper modifications, following the ideas in [6, Proposition 1], so we omit it. From
(9), it will be enough to study the norms ∥h±,n∥p,λ. We will focus on h−,n, the
other can be analyzed in the same way.

We have

∥h−,n∥p,λ = sup
x∈(−1,1),r>0

(
r−λnp/2−2I

)1/p
,

with I =
∫ t

s
(z+1)−p/4 dz, s = (1−x−r)n2 and t = (1−x+r)n2. Note that in our

situation we can consider r bounded by a positive value. We will analyze different
cases.

When r ≤ n−2, with the estimate I ≤ C(t− s) we have

r−λnp/2−2I ≤ Cr1−λnp/2 ≤ np/2−2(1−λ).

Now, when r > n−2, we consider the cases s ≤ 1 < t and 1 ≤ s < t (when
s < t ≤ 1 it is verified that r ≤ n−2 and this case has been already treated).

If s ≤ 1 < t and r > n−2, for p ≤ 4(1− λ), we have I ≤ Ct1−p/4. So, using that
in this case 1− x ≤ Cr, we obtain

r−λnp/2−2I ≤ Cr−λ(1− x+ r)1−p/4 ≤ Cr1−λ−p/4 ≤ C.

For p > 4(1− λ), it is clear that I ≤ Ctλ
∫ t

s
(1 + z)−p/4−λ dz ≤ Ct−λ and

r−λnp/2−2I ≤ Cr−λ(1− x+ r)λnp/2−2(1−λ) ≤ Cnp/2−2(1−λ).

Finally, for 1 ≤ s < t and r < n−2, when p ≤ 4(1− λ) we can check easily that
I ≤ C(t1−p/4 − s1−p/4) ≃ t−p/4(t− s). Then

r−λnp/2−2I ≤ Cr1−λ(1− x+ r)−p/4 ≤ Cr1−λ−p/4 ≤ C.

For p > 4(1 − λ), we use that I ≤ Ctλ
∫ t

s
z−p/4−λ ≃ tλ(s1−p/4−λ − t1−p/4−λ) ≃

tλ−1s1−p/4−λ(t− s). In this way

r−λnp/2−2I ≤ C(1− x− r)1−p/4−λ ≤ Cnp/2−2(1−λ),

and the proof of the upper bound is completed.
To obtain the lower estimate in the case p ≤ 4(1− λ) we use that, for ε > 0 and

n big enough, by (11),

∥p(α,β)n ∥p,λ ≥ C∥(1− t2)−1/4∥p,λ − ε.

Then, the required estimate follows by (5). In the case p > 4(1 − λ), we will use

that |P (α,β)
n (x)| ≥ nα, for 1− 1

n2 < x < 1. This is a well known consequence of the
Hilb type formula for the Jacobi polynomials. So,

∥p(α,β)n ∥p,λ ≥ C
(
n2λ+p(α+1/2)

∫ 1

1−1/n2

(1− x)pα/2 dx
)1/p

≥ Cn1/2−2(1−λ)/p,
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and the proof is finished. □

Proof of Lemma 3. We analyze h−,n, the other case is similar. It is clear that

∥h−,n∥∗q,λ ≤ inf
x∈(1−1/n2,1)

∫ ∞

0

rλ/p−1∥χ(B(x,r))ch−,n∥Lq(−1,1) dr

= inf
x∈(1−1/n2,1)

(J1 + J2),

where

J1 =

∫ 1−x

0

rλ/p−1∥χ(−1,x−r)∪(x+r,1)h−,n∥Lq(−1,1) dr

and

J2 =

∫ 1+x

1−x

rλ/p−1∥χ(−1,x−r)h−,n∥Lq(−1,1) dr.

It is easy to check that ∥h−,n∥Lq(−1,1) can be controlled by the right hand side in
(7) and then

J1 ≤ C∥h−,n∥Lq(−1,1)

∫ 1/n2

0

rλ/p−1 dr ≤ Cn−2λ/p∥h−,n∥Lq(−1,1) ≤ C,

where in the last step we have used the condition p ≥ 4(1− λ)/3.
For J2, when q < 4 we have J2 ≤ C because

J2 ≤ C∥h−,n∥Lq(−1,1)

∫ 1+x

1−x

rλ/p−1 dr ≤ C.

In the case q > 4, we have

∥χ(−1,x−r)h−,n∥Lq(−1,1) ≤ C((1 + n−2)1/q−1/4 + (1− x+ r + n−2)1/q−1/4)

and

J2 ≤ C

∫ 1+x

1−x

rλ/p−1((1 + n−2)1/q−1/4 + (1− x+ r + n−2)1/q−1/4) dr

≤ C

(
1 +

∫ 1+x

1−x

rλ/p−1(1− x+ r + n−2)1/q−1/4) dr

)
≤ C

(
1 +

∫ 1+x

1−x

rλ/p+1/q−5/4 dr

)
≤ C(1 + (1 + x)λ/p+1/q−1/4 + (1− x)λ/p+1/q−1/4) ≤ C,

where in the last step we have used the condition p ≥ 4(1− λ)/3. When q = 4,

J2 ≤ C

∫ 1+x

1−x

r3λ/4−1 log

(
2n2 + 1

1 + n2(1− x+ r)

)
dr.

Then, after applying integration by parts, we deduce that

J2 ≤ C

(
1 + n2(1− x)3λ/4 +

∫ 1+x

1−x

n2r3λ/4

1 + n2(1− x+ r)
dr

)
≤ C

(
1 + n2(1− x)3λ/4 +

∫ 1+x

1−x

r3λ/4−1 dr

)
≤ C(1 + n2(1− x)3λ/4 + (1− x)3λ/4)

and infx∈(1−1/n2,1)(J1 + J2) ≤ C. □
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Proof of Lemma 4. If g(t) = χ(−1,r)(t)|f(t)|, for a function f such that vf ∈
Lp,λ(−1, 1), for r ≤ r ≤ s, we have

|Hg(x)| =
∫ r

−1

|f(t)|
x− t

dt ≥
∫ r

−1

|f(t)|
s− t

dt

and then

|Hg(x)| ≥ χ(s,r)(x)

∫ r

−1

|f(t)|
s− t

dt.

In this way, the boundedness of the Hilbert transform implies (12). □
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