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Abstract

We study a class of Secant-like iterations for solving nonlinear equations in Banach

spaces. A semilocal convergence result is obtained, where the first order divided differ-

ence of the nonlinear operator is Hölder continuous. For that, we use a technique based

on a new system of recurrence relations to obtain existence-uniqueness domains of the

solution and a priori error bounds. These results are applied to solve a special case of

conservative problems.
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1. Introduction

Many scientific and engineering problems can be brought in the form of a

nonlinear equation
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F ðxÞ ¼ 0; ð1Þ
where F is a nonlinear operator defined on a convex subset D of a Banach

space X with values in another Banach space Y. In general, if the operator F
is nonlinear, iterative methods are used for solving (1). They are numerical

methods which provide, from a starting approximation x0, a sequence of values

{xn} which approximate the solution of (1). There are numerous methods for

solving (1), but Newton�s method is the most famous as a consequence of its

computational efficiency, even though sometimes less speed of convergence is

reached.

The most inconvenient of Newton�s iteration is the evaluation of the first

derivative of the operator F at each steep. The Secant method, which uses di-
vided differences, is usually applied when we want to solve the previous incon-

venient. On the contrary, speed of convergence is reduced.

In this paper, from the geometrical interpretation of the both previous meth-

ods, a one-parametric class of iterative processes is considered. A feature of this

class is that these methods do not use the first derivative of the operator as in

the Secant method. However we can reach the speed of convergence of New-

ton�s method by varying the values of the parameter.

In Section 2, the class of iterations is presented and, in Section 3, a semilocal
convergence result is obtained when the operator F is Hölder (c,p) continuous,

c P 0, p 2 [0, 1].

In Section 4, we illustrate the previous result. An existence-uniqueness re-

sult of the solution for a special case of conservative problems is provided.

Moreover the solution of a particular conservative problem is located in a

convex domain. Then, using a discretization process, we approximate the

solution of the corresponding system of equations by some methods of the

class. Finally, by interpolation, the solution of the conservative problem is
approximated.
2. Secant-like methods

We denote the set of linear and bounded operators from X to Y byLðX ; Y Þ.
Then if there exists an operator ½x; y; F � 2 LðX ; Y Þ such that the condition

½x; y; F �ðx� yÞ ¼ F ðxÞ � F ðyÞ ð2Þ
is satisfied, this is called a divided difference of F at the points x and y (see [11]).

Condition (2) does not determine uniquely the divided difference, with the

exception of the case when X is one-dimensional. For the existence of divided

differences in linear spaces (see [5]).

Well known methods for solving (1) are the Secant method ([2,13,14]):

xnþ1 ¼ xn � ½xn�1; xn; F ��1F ðxnÞ; x0; x�1 pre-chosen;
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and Newton-like methods ([3,4,10]):

xnþ1 ¼ xn � L�1
n F ðxnÞ; x0 pre-chosen; ð3Þ

where {Ln} denotes a sequence of invertible linear operators. These methods

are very used due to its high efficiency, since the speed of convergence is accept-

able and the operational cost is reduced. The study of the convergence of meth-

ods (3) can be found in [6], where the basic assumption made is that F 0 is

Lipschitz continuous in some ball around the initial iterate. Argyros [2] relaxes

this requirement to operators that are only Hölder (c,p) continuous, c P 0,

0 6 p 6 1. Moreover the Secant method is examined as a particular case of (3).
To improve the speed of convergence of the Secant method, we consider the

following modification:

x�1; x0 pre-chosen;

yn ¼ kxn þ ð1� kÞxn�1; k 2 ½0; 1�;
xnþ1 ¼ xn � ½yn; xn; F �

�1F ðxnÞ:

8><
>: ð4Þ

In the real case, it is clear that the more close xn and yn are, the higher the

speed of convergence is. Moreover, observe that (4) is reduced to the Secant

method if k = 0 and to Newton�s method if k = 1, since yn = xn and [yn,xn;

F] = F 0(xn) (see [11]).

The study of the convergence of the Secant method is usually made by
means of majorizing sequences [2,6,10,11,13]. In this paper, we analyse the con-

vergence of (4) by using a technique that consists of a new system of recurrence

relations, in the way that Gutiérrez and Hernández analyse the convergence of

the Chebyshev method in [7]. We then obtain an existence-uniqueness result of

the solution of (1) and a priori error bounds. Note that the application of this

result is much easier than Argyros� one (see [2]), since there are few hypotheses

and they are simpler.
3. Convergence analysis whatever the operator

From now on we assume that F is once Fréchet-differentiable at every point

x 2 X and note that F 0ðxÞ 2 LðX ; Y Þ.

Definition 3.1. We say that the Fréchet-derivative F 0 is Hölder (c,p) contin-
uous over the domain D if for some c P 0, p 2 [0,1],

kF 0ðxÞ � F 0ðyÞk 6 c kx� ykp; x; y 2 D:

We then say that F 0ð�Þ 2 HDðc; pÞ (see [2]).

Throughout the next section we suppose that there exists a first order divided

difference of F at every point x; y 2 D and a nonnegative constant k such that
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k½x; y; F � � F 0ðzÞk 6 k ðkx� zkp þ ky � zkpÞ; p 2 ½0; 1�; ð5Þ
for all x; y; z 2 D. Obviously, in this case, F 0� 2 HDð2k; pÞ.

3.1. Recurrence relations

We establish the recurrence relations from which the convergence of (4) is

proved later. Let x0; x�1 2 D and assume

(I) kx0 � x�1k = a;
(II) there exists L�1

0 ¼ ½y0; x0; F �
�1

such that k[y0,x0;F]�1k 6 b;
(III) kL�1

0 F ðx0Þk 6 g.

We denote

a�1 ¼
g

a þ g
; b�1 ¼ kbap

and define the sequences

an ¼ gðan�1Þbn�1; bn ¼ f ðanÞf ðan�1Þpapn�1bn�1; n P 0; ð6Þ
where

f ðxÞ ¼ 1

1� x
; gðxÞ ¼ ð1� kÞp þ 2

p þ 1
ð1þ kpÞf ðxÞpxp: ð7Þ

Note that f and g are increasing, and on the other hand f(x) > 1 in (0, 1).

As L�1
0 exists, then x1 is well defined and, from the initial hypotheses, it fol-

lows that

kx1 � x0k 6 g ¼ f ða�1Þa�1kx0 � x�1k;
kkL�1

0 kkx0 � x�1kp 6 kbap ¼ b�1:
ð8Þ

Then, by induction on n, the following items are shown for n P 1:

ðinÞ 9L�1
n ¼ ½yn; xn; F �

�1
such that kL�1

n k 6 f ðan�1ÞkL�1
n�1k;

ðiinÞ kxnþ1 � xnk 6 f ðan�1Þan�1kxn � xn�1k;

ðiiinÞ kkL�1
n kkxn � xn�1kp 6 bn�1:

Assuming that a0 < 1 and x1 2 D, by (5) and (8), we obtain

kI � L�1
0 L1k 6 kL�1

0 kkL0 � F 0ðx0Þ þ F 0ðx0Þ � L1k
6 kkL�1

0 k½ð1� kÞpkx0 � x�1kp þ ð1þ kpÞkx1 � x0kp�

6 ð1� kÞp þ 2

p þ 1
ð1þ kpÞf ða�1Þpap�1

� �
b�1 ¼ a0 < 1
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and, by the Banach lemma, L�1
1 exists and

kL�1
1 k 6 f ða0ÞkL�1

0 k:
Then (i1) is hold.

By Taylor�s formula, we have

F ðx1Þ ¼ ðF 0ðx0Þ�L0Þðx1� x0Þþ
Z 1

0

ðF 0ðx0þ tðx1� x0ÞÞ� F 0ðx0ÞÞðx1� x0Þdt:

As [x,x; F] = F 0(x), then, by (5),

kF ðx1Þk 6 kkx0 � y0k
pkx1 � x0k þ

2k
p þ 1

kx1 � x0kpþ1

6 k ð1� kÞp þ ð1þ kpÞ 2

p þ 1
f ða�1Þpap�1

� 	
kx0 � x�1kpkx1 � x0k;

and consequently

kx2 � x1k 6 f ða0ÞkL�1
0 kkF ðx1Þk 6 f ða0Þa0kx1 � x0k;

since x2 is well defined and L�1
1 exists.

Finally, from (8) and (i1), we get

kkL�1
1 kkx1 � x0kp 6 f ða0Þf ða�1Þpap�1b�1 ¼ b0:

Now if we suppose that an < 1, xn 2 D and (in)–(iiin) are true for a fixed

n P 1; we analogously prove (in+1)–(iiin+1).

3.2. Convergence study

In this section, we study the real sequences defined in (6) in order to obtain

the convergence of sequence (4) in Banach spaces. It will be sufficient that

an < 1 (n P 0) and {xn} is a Cauchy sequence. Firstly, we provide the following

two lemmas on the real sequences given in (6).

Lemma 3.2. Let f and g be the two real functions given in (7). If a1/a0 6 b1/

b0 < 1, then

(a) both sequences given in (6) are decreasing for n P 0;

(b) an < canan�1 and bn < canþ1bn�1, for n P 1, where c = b1/b0 2 (0,1) and {an}

is the Fibonacci generalized sequence:

a1 ¼ a2 ¼ 1; anþ2 ¼ anþ1 þ pan; n P 1; ð9Þ
(c) an < csna0, for n P 1, where sn = a1 + a2 + � � � + an.
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Proof. To prove (a), we use mathematical induction on n. From the hypotheses

it follows that a1 < a0 and b1 < b0. If we assume an < an�1 and bn < bn�1, we

have that an+1 < an and bn+1 < bn, since f and g are increasing.
Part (b) is again proved by induction. By hypotheses, (b) is true for

n = 1 and we assume bj < cajþ1bj�1 and aj < cajaj�1, for j = 1, 2, . . . , n, are also.

Then

anþ1 < gðan�1Þcanþ1bn�1 ¼ canþ1an;

bnþ1 < f ðanÞf ðan�1Þpðcanan�1Þpcanþ1bn�1 < canþ2bn

implie (b). Furthermore,

an < canan�1 < cancan�1 . . . ca2ca1a0 ¼ csna0:

This completes the proof. h

Next, we provide some properties of (9), whose proofs are trivial by apply-

ing induction.

Lemma 3.3. Let {an} be the sequence defined in (9). Then

(a) an ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4p
p 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p

2

� 	n

� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p

2

� 	n� �
and

an P
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4p
p 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p

2

� 	n�1

;

(b) sn = a1 + a2 + � � � + an is such that sn = (an+2 � 1)/p and s1 + s2 + � � � +

sn = [an+4 � p(n + 2) � 1]/p2, n P 1.

Denote Bðx; rÞ ¼ fy 2 X ; ky � xk 6 rg and B(x, r) = {y 2 X;ky � xk < r}.

Theorem 3.4. Let x�1; x0 2 D and k 2 [0,1]. Let us suppose (5), (I)–(III) and

the hypotheses of Lemma 3.2 are satisfied. If a0 < 1/2 and Bðx0; r0Þ � D, where

r0 ¼ 1�a0
1�2a0 g, then the sequence {xn} given by (4) is well defined and converges to a

solution x* of (1) with at least R-order of convergence ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p
Þ=2.

Moreover xn; x� 2 Bðx0; r0Þ. Furthermore,

kx� � xnk <
Dn

1� D
gcbn�1 ; ð10Þ

where D ¼ a0
1�a0

, b�1 = 0 = b0 and bn = s1 + s2 + � � � + sn, n P 1.
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Proof. It is clear, from a0 < 1/2, that an < 1/2(n P 1). We then prove that

xn 2 D, for n P 1, and {xn} is a Cauchy sequence. Thus, for arbitrary positive

integers m and n, we consider

kxnþm � xnk 6 kxnþm � xnþm�1k þ kxnþm�1 � xnþm�2k þ � � � þ kxnþ1 � xnk

6 f ðanþm�2Þanþm�2 . . . f ðanþ1Þanþ1f ðanÞankxnþ1 � xnk

þ f ðanþm�3Þanþm�3 . . . f ðanþ1Þanþ1f ðanÞankxnþ1 � xnk

þ � � � þ f ðanÞankxnþ1 � xnk þ kxnþ1 � xnk

¼
Ynþm�2

j¼n

f ðajÞaj þ
Ynþm�3

j¼n

f ðajÞaj þ � � � þ f ðanÞan þ 1

" #

� kxnþ1 � xnk: ð11Þ

Here we have used the recurrence relation (ii1) for i = n + m�1,
n + m�2, . . . , n + 1. Now, by Lemma 2.2 since f is increasing, {aj} is decreasing

and aj < csja0ðc < 1Þ, we have for n P 2:

kxnþm � xnk < Dn½Dm�1 þ Dm�2 þ � � � þ 1�
Yn�1
j¼1

csj

 !
kx1 � x0k

¼ cs1þs2þ���þsn�1
Dnð1� DmÞ

1� D
kx1 � x0k: ð12Þ

where D ¼ a0
1�a0

< 1.

If n = 1, by (11),

kxmþ1 � x1k <
Dð1� DmÞ
1� D

kx1 � x0k: ð13Þ

and if n = 0,

kxm � x0k <
1� Dm

1� D
kx1 � x0k <

g
1� D

¼ r0: ð14Þ

Consequently, xn is in D and the sequence {xn} is well defined. Secondly,

{xn} is a Cauchy sequence and has a limit, say x*, in Bðx0; r0Þ. Since

kF ðxnÞk 6 kkxn � xn�1k kxn�1 � xn�2kp þ
2

p þ 1
kxn � xn�1kp

� 	
;

the sequence {kF(xn)k} has the limit zero. Hence F(x*) = 0. Thirdly, by letting

m ! 1 in (12)–(14), we see (10).

Finally, by Lemma 3.3 and (10),

bn�1 >
1

p2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4p
p 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p

2

� 	nþ2

� pðnþ 1Þ � 1

" #
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and

cbn�1 <

 
c
ð1þ
ffiffiffiffiffiffi
1þ4p

p
Þ2

4p2
ffiffiffiffiffiffi
1þ4p

p
! 1þ

ffiffiffiffiffiffi
1þ4p

p
2

� �n

c
pðnþ1Þþ1

p2

<
c

1þ
ffiffiffiffiffiffi
1þ4p

p
2

� �n
c
n
pc

pþ1
p2

:

Thus, if C ¼ c
�pþ1

p2 ,

kx� � xnk <
D

c1=p

� 	n g

c
pþ1
p2 ð1� DÞ

c
1þ
ffiffiffiffiffiffi
1þ4p

p
2

� �n
<

g
1� D

Cc
1þ
ffiffiffiffiffiffi
1þ4p

p
2

� �n
;

since Dc1/p < 1. Method (4) therefore has R-order ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p
Þ=2 at

least. h

Remark 1. Observe that, under the conditions of the last theorem, if

a0 < ð3�
ffiffiffi
5

p
Þ=2, the solution x* of (1) is unique in Bðx0; sÞ \D, where

s ¼ ðpþ1
2
½ 1bk � ð1� kÞpap� � rp0Þ

1=p. Indeed, let z* be another root in Bðx0; sÞ \D
and consider

0 ¼ F ðz�Þ � F ðx�Þ ¼
Z z�

x�
F 0ðxÞ; dx ¼

Z 1

0

F 0ðx� þ tðz� � x�ÞÞðz� � x�Þdt:

Denoting A ¼
R 1
0
F 0ðx� þ tðz� � x�ÞÞdt, we have

kL�1
0 A� Ik 6 kL�1

0 kkA� L0k

6 kL�1
0 k
Z 1

0

kF 0ðx� þ tðz� � x�ÞÞ � F 0ðx0Þ þ F 0ðx0Þ � L0kdt

6 b
Z 1

0

2kkx� þ tðz� � x�Þ � x0kp dtþ kF 0ðx0Þ � L0k
� 	

6 b
Z 1

0

2kðð1� tÞpkx� � x0kp þ tpkz� � x0kpÞdtþ kð1� kÞpap

� 	

< bk
2

pþ 1
ðrp0 þ spÞ þ ð1� kÞpap

� 	
¼ 1;

and the operator A is therefore invertible, and consequently z* = x*. More-

over, from a0 < ð3�
ffiffiffi
5

p
Þ=2, we have s > 0, as we can see in the following. Tak-

ing into account that

sp ¼ 1þ p
2

1

kb
� ð1� kÞpap

� �
� rp0;

rp0 ¼
1� a0
1� 2a0

� 	p

gp
6

1� a0
1� 2a0

ð1þ kpÞgp
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and a0 ¼ kb½ð1� kÞpap þ 2
1þp ð1þ kpÞgp�, we have

sp >
1þ p

2kbð1� 2a0Þ
½ð1� a0Þ2 � a0 þ a0kbð1� kÞpap� > 0

if a0 < ð3�
ffiffiffi
5

p
Þ=2.

Note that we have obtained the uniqueness of solution x* for all k 2 [0,1].
4. A special case of conservative problems

It is well known that energy is dissipated in the action of any real dynamical

system, usually through some form of friction. However, in certain situations

this dissipation is so slow that it can be neglected over relatively short periods
of time. In such cases we assume the law of conservation of energy, namely,

that the sum of the kinetic energy and the potential energy is constant. A sys-

tem of this kind is said to be conservative.

If q and r are arbitrary functions with the property that q(0) = 0 and

r(0) = 0, the general equation

m
d2xðtÞ
dt2

þ r
dxðtÞ
dt

� 	
þ qðxÞ ¼ 0; ð15Þ

can be interpreted as the equation of motion of a mass m under the action of a

restoring force �q(x) and a damping force �r(dx/dt). In general these forces

are nonlinear, and Eq. (15) can be regarded as the basic equation of nonlinear
mechanics. In this paper we shall consider the special case of a nonlinear con-

servative system described by the equation

m
d2xðtÞ
dt2

þ qðxðtÞÞ ¼ 0;

in which the damping force is zero and there is consequently no dissipation of

energy. Extensive discussions of (15), with applications to a variety of physical

problems, can be found in classical references [1] and [15].

In this paper, we study the existence of a unique solution for a special case of

a nonlinear conservative system described by the equation

d2xðtÞ
dt2

þ UðxðtÞÞ ¼ 0 ð16Þ

with the boundary conditions

xð0Þ ¼ 0 ¼ xð1Þ: ð17Þ
In order to study the application of (4) for the numerical solution of differ-

ential equation problems, we illustrate the theory for the case of particular sec-
ond-order ordinary differential equation (16) subject to the boundary

conditions (17).
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It is required to find a solution of problem (16) and (17) in the interval

0 6 t 6 1. Under suitable restrictions on the function U, we will see that a un-
ique solution of (16) and (17)exists. Moreover the method of discretization is

used to project the boundary value problem of second order into a finite-

dimensional space. The new class of Secant-like methods are applied to this

problem to approximate the solution of the corresponding system of equations.
Firstly, we suppose that U is once continuously differentiable and U 0 is

Hölder (C,p) continuous. So the operator

½F ðxÞ�ðtÞ ¼ d2xðtÞ
dt2

þ UðxðtÞÞ ð18Þ

is defined from C(2)[0,1] into C[0,1] and it is once differentiable.
4.1. Existence and uniqueness of the solution

In order to see that a unique solution of problem (16) and (17) exists, we
apply Theorem 3.4. Then the bounds a, b, g and k, which appear in the previ-

ous section, are necessary. The first derivative of F at x = x(t) is

F 0ðxÞyðtÞ ¼ d2yðtÞ
dt2

þ U0ðxðtÞÞyðtÞ;

when it is applied to the function y(t). To start the analysis of the convergence

of (4) to a solution of problem (16) and (17), from the starting functions x�1(t)

and x0(t), we first prove that L
�1
0 ¼ ½y0; x0; F �

�1
exists. Observe that

½F 0ðxÞ � F 0ðyÞ�uðtÞ ¼ ðU0ðxÞ � U0ðyÞÞuðtÞ:
Then

kF 0ðxÞ � F 0ðyÞk ¼ Ckx� ykp;
where C is the Hölder constant for U 0. Since F 0 exists and is Lipschitz contin-

uous, it follows that the operator

½x; y; F � ¼
Z 1

0

F 0ðxþ sðy � xÞÞds

is a divided difference at the points x,y 2 C(2)[0, 1]. Hence condition (5) is sat-

isfied with k = C/(1 + p).
If x�1, x0 and k 2 [0, 1] are now fixed, then y0 = kx0 + (1�k)x�1 2 C(2)[0, 1].

Taking into account that

L0uðtÞ� ½y0;x0;F �uðtÞ¼
d2uðtÞ
dt2

þ
Z 1

0

U0ðy0ðtÞþ sðx0ðtÞ� y0ðtÞÞÞuðtÞds� vðtÞ;

it follows that uðtÞ ¼ L�1
0 vðtÞ if L�1

0 exists.
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Next, we consider the linear boundary value problem

d2uðtÞ
dt2

þ wðx0ðtÞ; y0ðtÞÞuðtÞ ¼ vðtÞ;

uð0Þ ¼ 0 ¼ uð1Þ;
ð19Þ

where wðx0ðtÞ; y0ðtÞÞ ¼
R 1
0

U0ðy0ðtÞ þ sðx0ðtÞ � y0ðtÞÞÞds. It is known, see [9],

that problem (19) may be written in the form of the second kind Fredholm

equation

uðtÞ ¼ �
Z 1

0

Kðt; sÞvðsÞdsþ ½P ðuÞ�ðtÞ; 0 6 t 6 1;

where

Kðt; sÞ ¼
sð1� tÞ; t P s;

tð1� sÞ; t 6 s:

�

and

½P ðuÞ�ðtÞ ¼
Z 1

0

Kðt; sÞwðx0ðsÞ; y0ðsÞÞuðsÞds:

Thus

½ðI � P ÞðuÞ�ðtÞ ¼ �
Z 1

0

Kðt; sÞvðsÞds � ðKvÞðtÞ:

On the other hand, using the max-norm and denoting S ¼ sup06t61 jwðx0tÞ;

y0ðtÞÞj, we have kPk 6 S/8. Consequently, by the Banach lemma, (I � P)�1

exists if S < 8, and then

uðtÞ ¼ ðI � PÞ�1ðKvÞðtÞ:
Since

kKvk 6 sup
06t61

Z 1

0

jKðt; sÞjds
� 	

kvk 6 kvk=8;

then L�1
0 exists, kL�1

0 k 6 1=ð8� SÞ and kL�1
0 F ðx0Þk 6 kF ðx0Þk=ð8� SÞ.

We can now establish a result on the existence and the uniqueness of

the solution of problem (16) and (17), whose proof follows as that in

Theorem 3.4.

Theorem 4.1. Following the previous notation, we consider the operator defined

in (18), where F:C(2)[0,1] ! C[0, 1]. Assume that x�1,x0 2 C(2)[0,1], k 2
[0,1] fixed, S ¼ sup06t61 jwðx0ðtÞ; y0ðtÞÞj < 8, a0 < 1/2 and a1/a0 6 b1/b0 < 1,

where a0,a1,b0,b1 are defined in the previous section with
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a ¼ kx0 � x�1k; b ¼ 1

8� S
; g ¼ kF ðx0Þk

8� S
; k ¼ C

1þ p

and C the Hölder constant for U 0. Then there exists at least a solution of problem

(16) and (17) in Bðx0; r0Þ, where r0 ¼ 1�a0
1�2a0

g.

Remark 2. Under the assumptions of the previous theorem, if a0< ð3�
ffiffiffi
5

p
Þ=2,

the solution of problem (16) and (17) is unique in the open ball B(x0,s), where
s¼ðpþ1

2
½ 1bk�ð1�kÞpap�� rp0Þ

1=p
.

Next, we here show the application of the previous study to the following

boundary value problem:

d2xðtÞ
dt2

þ xðtÞ1þp þ Q ¼ 0; p 2 ½0; 1�; Q 2 R;

xð0Þ ¼ 0 ¼ xð1Þ:
ð20Þ

in the space C(2)[0, 1] of all twice Fréchet-differentiable functions with the max-

norm. Now (18) can be written in the form

½F ðxÞ�ðtÞ ¼ d2xðtÞ
dt2

þ xðtÞ1þp þ Q: ð21Þ

To obtain the existence and the uniqueness of the solution of (20), we first

consider

D0 ¼ fx; y 2 Cð2Þ½0; 1� : kwðx; yÞk < 8g � Cð2Þ½0; 1�; ð22Þ
where wðxðtÞ; yðtÞÞ ¼ ð1þ pÞ

R 1
0
ðyðtÞ þ sðxðtÞ � yðtÞÞÞp ds, so that F : D0 !

C½0; 1�. Taking into account (16), we have U(x(t)) = x(t)1+p + Q. Then, by the

Banach lemma, L�1
0 exists and kL�1

0 k 6 1=ð8� SÞ, where

S ¼ ð1þ pÞ sup
06t61

Z 1

0

ðy0ðtÞ þ sðx0ðtÞ � y0ðtÞÞÞ
p
ds

����
����:

In addition

kL�1
0 F ðx0Þk 6

kF ðx0Þk
8� S

:

On the other hand,

k½x; y; F � � F 0ðzÞk 6 kx� zkp þ ky � zkp; x; y; z 2 D0; p 2 ½0; 1�:
Corollary 4.2. Let F : D0 � Cð2Þ½0; 1� ! C½0; 1�, where D0 is defined in (22) and

F in (21). Let x�1; x0 2 D0, k 2 [0,1] fixed. Let us suppose that a0 < 1/2 and

a1/a0 6 b1/b0 < 1, where a0,a1,b0,b1 are defined in the previous section with

a ¼ kx0 � x�1k; b ¼ 1

8� S
; g ¼ kF ðx0Þk

8� S
; k ¼ 1
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and S ¼ ð1þ pÞ sup06t61 j
R 1
0
ðy0ðtÞ þ sðx0ðtÞ � y0ðtÞÞÞ

p
dsj. If Bðx0; r0Þ � D0,

where r0 ¼ 1�a0
1�2a0 g, then a solution of (20) exists at least in Bðx0; r0Þ.

Remark 3. Under the assumptions of the last corollary, if a0 < ð3�
ffiffiffi
5

p
Þ=2,

the solution of (20) is unique in Bðx0; sÞ \D0, where s ¼ ðpþ1
2
½ 1bk� ð1� kÞpap��

rp0Þ
1=p.

4.2. Location of the solution

To illustrate the previous result, we consider the Secant method and bound-

ary value problem (20), where Q = 1/4 and p = 1/2. As the solution would van-

ish at the endpoints and be positive in the interior, a reasonable choice of initial

approximation seem to be x�1ðtÞ ¼ 0:4 sin pt. On the other hand, we choose
x0(t) = 0 in order to simplify the existence domain and reduce the operational

cost. So

S ¼
ffiffiffiffiffiffiffi
0:4

p
; a ¼ 0:4p2; b ¼ 1=ð8� SÞ; g ¼ 1=ð4ð8� SÞÞ and k ¼ 1:

As a result

a0 ¼ 0:303022 < ð3�
ffiffiffi
5

p
Þ=2 < 1=2;

a1=a0 ¼ 0:222462 6 b1=b0 ¼ 0:707029 < 1;

and the conditions of corollary 4.2 hold. Then, see Fig. 1, there exists a solution
x* of (20) in {w 2 C(2)[0, 1];kwk 6 r0}, where r0 = 0.0600328, and x* is unique

in fw 2 Cð2Þ½0; 1�; kwk < 14:3675g \D0.
Fig. 1. The existence domain of the solution and the approximated solution.
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4.3. Numerical solution of the finite-difference equations

To show how boundary value problem (20) can be changed to a system of

algebraic equations, we replace the derivative in the differential equation with

their finite-difference approximations. The system of algebraic equations can

then be solved numerically by (4) in order to obtain an approximate solution
to boundary value problem (20).

To solve this problem by finite differences, we start by drawing the usual

grid line with grid points ti = ih, where h = 1/n and n is an appropriate integer.

Note that x0 and xn are given by the boundary conditions, then x0 = 0 = xn,

and our job is to find the other xi (i = 1, 2, . . . , n�1). To do this, we begin

by replacing the second derivative x00(t) in the differential equation with its

approximation

x00ðtÞ � ½xðt þ hÞ � 2xðtÞ þ xðt � hÞ�=h2;
x00ðtiÞ ¼ ðxiþ1 � 2xi þ xi�1Þ=h2; i ¼ 1; 2; . . . ; n� 1:

By substituting this expression into the differential equation, we have the fol-
lowing system of nonlinear equations

2x1 � h2x1þp
1 � x2 � h2Q ¼ 0;

�xi�1 þ 2xi � h2x1þp
i � xiþ1 � h2Q ¼ 0; i ¼ 2; 3; . . . ; n� 2;

�xn�2 þ 2xn�1 � h2x1þp
n�1 � h2Q ¼ 0:

8><
>: ð23Þ

We therefore have an operator F : Rn�1 ! Rn�1 such that F(x) = H(x) �
h2u(x), where

H ¼

2 �1 0 � � � 0

�1 2 �1 � � � 0

0 �1 2 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 2

0
BBBBBBBB@

1
CCCCCCCCA
; uðxÞ ¼

x1þp
1 þ 1=4

x1þp
2 þ 1=4

..

.

x1þp
n�1 þ 1=4

0
BBBBBB@

1
CCCCCCA
; x ¼

x1

x2

..

.

xn�1

0
BBBBB@

1
CCCCCA:

Thus

F 0ðxÞ ¼ H � h2ð1þ pÞdiagfxp1; x
p
2; . . . ; x

p
n�1g:

Let x 2 Rn�1 then our norm will be kxk ¼ max16i6n�1 jxij. The corresponding
norm on A 2 Rn�1 � Rn�1 is

kAk ¼ max
16i6n�1

Xn�1
j¼1

jaijj:

It is known (see [2,11]) that F has a Hölder continuous divided difference at

the points x; y 2 Rn�1, which is defined by the matrix whose entries are



Table 1

i x�i

1 0.01141648508671

2 0.02032077189279

3 0.02669609124653

4 0.03052779202087

5 0.03180615401355

6 0.03052779202087

7 0.02669609124653

8 0.02032077189279

9 0.01141648508671
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½x;y;F �ij ¼
1

xj� yj
F i x1; . . . ;xj;yjþ1; . . . ;yn�1
� �

� F i x1; . . . ;xj�1;yj; . . . ;yn�1
� �� �

:

If n = 10 then (23) gives 9 equations. Taking into account the values consid-

ered in remark 4, the data for the initial iterate are x�1(ti) = 0.4sinpti and
x0(ti) = 0 for i = 1, 2, . . . , 9. After five iterates, we obtain the vector x* (see
Table 1) as the solution of system (23).

If x* is now interpolated, the present approximation �x� to the solution of

(20) with p = 1/2 is that appearing in Fig. 1. Notice that the interpolated

approximation �x� lies within the existence domain of solutions mentioned

above.
5. Final remark

Finally, we analyse two things. Firstly, we study the domain of the starting

points and, secondly, we analyse the speed of convergence of the class of iter-

ative methods given by (4). If we now choose Q = 0 in (20), the corresponding

boundary value problem has already been used by other authors as a test prob-

lem (see [2,8,12]).

We again start using the method of discretization to project this boundary

value problem into a finite-dimensional space. Let n = 10 and x�1(ti) =
135sinpti (i = 1, 2, . . . , 9) be the initial approximation. We choose, as in [2],

x0 by setting x0(ti) = x�1(ti)�10�5, i = 1, 2, . . . , 9. If we apply the secant

method (k = 0) to the previous points, after two and three iterations we obtain

two points x2 and x3 in which the conditions required in this paper are satisfied

for the secant method, but the ones required by Argyros in [2] are not. Conse-

quently, we can take x2 and x3 as the true starting points.

On the other hand, we obtain the errors kxn � x*k1, which appear in Table

2, for the iterates xn generated by (4) for different values of the parameter
k 2 [0, 1] and starting at x�1 and x0.



Table 2

n k = 0 k = 0.25 k = 0.5 k = 0.75 k = 0.99

1 2.24748 2.24748 2.24748 2.24748 2.24748

2 2.60218 · 10�1 2.08533 · 10�1 1.53355 · 10�1 9.43008 · 10�2 3.35497 · 10�2

3 3.66518 · 10�3 2.28181 · 10�3 1.16525 · 10�3 3.79963 · 10�4 1.20966 · 10�5

4 6.16651 · 10�6 2.31808 · 10�6 5.83199 · 10�7 5.88006 · 10�8 2.73843 · 10�11

5 1.47125 · 10�10 2.58780 · 10�11 2.20268 · 10�12 0.0 0.0

Table 3

x�1(ti) = 135sinpti, x0(ti) = 0 (i = 0, 1, . . . , 10)

n k�x� xnk1
1 2.24749

2 3.09256 · 10�2

3 2.84217 · 10�13

4 0.0
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The numerical results, using 14 significative decimal figures, indicate that the

Secant method is not optimal for approximating the solution x* of F(x) = 0.

Moreover, iteration (4) converges faster to x* for increasing values of the

parameter k 2 [0,1].

Next, observe that (4), where k is near one, gives similar approximations,

without using F 0, to the solution x* of F(x) = 0 to Newton�s method (see Table

3).

Note that iteration (4) and Newton�s method have R-order of convergence
at least ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p
Þ=2 and 1 + p respectively, under the same general conver-

gence conditions. As we have l(0,p) 6 l(k,p), if iteration (4) has R-order of

convergence l(k,p) such that lð0; pÞ ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

p
Þ=2 and l(1,p) = 1 + p, it

is an open problem for future to determinate exactly l(k,p) as a function of k.
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