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9 ABSTRACT: The evolution in polysaccharide composition and molecular weights during sparkling wine making and aging was

10 studied for the first time in this work. Different autochthonous grape varieties from Spain (Verdejo, Viura, Malvasia, Albarin,
11 Godello, Garnacha and Prieto Picudo) were used to elaborate sparkling wines following the champenoise method. Principal
12 component analysis showed differentiation of wines according to polysaccharide families. This differentiation was due to the
13 process of aging on yeast lees, but not to the variety employed. The content of mannoproteins during aging was positively
14 correlated (r = 0.792) with total polysaccharides from grapes. After six months of aging the highest content of mannoproteins
15 and polysaccharides rich in arabinose and galactose was obtained. Also a shift to lower molecular weights was observed. The
16  combination of these two characteristics could imply a better foam stability and thus sensory quality of sparkling wines.

17 KEYWORDS: sparkling wine, grape variety, polysaccharides rich in arabinose and galactose, homogalacturonans,

18 rhamnogalacturonan II, mannoproteins, glucans

19 l INTRODUCTION

20 Polysaccharides are one of the main groups of macromolecules
21 in wines. They come from grape berries, yeast, bacteria and
22 fungal grape contamination such as Botrytis cinerea. From the
23 enological and quantitative point of view, polysaccharides from
24 grapes and yeast are the most important. Polysaccharides rich
25 in arabinose and galactose (PRAGs) such as type II
26 arabinogalactan-proteins (AGPs) and arabinans, rhamnogalac-
27 turonans type I (RG-I) and type II (RG-1I), and homogalactur-
28 onans (HLs) come from grape berries, while glucans (GLs),
29 mannans and mannoproteins (MPs) are released by yeast either
30 during fermentation or by enzymatic action during aging on
31 yeast lees by autolysis. Exogenous polysaccharides such as
32 arabic gum and carboxymethyl cellulose could also be present
33 in several commercial wines as they are authorized as additives.
34  Polysaccharides have an important influence on several stages
3s of the w1nemak1ng process, including fermentation, filtration
36 and stabilization.' > They are in part responsible for the
37 organoleptic properties of wines.*”” However, it has been
38 shown that not all polysaccharides have the same behavior with
39 respect to wines. Their influence on wine processing and
40 sensory properties will depend not only on their quantity but
41 also on the type of polysaccharide. It has been shown that
2 AGPS have greater influence on the filtration procedures than
43 MPs,' Wthh are more efficient at reducing protein haze in
44 white wines."" RG-II is a stronger accelerator of hydrogen
45 tartrate crystallization than RG-L. RG-II has a concentration-
46 dependent effect on hydrogen tartrate crystallization, accelerat-
47 ing crystallization at low concentrations and inhibition of it at
48 high concentrations.'> AGPs, on the other hand, have no effect
49 on this phenomenon.'® Besides, it has been recently shown that
50 RG-II, MPs and AGPs have different influences on aggregation
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of proanthocyanldlns and, therefore, have varied influences on s1
wine characteristics.’ In the case of sparkling wines, some 52
authors have correlated the foam properties of grape juices, s3
base wines and sparkling wines with the polysaccharide s4
content.”>~" A connection between the molecular weight ss
and composition of Ipolysaccharides and foaming characteristics s6
has been shown.'®"” Some authors have even identified the s7
importance of the type of polysaccharide on wine foam sg
properties. Among wine polysaccharides, yeast mannoproteins s9
released during autolysis have been associated with the 60
improvement of foaming properties.”®">> However it has 61
been shown that not all mannoproteins have the same 62
behavior.** The positive effect of mannoproteins on foam 63
has been attributed to the presence of a balanced composition 64
of hydrophobic and hydrophilic protein domains. This balance 6s
contributes to the creation of points of adsorption to the gas— 66
liquid interface of the bubbles. In this way stability is 67
increased.”’ Moreover, mannoproteins play other roles in 6s
sparkling wines since they contribute to the flocculation of 69
yeast strains”* and improve their elimination from the bottle 70
during disgorging. Finally, these compounds could also serve as 71
markers to follow the autolysis process because they are the 72
major polysaccharides released by yeast. 73

Given the importance of polysaccharides in the sparkling 74
wine making and sensory properties, an understanding of their 75
content and kinetic release is essential. Different analytical 76
methodologies have been developed to determine grape, must 77
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and wine polysaccharides. On the one hand, colorimetric
methods™ are frequently used to analyze the global content of
neutral and acid polysaccharides. On the other hand, more
complex and time-consuming methods based on gas
chromatography are used to identify and quantify specific
monosaccharides.”* > Previous studies have analyzed the
evolution of polysaccharide families during the winemaking
and aging of still wines.*****° Some research has been carried
out on the evolution of neutral or total folysaccharides
throughout the sparkling wine making process.'*'**° However,
none of these studies analyzed the evolution of concrete
polysaccharide families.

Therefore, this paper aims to analyze the changes occurring
on monosaccharides, polysaccharide families and molecular
weights of polysaccharides during the different stages of the
sparkling wine processing by the traditional champenoise
method. For this purpose different white (Verdejo, Viura,
Malvasia, Albarin and Godello) and rosé (Garnacha and Prieto
Picudo) sparkling wines were industrially manufactured with
maintenance on yeast lees during 30 months. Chemometric
techniques were applied to achieve a possible differentiation of
the wines according to grape variety along with vinification
stage and their monosaccharide and polysaccharide family
composition.

B MATERIALS AND METHODS

Chemicals. All reagents were analytical grade unless otherwise
stated. Standards of different monosaccharides were used to perform
the calibration curves. p-(+)-Fucose, L-thamnose, 2-O-methyl-pD-xylose,
L-(+)-arabinose, p-(+)-galactose, D-(+)-glucose, p-(+)-mannose, Kdo
(2-keto-3-deoxyoctonate ammonium salt) and D-apiose solution were
supplied by Sigma-Aldrich (Beerse, Belgium), and p-(+)-galacturonic
acid, p-glucuronic acid and myo-inositol (internal standard) were
obtained from Fluka (Buch, Switzerland). Ethanol 96% (v/v) and
acetyl chloride were supplied by Scharlab (Barcelona, Spain),
hydrochloric acid 37% was purchased from Carlo Erba (Rodano,
Milan, Italy) and hexane, dried methanol, pyridine, hexamethyldisila-
zane and trimethylclorosilane were obtained from Sigma-Aldrich
(Beerse, Belgium). Lithium nitrate of HPLC grade supplied by Sigma
(Beerse, Belgium) and Milli-Q deionized water (Millipore, Molsheim,
France) were used. A pullulan calibration kit (Shodex P-82) was
obtained from Waters (Barcelona, Spain).

Winemaking. All the sparkling wines in this study were
manufactured using the traditional method champenoise from grapes
from the 2009 harvest in the enological station of Castilla y Leon
(Valladolid, Spain). Five white monovarietal and three rosé
monovarietal base wines were prepared using the traditional
winemaking process. White base wines were elaborated with Vitis
vinifera cv. Verdejo and Viura grapes from the Rueda Denomination of
Origin (D.O.), Vitis vinifera cv. Malvasia grapes from the Toro D.O,,
Vitis vinifera cv. Albarin grapes from the Tierras de Leén D.O. and Vitis
vinifera cv. Godello grapes from the Bierzo D.O. Rosé base wines were
obtained with Vitis vinifera cv. Prieto Picudo grapes from the Tierras
de Ledén D.O., and Vitis vinifera cv. grapes of Garnacha from the
Cigales D.O. Two different viticultural areas of Garnacha were used in
this work, and thus two different Garnacha wines were obtained, called
Garnacha and Garnacha*, respectively. White grapes were destemmed-
crushed and directly pressed to obtain juice. Red grapes were
destemmed-crushed and left to prefermentative maceration for 2 days
before getting the must. Base wines were made in stainless steel tanks
of 150 L by duplicate at 16 to 18 °C after the addition of selected
winery yeast strain. The wines were cold-stabilized and clarified, and
finally they were bottled and the tirage liquor was added. The bottles
were finally kept in the cellar at a temperature (11—13 °C) and relative
humidity (75—78%) controlled for 30 months. Stirring was conducted
at 29 months of aging in order to remove the lees. Samples for
analyses were taken from the base wines (BW) and then after 3

months (T3M), 6 months (T6M), 9 months (T9M), 18 months
(T18M) and 30 months (T30M) of aging on yeast lees. These
sampling points were selected according to representative aging
periods of sparkling wine categories: sparkling wine (>9 months),
Reserve (>15 months) and Great Reserve (>30 months). Wines were
riddled and disgorged before analysis, and liqueur d’expédition was not
added. Three bottles were analyzed at each disgorging time, and all the
analyses were conducted in triplicate on wines after centrifugation.

Precipitation of Total Soluble Wine Polysaccharides. Wine
polysaccharides were recovered by precipitation after ethanolic
dehydration as previously described.”” Samples were homogenized
and centrifuged using a RC-6 Plus Sorvall refrigerated centrifuge (Du
Pont, BH, Germany), and 2 mL of the supernatants were taken and
introduced into 15 mL falcon-tubes to be concentrated to dryness in a
Joan RC10-10 centrifugal evaporator (Fisher Scientific, Madrid,
Spain). Polysaccharides were then precipitated by adding 2 mL of
cold ethanol/acid (ethanol 96% containing 0.3 M HCI) and kept for
24 h at 4 °C. Thereafter, samples were centrifuged, the supernatants
discarded and the pellets washed several times with 96% ethanol to
remove the interference materials. The pellet, which corresponded to
total soluble polysaccharides (TSP), was finally freeze-dried using a
Virtis freeze-drying apparatus (New York, USA). This polysaccharide
extraction was performed in triplicate in each sample.

Identification and Quantification of Monosaccharides by
GC—MS. The monosaccharide composition of the TSP precipitates
was determined by GC—MS of their trimethylsilyl-ester O-methyl
glycolsyl-residues obtained after acidic methanolisis and derivatization
as previously described.”” GC was controlled by ChemStation software
and equipped with a 7653B automatic injector consisting of an Agilent
7890A gas chromatograph (Agilent Technologies, Waldbronn,
Germany) coupled to a 5975C VL quadrupole mass detector (MS).
Samples were injected in duplicate. The content of each poly-
saccharide family in the wine samples was estimated from their
concentration of individual glycosyl residues which are characteristic of
structurally identified wine polysaccharides.”®*" PRAGs, representing
mainly arabinogalactan-proteins and arabinans in wines, were
estimated from the sum of galactosyl, arabinosyl, rhamnosyl and
glucuronosyl residues. All the mannose content was attributed to yeast
mannoproteins (MPs), and all the glucose content was attributed to
yeast glucans (GLs). The RG-II content was calculated from the sum
of its diagnostic sugars (apiose, 2-O-methyl-I-fucose, 2-O-methyl-p-
xylose, aceric acid (3-c-carboxy-S-deoxy-l-xylose), Kdo (3-deoxy
octulosonic acid), and Dha (3-deoxy-p-lyxo heptusolaric acid)),
which represent approximately 25% of the RG-II molecule. For one
residue of 2-O-methyl fucose, RG-II contains 3.5 rhamnosyl, 2
arabinosyl, 2 galactosyl, 1 glucuronosyl and 9 galacturonosyl residues.
Taking into account these molar ratios, it was possible to estimate
their respective amounts in the RG-IL. The remaining part was
attributed to the presence of PRAGs in the case of rhamnose,
arabinose and galactose; and the remaining galacturonosyl residues
was used to estimate the content of oligomers of homogalacturonans
(HLs). The content of total polysaccharides was estimated from the
sum of PRAGs, MPs, GLs, RG-II and HLs.

Analysis of Polysaccharides by HRSEC-RID. A high-resolution
size-exclusion chromatography (HRSEC) system with a refractive
index detector was used to obtain the molecular weight distributions of
the wine polysaccharides as previously described.”” Two serial Shodex
OHpack SB-803 and SB-805 columns (0.8 X 30 cm, Showa Denko,
Japan) equilibrated at 1 mL/min in 0.1 M LiNO; were used.
Chromatographic separation was carried out on an Agilent modular
1100 liquid chromatograph (Agilent Technologies, Waldbronn,
Germany) connected to G1362 refractive index detector. Calibration
was performed with narrow pullulan molecular weight standards
(Shodex P-82, Waters, Barcelona, Spain): P-S, M,, = 5.9 kDa; P-10, M,
= 11.8 kDa; P-20, M,, = 22.8 kDa; P-50, M,, = 47.3 kDa; P-100, M,, =
112 kDa; P-200, M,, = 212 kDa, P-400, M,, = 404 kDa. The apparent
molecular weights were deduced from the calibration equation log M,,
= 11.027—0.410 tR (tR = column retention time at peak maximum,
and 7* = 0.999).
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Figure 1. PCA of wines according to the winemaking stage: (A) base wines (BW) and sparkling wines after 30 months of aging on yeast lees
(T30M); (B) base wines (BW), and sparkling wines after 3 months (T3M), 6 months (T6M), 9 months (T9M), 18 months (T18M) and 30
months (T30M) of aging on yeast lees. Ara, arabinose; Fuc, fucose; Man, mannose; Gal, galactose; GalA, galacturonic acid; Glc, glucose; Rham,
rhamnose; GluA, glucuronic acid; Kdo, 2-keto-3-deoxyoctonate ammonium salt; 2 O-Me-Xyl, 2-O-methyl-p-xylose; MP, mannoproteins; PRAG,
polysaccharides rich in arabinose and galactose; GL, glucans; HL, homogalacturonans; RG-II, rhamnogalacturonan type II; Ara/Gal ratio; Man/Glc

ratio.

Statistical Analysis. Significant differences among samples were
214 analyzed by an analysis of variance (ANOVA) if the data adhered to
assumptions of normality. If these assumptions were not adhered to,
216 nonparametric methods were used. Separate principal component
217 analysis (PCA) was carried out on the values of monosaccharide
composition, polysaccharide families, arabinose/galactose (Ara/Gal)
219 and mannose/glucose (Man/Glc) ratio grouped according to grape
220 variety and winemaking stage. ANOVA evaluations were performed
using the Statistica 8.0 program for Microsoft Windows (Statsoft Inc.,
222 Tulsa, Oklahoma) and PCA analysis by using the Senstools Version
3.3.2. Program (Utrecht, The Netherlands).

B RESULTS AND DISCUSSION

Differentiation of Sparkling Wines According to
Monosaccharide Composition and Polysaccharide Fam-
ilies. Principal component analysis (PCA) was applied to
achieve a possible differentiation of the wines according to the
variety employed. Figure 1A shows the distribution of base
wines and sparkling wines after 30 months of aging on yeast
lees, and the monosaccharide composition and polysaccharide
families’ loads. The two first principal components explained
85% of the accumulative variance. Prieto Picudo wines were

C dx.doi.org/10.1021/jf403059p | J. Agric. Food Chem. XXXX, XXX, XXX—XXX
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widely separated from the rest of base and sparkling wines
because they were highly related to the RG-II polysaccharide
and their constituent monosaccharides. However, the rest of
the varietal wines could not be separated in the PCA space
according to the polysaccharide composition. On the contrary,
the process of aging on lees affected the monosaccharide profile
differentiation between varieties. Base wines were clearly
separated from sparkling wines with 30 months of aging.
Except for Man/Glc ratio, base wines were highly related to all
studied loads, and the process of aging on yeast lees increased
this ratio.

In order to check which stages of aging most influenced the
polysaccharide composition of sparkling wines, a new PCA
including all the stages was conducted (Figure 1B). Wines were
properly located in the vectorial dimension defined by the first
two factors, which accounted for 80% of the total variance in
the PCA space. Wines were clearly differentiated according to
their winemaking stage. There were no differences in the
composition of the base wines and the wines obtained after 3
and 6 months of aging on yeast lees. These wines were highly
related to all monosaccharide and polysaccharide families. On
the contrary, wines after 9, 18, and 30 months of aging showed
a weak relation with these compounds only being correlated
with the Man/Glc ratio. Therefore, the final months of aging on
yeast lees produced a movement of the wines in the PCA space,
clearly marked by a decrease in all polysaccharide families but
an increase in the Man/Glc ratio.

Evolution of Yeast Monosaccharides and Polysac-
charide Families during Sparkling Wine Making and
Aging. Table 1 shows the mannose and glucose content (mg/
L) and the mannose/glucose ratio in base wines and sparkling
wines over aging time. Between both sugars present in the wine
glucose was usually found at a higher concentration. It
represented more than 60% of the total content of mannose
and glucose. Glucose is the prevalent sugar in grape berries®>
being that it is the main component of cellulose and
hemicellulosic xyloglucans. However these structural poly-
saccharides are minor compounds in musts.>> On the other
hand, the presence of glucose in wines may also be related to
microbial polysaccharides (Botrytis cinerea, Oenococcus oeni) or
condensed anthocyanins. In this research, grapes were
harvested in good sanitary conditions, malolactic fermentation
was not conducted, and all wines showed very low anthocyanin
content.** Therefore, it is reasonable to presume that all the
glucose content in the wines was due to yeast glucans released
during the fermentation. Thus, we used the content of glucose
to estimate the quantity of glucans (GLs) in the same way that
the quantity of mannose is used to estimate the quantity of
mannoproteins (MPS).28

Release of mannoproteins and glucans during aging on yeast
lees was attributed to the autolytic process from the yeast.
Mannose content increased from 0 to 6 months of aging while
glucose content increased only during the 3 to 6 month period
of aging. This difference in the release time could be due to the
fact that MPs in the cell wall of Saccharomyces cerevisiae are
trapped or covalently linked to the GLs.>> Thus MPs are
released first by endo- and exo- f-(1,3)-glucanases, after which
GLs are released. Therefore, the amount of MPs or GLs
released could be regulated to the time in which a sparkling
wine is in the bottle.

The content of MPs and GLs remained constant or
decreased gradually over periods longer than 6 months. Thus,
mannose and glucose concentration was lower in all final

sparkling wines than in their corresponding base wines. In fact,
the concentration of mannose and glucose were approximately
3 times higher in wines at 6 months of aging than in wines at 30
months of aging. These results contrasted with those obtained
by other authors,'*'®
monosaccharides during 12 months of aging with yeast. This
lack of increase of MPs and GLs may be attributed to different
aspects. First, the autolytic conditions employed (low pH and
low aging temperature, presence of ethanol, and high pressure
of CO,) and the lack of stirring of lees in sparkling wines
during the aging time could have caused a reduction of the
hydrolytic enzymes activities involved in the autolytic process
and a lower release of yeast polysaccharides. Second, the
precipitation rate of the released polysaccharides during this
period was probably higher than their solubilization into the
wine. Thus, decreases in the content of MPs and GLs were
attributed to precipitation phenomena as a result of their
interaction with other wine components to form unstable
colloids. Although these interactions have not been studied
regarding wine aging on lees, some authors have described the
establishment of unstable colloids between MPs and other wine
constituents in still wines at the end of maceration-

who observed an increase in neutral

297
298
299
300
301
302
303
304
308
306

318

fermentation.” The distribution of the molecular weights of 319

polysaccharides (Figure 3) indicated decreases mainly affected
compounds of low molecular weight. These results suggested
that small MPs and GLs were more reactive with other wine
components.
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Figure 2. Evolution of total polysaccharide families in (A) white and
(B) rosé sparkling wines over the aging time. Base wines (BW), and
sparkling wines after 3 months (T3M), 6 months (T6M), 9 months
(T9M), 18 months (T18M) and 30 months (T30M) of aging on yeast
lees. Values are means + SD (n = 3). Different letters in the same
vinification stage represent means significantly different at p < 0.05.
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The mannose/glucose ratio (Man/Glc) remained constant
until 18 months of aging, yet significantly increased from 18 to
30 months of aging (Table 1). Therefore, sparkling wines with
30 months of aging showed a Man/Glc ratio approximately 2.6
times higher than in the rest of the wines. Man/Glc increase
from 18 to 30 months of aging was due to a significant
reduction in the glucose content, indicating that GLs would
form more unstable compounds susceptible to precipitation
than MPs.

Evolution of Grape Monosaccharides and Polysac-
charide Families during Sparkling Wine Making and
Aging. The content of monosaccharides forming the grape
polysaccharides and the arabinose/galactose ratio and poly-
saccharide families from grapes are shown in Table 2. These
monosaccharides resulted from the breakdown and solubiliza-
tion of native grape polysaccharides which were released by
enzymatic degradation during the early steps of their processing
to base wine.

Among grape monosaccharides, galactose and arabinose were
the two most prevalently detected in all base wines samples (41
+ 19% and 26 + 9%, respectively), indicating a high content of
polysaccharides rich in arabinose and galactose (PRAGs).
Galacturonic acid, which represented from 10 + 1% to 37 +
11%, was used as an indicator of homogalacturonans (HLs).
Rhamnose and glucuronic acid were also detected in smaller
amounts in wine samples as they also form PRAGs and
rhamnogalacturonan type II (RG-II) polysaccharides. Rare
sugars such as 2-O-methyl-xylose, apiose and Kdo were only
detected in Prieto Picudo wines, indicating that the RG-II
polysaccharide was only present in this wine. The absence of
the RG-II molecule in all white wines was attributed to the

35s winemaking process. RG-II is a molecule tightly bound to the

cell wall matrix of grape cell walls, and it is resistant to
pectinolytic enzymes. Therefore RG-II needs a longer
maceration time to solubilize.*>> White base wines were
elaborated without prefermentative maceration, and alcoholic
fermentation was conducted in total absence of skin contact,
which would prevent the extraction of RG-II into the wine. On
the contrary, Prieto Picudo and both Garnacha base wines were
given two days of prefermentative maceration before obtaining
the musts. These rosé wines were elaborated with equal
conditions of prefermentative maceration, alcoholic fermenta-
tion and grape maturity at time of harvest.>* The differences
observed with respect to RG-II molecule may be due to
differences in the weakness of the grape skins that could
modulate the extraction of wine components, which suggest a
certain varietal characteristic.

Grape monosaccharides decreased similarly in all sparkling

372 wines during the whole period of aging. Therefore, final

sparkling wines had lower concentrations of all glycosyl
residues than their corresponding base wines. All base wines

375 were composed of grape PRAGs and HLs, which represented

75 + 26% and 23 + 18% of total polysaccharide families from
grapes, respectively, except for Prieto Picudo base wines, which
also contained the RG-II polysaccharide family. PRAGs were
the most prevalent polysaccharide family, indicating that they
were easily released into the wine by the action of endogenous
enzymes as they are localized in soluble form within grape cell

382 walls.*> The proportion of HLs was higher than that observed

by our group in still wines.*” This fact was attributed to the
concentration to dryness used to precipitate polysaccharides,

3ss which could have resulted in a higher concentration of

oligosaccharides and HLs of low molecular weight.””

Similar concentrations of PRAGs and HLs were found in
rosé base wines and in white base wines, thus indicating a lack
of solubilization of these compounds during the prefermenta-
tive maceration in rosé base wines. As previously explained,
RG-II extraction only occurred in Prieto Picudo base wines, in
which it represented 5.5 + 0.5% of total polysaccharides from
grapes.

The evolution of various types of polysaccharide families was
different during the stages of the sparkling wine processing.
HLs and RG-II decreased during the first 6 months of aging,
and PRAGs remained constant. Aging periods of more than 6
months prompted a considerable reduction in all polysacchar-
ide families. As observed with MPs and GLs, grape
polysaccharides also reacted with other wine compounds to
form unstable colloids during long periods of aging on yeast
lees. During this period of more than 6 months of aging,
reductions in HLs were higher than in PRAGs and RG-1I (86%
vs 41%) in all sparkling wines, therefore, indicating a higher
reactivity of HLs toward other wine constituents.

388

405

The arabinose/galactose ratio (Ara/Gal) is characteristic of 406

the wine arabinogalactan-protein composition. Other authors
have described aging on yeast lees produces a decrease in the
Ara/Gal ratio because the terminal arabinose residues were
removed. This reduction of arabinose residues indicates a
dearabinosylation of arabinogalactan-proteins.”” Although we
also observed a significant decrease in this ratio for Viura and
Verdejo sparkling wines, the ratio remained constant in the rest
of the wines. Therefore, decisive conclusions could not be
obtained.

Evolution of Total Polysaccharide Families during
Sparkling Wine Making and Aging. Total monosaccharides
were calculated as the sum of arabinose, fucose, mannose,
galactose, galacturonic acid, glucose, rhamnose, glucuronic acid,
2-keto-3-deoxyoctonate ammonium salt and 2-O-methyl-p-
xylose. Prieto Picudo had the highest value of total
monosaccharides among rosé base wines (439.71 + 18.21
mg/L) while Albarin base wines showed the highest value
among white wines (488.24 + 34.28 mg/L). Monosaccharide

407
408
409
410
411
412
413
414

composition was similar in all base wines: it was composed of 425

glucose, followed by galactose, mannose and arabinose. In the
same way, monosaccharide composition was similar in all final
wines, which were composed of mannose (35 + 11%), followed
by glucose (25 + 15%), galactose (21 + 13%) and arabinose
(11 + 5%). These percentages are in agreement with the
composition of other sparkling wines obtained by different
authors.**

426

432

Total polysaccharide families were calculated as the sum of 433

MPs, GLs, PRAGs, HLs and RG-II (Figure 2). Among rosé
base wines, Prieto Picudo showed the highest amount of total
polysaccharides (446.36 + 18.21 mg/L), whereas Albarin base
wine showed the highest quantity among the white wines
(494.29 + 37.72 mg/L). However, base wines with the highest
concentrations of polysaccharides had a greater drop in their
polysaccharide content during aging, compared to base wines
with low concentrations. Thus, total polysaccharides decreased
78 + 6% in Prieto Picudo and 73 + 9% in Albarin from 6

434
43S
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437
438
439
440
441
442

months of aging on, reaching similar final values as the rest of 443
the sparkling wines. This fact suggests an important quantity of 444

the extra polysaccharides precipitated during aging. Therefore,

445

techniques employed to increase the extraction and release of 446

polysaccharides during winemaking would not be as interesting
as expected because the higher initial content of polysacchar-
ides could be related to a higher precipitation. With regard to
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2 final sparkling wines, Garnacha reached the highest content of 4s0
g « ; < § total polysaccharides (223.11 + 4.76 mg/L), followed distantly 4s1
g2 goc EE by Viura (137.74 + 4.71 mg/L) and last by the rest of sparkling 452
(=} v) —
53 4S5 ¥ wines (<130 mg/L). These results indicated that the content of 4s3
é‘ Ho oMy g polysaccharides was independent of the color of the grapes and 454
'g\_ § § § £ the type of winemaking (with or without prefermentative 4ss
ks maceration). The values found were in the range described in 4s6
p ‘f‘) other studies for sparkling wines."*'”'*?° Final sparkling wines 47
s < T « § were essentially composed of PRAGs, MPs, GLs and HLs, with 4s8
= s 3 2 E average percentages of 35 + 16%, 35 + 11%, 25 & 15% and 4 + 459
g = =9 g 2%, respectively. The sum of MPs and GLs (47—78% of total 460
S+ 2 polysaccharide families) was higher than those found in still 461
5 E § e 9 wines, obviously due to the lysis process during the aging 462
= period. To the best of our knowledge, there is no literature on 463
w . . . . . . .
v this aspect relating sparkling wines, and this is the first time 464
< : A .
2 < p concrete polysaccharide families in these types of wines are 465
[ IS < = .
5 S o3 @ described. 466
=) o
% 5 2R % Despite the foam properties of sparkling wines being 467
o il H il = controlled by a large number of molecules that act in a 468
2 2 o B synergistic way,”” MPs released by yeast during autolysis are 469
g - M b=
R particularly important because their hydrophobic nature causes 470
5 them to greferentially adsorb to the gas/liquid interface of foam 471
S = bubbles.”® On the other hand, PRAGs could also play an 472
2 < o T A important role in the foam quality and stability due to its 473
T2 %3 é protein fraction. The results of our investigation indicated how 474
= i H j v the highest content of mannoproteins was obtained at 6 475
N
B I > f;f* months of aging. We also observed how the content of 476
. TeE g polysaccharides coming from grapes was positively correlated 477
p % with the content of MPs (r = 0.792; p < 0.01) during the entire 478
z g< & winemaking and aging process. Therefore, the content of 479
g T o2 g PRAGs and HLs also reached its highest concentrations after 6 480
é 2 ':I b ué months of aging. In this sense, these results suggest that longer 4s1
st i aging time is not necessary to obtain greater amount of 4s2
e S =g 2 polysaccharides. 483
o v <+ 4 ]
g Distribution of the Molecular Weights of Polysac- 4s4
9 <. = charides during Sparkling Wine Making and Aging. 4ss
o 8 g ht HRSEC-RID on Shodex column allowed us to follow the 4s6
3 o § g 8 qualitative changes in the molecular weight distribution of 487
& fl H i’l E polysaccharides during sparkling wine making (Figure 3). 4ss
w S = . £ Chromatograms of base wines were analyzed in order to 489
S ®BaE 5 establish differences due to variety. In this sense, Prieto Picudo 490
§ base wines showed a different profile than the rest of the base 491
p z ° wines. Prieto Picudo base wines were characterized by three 492
s 2% = populations that eluted at 14.2, 16.0, and 172 min and 493
. £
5 o § = z corresponded to fractions of 178, 39, and 10 kDa, respectively. 494
= fl H :I £ According to the literature,”*”***"*" the first two populations 495
o 7 2 Tf, corresponded to complex mixture of high and medium 496
g 2
R T - molecular weight PRAGs from grape berries and high and 497
[
2 medium molecular weight MPs and GLs released by the yeast. 498
< << = Z The third population corresponded mainly to grape RG-II 499
£ 2 o8 2 > dimers, and also to low molecular weight PRAGs and MPs. The s00
8 é S § E -% rest of base wines showed two major peaks eluting at 14.2 and so1
< PR R 16.1 min. However, they did not show the presence of a third so2
2 E - i "; population. These results were in agreement with those s03
S o8 = =3 obtained by GC—MS, illustrating how Prieto Picudo base sos
[ . . . .
- g o wines had the RG-II polysaccharide family. Except for Prieto sos
g HE Picudo, all base wines showed a similar molecular weight s0s
g - g s distribution as that previously described in white musts.*® 507
Q d . . .
g g 2 . £ S All samples showed a slight shift from higher to lower sos
© 223305 8 L molecular weight polysaccharides from base wine to 6 months s09
2 dB AN R,y of aging on yeast lees. This could be attributed to the release of 510
= = & MPs and GLs of lower molecular weights due to the random s11
= £33 breaking of the cell wall into a succession of different size si2
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fragments. However, this could also be contributed to the
hydrolysis of the macromolecules by exo-f-(1,3)-glucanases, a-
manosidases and proteases*® released into the wine. These
results were in agreement with those of other researchers, who
also observed a change to lower molecular weights in the
polysaccharide size distribution during aging.>**"*'~* More-
over, the occurrence of peak tailing at ~16 kDa was observed,
thus, suggesting a partial degradation of the polysaccharides
during aging over lees, and modification of their properties and
solubilization.

Several authors have observed that small MPs inhibit tannin
aggregation® and their efficiency as particle stabilizers decreases
as their molecular weight increases.** Moreover, small MPs
have also been shown to be responsible for tartaric stability.*’
The fraction responsible for the foaming properties in sparkling
wines is constituted by MPs with a relative molecular weight
between 10 and 30 kDa.*'Therefore, the shift to lower
molecular weight polysaccharides could result in an improve-
ment of the wine colloidal stability and foam properties. As the
tirage phase went on, no more shifts were observed.

In conclusion, it is important to point out that the highest
amount of polysaccharides was obtained at 6 months of aging
along with a change to lower molecular weights. These changes
could imply a better foam stability and thus better sensory

quality.
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