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Generalized differentiability conditions for Newton’s method
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The use of majorizing sequences is the usual way to prove the convergence of Newton’s
method. An alternative technique to majorizing sequences is provided in this paper, in
which three scalar sequences are used, so that the analysis of convergence is simplified
when the traditional convergence condition is relaxed. An application to a nonlinear
integral equation is also given, which is also solved and the solution approximated by a
discretization process.
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1. Introduction

One of the more common problems in mathematics is the solution of a nonlinear equation

F(x) = 0, (1)

where F is some nonlinear operator in a Banach space X . This problem is not always
easy to solve. Frequently, we cannot obtain an exact solution to the previous equation, so
we look for an approximation to a solution. In this case, we use approximation methods,
which are generally iterative ones. The best known iteration to solve nonlinear equations
is the Newton method:

xn+1 = xn − F ′(xn)−1 F(xn), n � 0, given x0, (2)

provided that F ′(xn)−1 exists for all n � 0.
For further reference, we recall some notations. Let X , Y be Banach spaces and

F : Ω ⊆ X → Y a nonlinear once Fréchet differentiable operator in an open convex
domain Ω . Let x0 ∈ Ω and suppose that F ′(x0)

−1 ∈ L(Y, X) exists at some x0 ∈ Ω ,
where L(Y, X) is the set of bounded linear operators from Y into X .

Most authors have studied the convergence of (2) to a solution x∗ of (1) under the
original conditions of Kantorovich (see Argyros, 1992; Argyros & Szidarovszky, 1993;
Kantorovich & Akilov, 1982), where it is supposed that the second Fréchet derivative F ′′ is
continuous and bounded in Ω or that the first Fréchet derivative F ′ is Lipschitz continuous
in Ω .
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Other authors (Argyros, 1992; Keller, 1992; Rokne, 1972) also consider a generaliza-
tion of these conditons, which is given by

‖F ′(x) − F ′(y)‖ � K‖x − y‖p, x, y ∈ Ω , K � 0, p ∈ [0, 1]. (3)

Observe that if p = 1 in (3), F ′ is Lipschitz continuous.
In Argyros (1990), for equations defined by differentiable operators, is considered a

generalization of condition (3), that is given by

‖F ′(x) − F ′(y)‖ � ω(‖x − y‖), x, y ∈ Ω , (4)

where ω : R+ → R+ is a continuous and non-decreasing function such that ω(0) � 0.
Obviously, if ω(z) = K z (K = constant), F ′ is Lipschitz continuous, and if ω(z) = K z p

(K = constant and p ∈ [0, 1]), F ′ is (K , p)-Hölder continuous. This uses real majorizing
sequences, although these sequences are not the usual ones. In this paper, the difficulty in
using majorizing sequences to prove the convergence of Newton’s method, when we want
to relax the required conditions to F ′, is laid out.

We provide an alternative technique to majorizing sequences, in which particular real
sequences are also constructed, but they are not majorizing ones. The application of
this technique is very simple as we can see when the semilocal convergence result is
obtained under condition (4). We also obtain the domains of existence and uniqueness
of the solution. Moreover, we can generalize the result obtained in Newton–Kantorovich
type conditions (Kantorovich & Akilov, 1982). With this technique we improve the results
obtained by majorizing sequences when F ′ satisfies condition (3), see Keller (1992) and
Rokne (1972). The convergence conditions are relaxed for specific values of the parameter
p, and we establish a result on the uniqueness of the solution, which is not given in Keller
(1992) and Rokne (1972). A result about the R-order of convergence of Newton’s method
is also obtained and some sharp a priori error estimates are provided.

Finally, we apply our semilocal convergence results to nonlinear Hammerstein integral
equations of the second kind (Polyanin & Manzhirov, 1998), and obtain a result on the
existence and uniqueness of solutions for this type of equation. Solutions of particular
Hammerstein integral equations are then approximated by a discretization process.

Throughout the paper we denote

B(x, r) = {y ∈ X; ‖y − x‖ � r} and B(x, r) = {y ∈ X; ‖y − x‖ < r}.

2. Semilocal convergence of Newton’s method

Under certain conditions for the pair (F, x0), we study the convergence of the Newton
method to a unique solution of (1). From some real parameters, a system of three recurrence
relations is constructed in which three sequences of positive real numbers are involved. The
convergence of Newton’s sequence (2) is then guaranteed from it.

2.1 Recurrence relations

We suppose that Γ0 = F ′(x0)
−1 ∈ L(Y, X) exists for some x0 ∈ Ω . We also assume the

following:
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(C1) ‖Γ0‖ � β,
(C2) ‖x1 − x0‖ = ‖Γ0 F(x0)‖ � η,
(C3) ‖F ′(x) − F ′(y)‖ � ω(‖x − y‖), x, y ∈ Ω , where ω : R+ → R+ is a continuous

and non-decreasing function such that ω(0) � 0,
(C4) a continuous and non-decreasing function h : [0, 1] → R+ exists, such that

ω(t z) � h(t)ω(z), with t ∈ [0, 1] and z ∈ [0, ∞).

Note that condition (C4) does not involve any restriction, since h always exists, such
that h(t) = 1, as a consequence of ω being a non-decreasing function. We can even
consider h(t) = supz>0

ω(t z)
ω(z) . We use it to sharpen the bounds that we obtain for particular

expressions, as we will see later.
We now denote a0 = η, b0 = βω(a0) and define the following scalar sequences:

tn = Hbn f (bn), n � 0, (5)

an = tn−1an−1, n � 1, (6)

bn = h(tn−1)bn−1 f (bn−1), n � 1, (7)

where H = ∫ 1
0 h(t) dt and

f (x) = 1

1 − x
. (8)

Observe that we consider the case b0 > 0, since if b0 = 0, a trivial problem results, as
the solution of (1) is x0.

Next, we see the following recurrence relations that sequences (2), (6) and (7) verify:

‖Γ1‖ = ‖F ′(x1)
−1‖ � f (b0)‖Γ0‖, (9)

‖x2 − x1‖ � a1, (10)

‖Γ1‖ω(a1) � b1. (11)

To do this, we assume that
x1 ∈ Ω and b0 < 1.

As Γ0 exists, by the Banach lemma, we have that Γ1 is defined and

‖Γ1‖ � ‖Γ0‖
1 − ‖I − Γ0 F ′(x1)‖ � f (b0)‖Γ0‖,

since
‖I − Γ0 F ′(x1)‖ � ‖Γ0‖‖F ′(x0) − F ′(x1)‖ � βω(a0) = b0 < 1.

From Taylor’s formula and (2), it follows that

F(x1) =
∫ 1

0
[F ′(x0 + t (x1 − x0)) − F ′(x0)](x1 − x0) dt,

and consequently,

‖F(x1)‖ =
( ∫ 1

0
ω(ta0) dt

)
‖x1 − x0‖ � Hω(a0)‖x1 − x0‖.
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Thus

‖x2 − x1‖ = ‖Γ1 F(x1)‖ � ‖Γ1‖‖F(x1)‖ � Hb0 f (b0)‖x1 − x0‖ � t0a0 = a1

and

‖Γ1‖ω(a1) � f (b0)‖Γ0‖ω(t0a0) � f (b0)βh(t0)ω(a0) = h(t0)b0 f (b0) = b1.

In Theorem 2.2 we will generalize (9)–(11) to every point of sequence (2) and we will
show that (2) is a Cauchy sequence. To this purpose we first investigate the scalar sequences
{tn}, {an} and {bn} at the beginning of the following section.

2.2 Analysis of the scalar sequences {tn}, {an} and {bn}
The next goal is to analyse the real sequences (5)–(7) so that the convergence of
sequence (2) is guaranteed. To do this, it suffices to see that xn+1 ∈ Ω and bn < 1,
for all n � 1. Next, we generalize the previous recurrence relations, so that we will be able
to prove that (2) is a Cauchy sequence. First, we give a technical lemma.

LEMMA 2.1 Let f be the scalar function defined in (8). If b0 < m, where

m = min

{
1 − h(t0),

1

1 + H

}
(12)

and H = ∫ 1
0 h(t) dt , then

(a) sequences {tn}, {an} and {bn} are strictly decreasing,
(b) tn < 1 and bn < 1, for all n � 0.

If b0 = 1 − h(t0) < 1
1+H , then tn = t0 < 1 and bn = b0 < 1, for all n � 1.

Proof. Firstly, we consider the case b0 < m, where m is defined in (12). Item (a) is proved
by mathematical induction on n. As b0 < 1 − h(t0), then b1 < b0 and t1 < t0, since f is
increasing. Moreover, a1 < a0 as a consequence of t0 < 1 and b0 < m. Next, we suppose
that bi < bi−1, ti < ti−1 and ai < ai−1, for all i = 1, 2, . . . , n. Thus

bn+1 = h(tn)bn f (bn) < h(t0)bn f (b0) < bn,

tn+1 = Hbn f (bn) < Hbn−1 f (bn−1) = tn,

an+1 = tnan < t0an < an,

since f and h are increasing in [0, 1). Consequently, the sequences {tn}, {an} and {bn} are
strictly decreasing.

Secondly, to see (b), we have tn < t0 < 1 and bn < b0 < 1, for all n � 0, by (a) and
b0 < m.

Finally, if b0 = 1 − h(t0), it follows that h(t0) f (b0) = 1, and therefore, bn = b0 =
1 − h(t0) < 1, for all n � 0. Moreover, if b0 < 1

1+H , then we have tn = t0 < 1, for all
n � 0. �
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2.3 A semilocal convergence result

We are now ready to prove a semilocal convergence theorem for Newton’s method when it
is applied to operators that satisfy conditions (C1)–(C4).

THEOREM 2.2 Let X and Y be two Banach spaces and F : Ω ⊆ X → Y a once Fréchet
differentiable operator in an open convex domain Ω . We suppose that Γ0 = F ′(x0)

−1 ∈
L(Y, X) exists for some x0 ∈ Ω and conditions (C1)–(C4) hold. If b0 = βω(η) < m, where
m is defined in (12), and B(x0, R) ⊆ Ω , where R = a0

1−t0
, then sequence (2), starting from

x0, converges to a solution x∗ of (1), the solution x∗ and the iterates xn belong to B(x0, R).

Proof. Firstly, we prove the following items for sequence (2) and n � 1:

(I) Γn exists and ‖Γn‖ = ‖F ′(xn)−1‖ � f (bn−1)‖Γn−1‖,
(II) ‖xn+1 − xn‖ � an ,

(III) ‖Γn‖ω(an) � bn ,
(IV) xn+1 ∈ Ω .

Notice that x1 ∈ Ω , since η < R. Then, from (9)–(11) and

‖x2 − x0‖ � ‖x2 − x1‖ + ‖x1 − x0‖ � a1 + a0,

it follows that (I)–(IV) hold for n = 1. If we now suppose that (I)–(IV) are true for some
n = 1, 2, . . . , i we see that (I)–(IV) also hold for n = i + 1. We take into account that
ti < 1 and bi < 1, for all i � 0.

(I) Observe

‖I − Γi F ′(xi+1)‖ � ‖Γi‖ω(‖xi+1 − xi‖) � f (bi−1)‖Γi−1‖ω(ai )

= f (bi−1)‖Γi−1‖ω(ti−1ai−1) � f (bi−1)‖Γi−1‖h(ti−1)ω(ai−1)

� h(ti−1)bi−1 f (bi−1) = bi < 1,

since {bn} is decreasing, b0 < 1
1+H and ti−1 < 1. Then, by the Banach lemma, Γi+1 is

defined and

‖Γi+1‖ � ‖Γi‖
1 − bi

= f (bi )‖Γi‖.

(II) By Taylor’s formula and (2) it follows, as for (10), that

‖F(xi+1)‖ =
∥∥∥∥

∫ 1

0
[F ′(xi + t (xi+1 − xi )) − F ′(xi )](xi+1 − xi ) dt

∥∥∥∥
�

( ∫ 1

0
ω(t‖xi+1 − xi‖) dt

)
‖xi+1 − xi‖ � Hω(ai )ai .

Therefore

‖xi+2 − xi+1‖ � f (bi )‖Γi‖Hω(ai )ai � Hbi f (bi )ai = ti ai = ai+1.

(III) The inequality
‖Γi+1‖ω(ai+1) � bi+1
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follows immediately.
(IV)

‖xi+2 − x0‖ � ‖xi+2 − xi+1‖ + ‖xi+1 − x0‖ � ai+1 +
i∑

j=0

a j = a0

(
1 +

i∑
j=0

( j∏
k=0

t j

))

({tn} ↘)
< a0

(
1 +

i∑
j=0

t j+1
0

)
= 1 − t i+2

0

1 − t0
a0 <

a0

1 − t0
= R.

In consequence, xi+2 ∈ B(x0, R) ⊆ Ω . This completes the induction.
Secondly, we prove that (2) is a Cauchy sequence. To do this, we have, for m � 1 and

n � 1,

‖xn+m − xn‖ � ‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖ + · · · + ‖xn+1 − xn‖
(II)
�

n+m−1∑
i=n

ai � a0tn
0

1 − tm
0

1 − t0
.

Thus (2) is a Cauchy sequence.
Thirdly, we show that x∗ is a solution of (1). As ‖Γn F(xn)‖ → 0 when n → ∞, if we

take into account that

‖F(xn)‖ � ‖F ′(xn)‖‖Γn F(xn)‖ = ‖F ′(xn)‖‖xn+1 − xn‖

and {‖F ′(xn)‖} is bounded, since

‖F ′(xn)‖
(C3)
� ‖F ′(x0)‖ + ω(‖xn − x0‖) < ‖F ′(x0)‖ + ω(R),

it follows that ‖F(xn)‖ → 0 when n → ∞. In consequence, we obtain F(x∗) = 0 by the
continuity of F in B(x0, R). �

REMARK 1 If b0 = 1 − h(t0) < 1
1+H , it follows, similarly to the previous theorem, that

Newton’s sequence is convergent.

2.4 Uniqueness of the solution

Now we provide a result about the uniqueness of the solution x∗ of (1).

THEOREM 2.3 Let us suppose that conditions (C1)–(C4) hold. Assume that there exists a
positive root of the equation

2βω(R + r)

∫ 1

1/2
h(t) dt = 1. (13)

Then, the solution x∗ of (1) is unique in Ω0 = B(x0, r) ∩ Ω .
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Proof. To prove the uniqueness of solution x∗, we assume that z∗ is another solution of (1)
in Ω0 = B(x0, r) ∩ Ω . Then, from the approximation

0 = Γ0[F(z∗) − F(x∗)] =
[ ∫ 1

0
Γ0 F ′(x∗ + t (z∗ − x∗)) dt

]
(z∗ − x∗) = P(z∗ − x∗),

we have to prove that the operator P = ∫ 1
0 Γ0 F ′(x∗ + t (z∗ − x∗)) dt is invertible; then

z∗ = x∗. By the Banach lemma, we only have to note that ‖I − P‖ < 1. Indeed,

‖I − P‖ � ‖Γ0‖
∫ 1

0
‖F ′(x∗ + t (z∗ − x∗)) − F ′(x0)‖ dt

� β

∫ 1

0
ω(‖x0 − x∗ − t (z∗ − x∗)‖) dt

� β

∫ 1

0
ω(‖(1 − t)(x0 − x∗) − t (z∗ − x0)‖) dt

� β

∫ 1

0
ω((1 − t)‖x∗ − x0‖ + t‖z∗ − x0‖) dt

� β

∫ 1/2

0
ω((1 − t)(‖x∗ − x0‖ + ‖z∗ − x0‖)) dt

+ β

∫ 1

1/2
ω(t (‖x∗ − x0‖ + ‖z∗ − x0‖)) dt

< β

∫ 1/2

0
h(1 − t)ω(R + r) dt + β

∫ 1

1/2
h(t)ω(R + r) dt

= 2βω(R + r)

∫ 1

1/2
h(t) dt = 1. (14)

This completes the proof. �

Observe that the previous r , which satisfies (13), exists if

ω(R) <
1

2β
∫ 1

1/2 h(t) dt
,

since ω is a non-decreasing function. Moreover, r is unique. If this condition is not satisfied,
r does not exist.

From (14), it is easy to see that the uniqueness of the solution is guaranteed in B(x0, R)

if ω(R) = 1/β.

3. Application to a nonlinear integral equation of Hammerstein type

An interesting possibility arising from the study of the convergence of iterative methods for
solving equations is to obtain results of existence and uniqueness of solutions for different
types of equations. In this section, we provide some results of this type for a nonlinear
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Hammerstein integral equation of the second kind (Polyanin & Manzhirov, 1998):

x(s) = l(s) +
∫ b

a
G(s, t)Φ(t, x(t)) dt, s ∈ [a, b],

for x ∈ C[a, b], where G(s, t) is the kernel of a linear integral operator in C[a, b] and
Φ(t, u) is a continuous function for t ∈ [a, b] and −∞ < u < +∞.

In this study, we consider

x(s) = l(s) +
∫ b

a
G(s, t)[x(t)1+p + λx(t)2] dt, p ∈ [0, 1], λ ∈ R, (15)

where l is a continuous function such that l(s) > 0, s ∈ [a, b], and the kernel G is
continuous and non-negative in [a, b] × [a, b].

Note that if G(s, t) is the Green function (Stakgold, 1998)

G(s, t) =




(b − s)(t − a)

b − a
, t � s,

(s − a)(b − t)

b − a
, s � t,

(16)

equation (15) is equivalent to the following boundary value problem:{
x ′′ = −x1+p − λx2

x(a) = υ(a), x(b) = υ(b).

3.1 Existence and uniqueness of the solution of (15)

Observe that solving (15) is equivalent to solving (1), where

F : Ω ⊆ C[a, b] → C[a, b], Ω = {x ∈ C[a, b]; x(s) > 0, s ∈ [a, b]}, (17)

[F(x)](s) = x(s) − l(s) −
∫ b

a
G(s, t)[x(t)1+p + λx(t)2] dt, p ∈ [0, 1], λ ∈ R.

(18)

We apply the study of the last section to obtain different results on the existence and
uniqueness of solutions of (15).

We start by calculating the parameters β and η that appear in the study. Firstly, we have

[F ′(x)y](s) = y(s) −
∫ b

a
G(s, t)[(1 + p)x(t)p + 2λx(t)]y(t) dt .

Moreover, for fixed x0(s), we have

‖I − F ′(x0)‖ � ((1 + p)‖x p
0 ‖ + 2|λ|‖x0‖)M,

where the max-norm is considered and M = max[a,b]

∫ b

a
|G(s, t)| dt . By the Banach lemma,

if ((1 + p)‖x p
0 ‖ + 2|λ|‖x0‖)M < 1, we obtain

‖Γ0‖ � 1

1 − ((1 + p)‖x p
0 ‖ + 2|λ|‖x0‖)M

.
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From the definition of the operator F , we have ‖F(x0)‖ � ‖x0−l‖+(‖x1+p
0 ‖+|λ|‖x2

0‖)M ,
and therefore

‖Γ0 F(x0)‖ �
‖x0 − l‖ + (‖x1+p

0 ‖ + |λ|‖x2
0‖)M

1 − ((1 + p)‖x p
0 ‖ + 2|λ|‖x0‖)M

.

On the other hand,

[(F ′(x) − F ′(y))z](s) = −
∫ b

a
G(s, t)[(1 + p)(x(t)p − y(t)p) + 2λ(x(t) − y(t))]z(t) dt,

and consequently, ‖F ′(x) − F ′(y)‖ � ω(‖x − y‖), where

ω(z) = ((1 + p)z p + 2|λ|z)M . (19)

Moreover, ω(t z) � h(t)ω(z), where h(t) = t p, and H = ∫ 1
0 h(t) dt = 1

1+p .
Once the parameters β and η are calculated and the function ω is known, we can

establish the following result on the existence of the solution for (15) from Theorem 2.2.

THEOREM 3.1 Let F be the operator defined in (17) and (18) and x0 ∈ Ω a point such
that ((1 + p)‖x p

0 ‖ + 2|λ|‖x0‖)M < 1. If b0 = βω(η) < m, where ω is given by (19)

and m by (12), p ∈ [0, 1], and B(x0, R) ⊆ Ω , where R = (1+p)(1−b0)
(1+p)−(2+p)b0

η, then a solution

of (15) exists at least in B(x0, R). Moreover, this solution is unique in Ω0 = B(x0, r) ∩ Ω ,
where r is the positive root of

2βω(R + r)(21+p − 1) = (1 + p)21+p.

Observe that Newton’s sequence is also convergent if b0 = 1 − t p
0 <

1+p
2+p ; see

Remark 1.
Note also that the bound given for F(x0) can be improved when the kernel G and the

function l are fixed.

3.2 Example

If we consider the following particular case of (15):

x(s) = 1 +
∫ 1

0
G(s, t)[1 + x(t)]x(t) dt, (20)

where G(s, t) is Green’s function defined by (16) and choose x0(s) = 1 for Theorem 3.1,
we have

β = 2, η = 1/2, ω(z) = z/4 and h(t) = t .

Thus, b0 = βω(η) = 1/4 � m = 2/3, and the hypotheses of Theorem 3.1 are verified.
Then (20) has a solution x∗ in {u ∈ C[0, 1]; ‖u − 1‖ � 3/5} and it is unique in
{u ∈ C[0, 1]; ‖u − 1‖ < 31/15} ∩ Ω .
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4. A particular case

We now consider the particular case in which F ′ is (K , p)-Hölder continuous, namely F ′
verifies (3).

A semilocal convergence result is given under condition (3) for the Newton method.
Domains of existence and uniqueness for the solution x∗ of (1) are also provided.
Moreover, we study the R-order of convergence (Potra & Pták, 1984) of Newton’s iteration
under condition (3) and a priori error bounds are obtained.

Rokne is one of the authors that analysed the semilocal convergence of the Newton
method for operators F such that F ′ satisfies condition (3), see Rokne (1972). But he
obtains neither the domain of uniqueness of solutions nor the R-order of convergence. We
see that we can improve the a priori error bounds given in Rokne (1972) by the technique
presented here.

Keller (1992) also obtained a semilocal convergence result for the Newton process
under condition (3), but did not arrive at the R-order of convergence and the uniqueness
domain of the solution x∗ of (1). We compare Keller’s result and the one presented here. We
see that the assumptions required in this paper are milder than Keller’s for certain values
of p ∈ [0, 1].

Finally, we apply our semilocal convergence result to a nonlinear Hammerstein integral
equation of the second kind (Polyanin & Manzhirov, 1998), and obtain a result on the
existence and uniqueness of solutions for this type of equation. The solution of a particular
Hammerstein integral equation is then approximated by a discretization process.

4.1 Semilocal convergence results

Obviously, if ω(z) = K z (K = constant), F ′ is Lipschitz continuous, and if ω(z) = K z p

(K = constant and p ∈ [0, 1]), F ′ is (K , p)-Hölder continuous. In the first case,
the conditions required in Theorem 2.2 reduce to the ones appearing in the Newton–
Kantorovich theorem.

COROLLARY 4.1 Let X and Y be two Banach spaces and F : Ω ⊆ X → Y a once Fréchet
differentiable operator in an open convex domain Ω . We suppose that Γ0 = F ′(x0)

−1 ∈
L(Y, X) exists for some x0 ∈ Ω . Suppose, in addition, that

(a) ‖Γ0‖ � β,
(b) ‖x1 − x0‖ = ‖Γ0 F(x0)‖ � η,
(c) ‖F ′(x) − F ′(y)‖ � K‖x − y‖, x, y ∈ Ω , K � 0.

Then, provided b0 = βω(η) = βKη � 1/2 and B(x0, R) ⊆ Ω , where R = 2(1−b0)
2−3b0

η,
equation (1) has a solution x∗ and Newton’s process converges to this solution, the solution
x∗ and the iterates xn belong to B(x0, R).

REMARK 2 Notice that the solution x∗ is unique in Ω0 = B(x0, r) ∩ Ω , where r =
6b2

0−18b0+8
3b0(2−3b0)

η. See Theorem 2.3.

REMARK 3 In addition, inequalities (I)–(III) appearing in the proof of Theorem 2.2 are
reduced to equalities for the polynomial

F(x) = K

2
x2 − x

β
+ η

β
,
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so that (I)–(III) are optimal for it, namely (I)–(III) can be written with equalities. Taking
this into account, we can improve the a priori error bounds given by other authors. Observe
that this polynomial is just the one used to construct the majorizing sequences in the usual
study of the convergence of Newton’s method, see Kantorovich & Akilov (1982).

If we now consider ω(z) = K z p, p ∈ [0, 1], Theorem 2.2 reduces to the following
result when p ∈ (0, 1].
COROLLARY 4.2 Let X and Y be two Banach spaces and F : Ω ⊆ X → Y a once Fréchet
differentiable operator in an open convex domain Ω . We suppose that Γ0 = F ′(x0)

−1 ∈
L(Y, X) exists for some x0 ∈ Ω . Suppose, in addition, that

(a) ‖Γ0‖ � β,
(b) ‖x1 − x0‖ = ‖Γ0 F(x0)‖ � η,
(c) ‖F ′(x) − F ′(y)‖ � K‖x − y‖p, x, y ∈ Ω , K � 0, p ∈ (0, 1].

Then, provided b0 = βω(η) = βKηp ∈ (0, τ ], where τ is the unique zero of the function

φ(x) = (1 + p)p(1 − x)1+p − x p, p ∈ (0, 1], (21)

in the interval (0, 1/2], p ∈ (0, 1] and B(x0, R) ⊆ Ω , where R = (1+p)(1−b0)
(1+p)−(2+p)b0

η, the
sequence (2), starting at x0, converges to a solution x∗ of (1), and the solution x∗ and the
iterates xn belong to B(x0, R).

REMARK 4 Note, see Theorem 2.3, that the solution x∗ is unique in Ω0 = B(x0, r) ∩ Ω ,
where

r =
(

1 + p

2βK (1 − 2−(1+p))

)1/p

− R. (22)

REMARK 5 Observe that in the previous corollary we have not included the value p = 0
in condition (c). For this value, condition (c) is reduced to

‖F ′(x) − F ′(y)‖ � K , x, y ∈ Ω , K � 0,

and the semilocal convergence result for (2) is now:

Let X and Y be two Banach spaces and F : Ω ⊆ X → Y a Fréchet
differentiable operator in an open convex domain Ω . It is supposed that
F ′(x0)

−1 ∈ L(Y, X) exists for some x0 ∈ Ω and the conditions

(a) ‖Γ0‖ � β,
(b) ‖x1 − x0‖ = ‖Γ0 F(x0)‖ � η,
(c) ‖F ′(x) − F ′(y)‖ � K , x, y ∈ Ω , K � 0

hold. If b0 = βK ∈ (0, 1/2) and B(x0, R) ⊆ Ω with R = 1−b0
1−2b0

η, the
Newton sequence converges, starting at x0, to a solution x∗ of (1). Moreover,
x∗ and xn belong to B(x0, R).



198 J. A. EZQUERRO AND M. A. HERNÁNDEZ

REMARK 6 We compare the assumptions required for the convergence of the Newton
iteration in Corollary 4.2 and the ones appearing in Theorem 4 of Keller (1992).

Under the same general conditions (a)–(c) appearing in Corollary 4.2, Keller’s
Theorem 4 requires that

b0 � 1

2 + p

(
p

1 + p

)p

,

and in Corollary 4.2,

b0 � τ,

where τ is the unique zero of function (21) in (0, 1/2]. Note that the former condition for
b0 is more restrictive than the latter one if p ∈ (0·2856 . . . , 1], since

1

2 + p

(
p

1 + p

)p

< τ .

In consequence, the chances of finding starting points in the application of Newton’s
iteration for operators with (K , p)-Hölder continuous first Fréchet derivative and p ∈
(0·2856 . . . , 1], are greater if Corollary 4.2 is applied.

4.2 Error estimates and R-order of convergence

In the following, we obtain a priori error bounds for the Newton method when it converges
to a solution x∗ of (1). For that, we use some properties of the sequence {bn} that are
provided in the following lemma.

LEMMA 4.3 Let f be the scalar function defined in (8). If b0 ∈ (0, τ ), we define γ =
b1/b0, and then

(a) bn < γ (1+p)n−1
bn−1 and bn < γ

(1+p)n−1
p b0, for all n � 2,

(b) bn f (bn) < γ
(1+p)n−1

p b0 f (b0) = γ
(1+p)n

p 1+p
f (b0)

1/p , for all n � 1.

If b0 = τ , then bn f (bn) = b0 f (b0) = 1+p
f (b0)

1/p , for all n � 1.

Proof. Case b0 ∈ (0, τ ). The proof of (a) follows by an induction process. If n = 2, we
have

b2 = h(t1)b1 f (b1) = t p
1 b1 f (b1)

= b1+p
1

(1 + p)p
f (b1)

1+p = (γ b0)
1+p

(1 + p)p
< γ 1+pb1 = γ 2+pb0.

We now suppose that

bn−1 < γ (1+p)n−2
bn−2 < γ

(1+p)n−1−1
p b0.
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Then, by the same reasoning,

bn = h(tn−1)bn−1 f (bn−1) = b1+p
n−1

(1 + p)p
f (bn−1)

1+p

<
(γ (1+p)n−2

bn−2)
1+p

(1 + p)p
f (γ (1+p)n−2

bn−2)
1+p < γ (1+p)n−1

h(tn−2)bn−2

= γ (1+p)n−1
bn−1 < γ (1+p)n−1

γ (1+p)n−2
bn−2 < · · · < γ

(1+p)n−1
p b0.

To prove (b), we observe that

bn f (bn) < γ
(1+p)n−1

p b0 f (γ
(1+p)n−1

p b0)

< γ
(1+p)n−1

p b0 f (b0) = γ
(1+p)n

p
1 + p

f (b0)1/p
, n � 1.

The case b0 = τ follows by analogy. �

The recurrence relations (I)–(IV) given in Theorem 2.2 and property (b) of sequence
{bn} appearing in the previous lemma are used to obtain the following a priori error bounds
and the R-order of convergence.

THEOREM 4.4 Under the same conditions as in Corollary 4.2, we have the following
a priori error estimates:

‖x∗ − xn‖ � (γ
(1+p)n−1

p2 )
∆n

1 − γ
(1+p)n

p ∆
η, n � 0, (23)

where γ = b1/b0 and ∆ = (1 − b0)
1/p. Moreover, sequence (2) has R-order of

convergence at least 1 + p if b0 ∈ (0, τ ) or at least one if b0 = τ .

Proof. Taking into account that b0 ∈ (0, τ ), γ = b1/b0 ∈ (0, 1) and ∆ = 1/ f (b0)
1/p, it

follows, for m � 1 and n � 1, that

‖xn+m − xn‖ � a0

n+m−2∑
i=n−1

(
i∏

j=0

t j

)
,

see Theorem 2.2. Since a0 = η and t j = Hb j f (b j ) = b j
1+p f (b j ), for all j � 0, we have

‖xn+m − xn‖ � η

n+m−2∑
i=n−1

(
i∏

j=0

b j

1 + p
f (b j )

)

lemma 4.3 (b)
< η

n+m−2∑
i=n−1

(
i∏

j=0

γ
(1+p) j −1

p
b0

1 + p
f (b0)

)
= η

n+m−2∑
i=n−1

(
i∏

j=0

(γ
(1+p) j

p ∆)

)

= η

n+m−2∑
i=n−1

(γ
(1+p)1+i −1

p2 ∆1+i ) =
m−1∑
i=0

(γ
(1+p)n+i −1

p2 ∆n+i )‖x1 − x0‖.
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By Bernoulli’s inequality, we have

γ
(1+p)n+i −1

p2 = γ
(1+p)n−1

p2 γ
(1+p)n

p2 ((1+p)i −1) � γ
(1+p)n−1

p2 γ
(1+p)n

p i
,

and consequently,

‖xn+m − xn‖ <

(
m−1∑
i=0

(γ
(1+p)n

p i∆i )

)
γ

(1+p)n−1
p2 ∆nη <

1 − (γ
(1+p)n

p ∆)m

1 − γ
(1+p)n

p ∆
γ

(1+p)n−1
p2 ∆nη.

(24)

By letting m → ∞ in (24), we obtain (23).
Now, from (23), it follows that the R-order of convergence of sequence (2) is at least

1 + p, since

‖x∗ − xn‖ � η

γ 1/p2
(1 − γ 1/p∆)

(γ 1/p2
)(1+p)n

, n � 0.

On the other hand, if b0 = τ , we have that bn = b0 = τ , for all n � 0. Following
an analogous procedure to the previous one, we obtain the same results, now taking into
account that γ = 1 and ∆ = b0

1+p f (b0) < 1, except for the R-order of convergence; in
this case, it is at least one. �

REMARK 7 Taking into account that estimates regarding consecutive points are optimal
to measure ‖x∗ − xn‖ (see Remark 3), we look for a element xk (k > n) of the sequence
{xn} such that ‖x∗ − xk‖ is small enough, and ‖x∗ − xn‖ is measured from the distance
between two consecutive points. So,

‖x∗ − xn‖ � ‖x∗ − xn+ j‖ + ‖xn+ j − xn+ j−1‖ + · · · + ‖xn+1 − xn‖, j � 1, n � 1,

and the error given in (23) is then improved.

4.3 Application

We analyse the following particular case of (15):

x(s) = l(s) +
∫ b

a
G(s, t)x(t)1+p dt, p ∈ [0, 1], (25)

where l is a continuous function such that l(s) > 0, s ∈ [a, b], and kernel G is the Green
function (16).

Taking into account that

[F ′(x)y](s) = y(s) − (1 + p)

∫ b

a
G(s, t)x(t)p y(t) dt .

and

[(F ′(x) − F ′(y))z](s) = −(1 + p)

∫ b

a
G(s, t)[x(t)p − y(t)p]z(t) dt,
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it follows that

‖Γ0‖ � 1

1 − (1 + p)M‖x p
0 ‖ ,

‖Γ0 F(x0)‖ �
‖x0 − l‖ + M‖x1+p

0 ‖
1 − (1 + p)M‖x p

0 ‖
if (1 + p)M‖x p

0 ‖ < 1 and

‖F ′(x) − F ′(y)‖ � (1 + p)M‖x − y‖p.

Therefore a result of existence and uniqueness of the solution for (25) is obtained once
the parameters

β = 1

1 − (1 + p)M‖x p
0 ‖ , K = (1 + p)M, η = ‖x0 − l‖ + M‖x1+p

0 ‖
1 − (1 + p)M‖x p

0 ‖
are calculated for Corollary 4.2.

COROLLARY 4.5 Let F be the operator defined in (17) and (18) with λ = 0, and x0 ∈ Ω
a point such that (1 + p)M‖x p

0 ‖ < 1. If b0 = βKηp ∈ (0, τ ], where p ∈ (0, 1] and

τ is the only zero of (21) in (0, 1/2], and B(x0, R) ⊆ Ω , where R = (1+p)(1−b0)
(1+p)−(2+p)b0

η,

then a solution of (25) exists at least in B(x0, R). Moreover, this solution is unique in
Ω0 = B(x0, r) ∩ Ω , where r is defined by (22).

By analogy, if p = 0, a similar result can be given, see Remark 5.
Note that the bound given for F(x0) is improved once the function l is known.

Localization of the solution for a particular case of (25). We now study the following
particular case of (25):

x(s) = 1 +
∫ 1

0
G(s, t)x(t)3/2 dt, (26)

where G(s, t) is Green’s function defined in (16). Our immediate goal is to obtain a result
for the existence and uniqueness of the solution of (26).

If we run the operations undertaken for (25) with l(s) = 1, G(s, t) Green’s function
given by (16), p = 1/2 and [a, b] = [0, 1], we obtain the existence of Γ0 = F ′(x0)

−1,
which is guaranteed by the Banach lemma, since

‖[(I − F ′(x0))y](s)‖ � 3
2

∣∣∣∣
∫ 1

0
G(s, t) dt

∣∣∣∣‖x1/2
0 ‖‖y‖,

and ‖I − F ′(x0)‖ < 1 if ‖x1/2
0 ‖ < 16/3. Moreover

‖Γ0‖ � 16

16 − 3‖x1/2
0 ‖

.
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We also have
‖F(x0)‖ � ‖x0 − 1‖ + 1

8‖x3/2
0 ‖

and
‖F ′(x) − F ′(y)‖ � 3

16‖x − y‖1/2, x, y ∈ Ω .

As a result, taking into account that

β = 16

16 − 3‖x1/2
0 ‖

, K = 3/16, η = 16(‖x0 − 1‖ + 1
8‖x3/2

0 ‖)
16 − 3‖x1/2

0 ‖
,

the following corollary is obtained.

COROLLARY 4.6 With the previous notation, let F : Ω ⊆ C[0, 1] → C[0, 1], where

Ω = {x ∈ C[0, 1]; x(s) > 0, s ∈ [0, 1]},
such that

[F(x)](s) = x(s) − 1 −
∫ 1

0
G(s, t)x(t)3/2 dt .

If x0 ∈ Ω satisfies ‖x1/2
0 ‖ < 16/3, b0 = βKη1/2 � τ = 0·3718 . . . and B(x0, R) ⊆ Ω ,

where R = 3(1−b0)
3−5b0

η, then a solution of (26) exists at least in B(x0, R), and it is unique in
Ω0 = B(x0, r) ∩ Ω , where

r =
(

4

β(1 − 2−3/2)

)2

− R.

EXAMPLE If we now choose x0(s) = 1, the previous result is satisfied and we have

β = 16/13, K = 3/16 and η = 2/13.

Therefore b0 = βKη1/2 = 0·0905 · · · � τ = 0·3718 . . . , and the assumptions of
Corollary 4.2 hold. Then (26) has a solution x∗ in {u ∈ C[0, 1]; ‖u − 1‖ � 0·1647 . . . }
(see Fig. 1) and it is unique in {u ∈ C[0, 1]; ‖u − 1‖ < 25·1108 . . . } ∩ Ω . Notice that this
is an improvement in the domain of existence {u ∈ C[0, 1]; ‖u − 1‖ < 0·1842 . . . } which
Keller would obtain from his Theorem 4.

Error estimates for (26) by Newton’s method. We can also use Theorem 4.4 to obtain the
a priori error bounds (23) for (26), which improve the ones obtained by Rokne’s technique
(Rokne, 1972). See Table 1.

Moreover, taking into account Remark 7, if we consider

‖x∗ − xn‖ � ‖x∗ − xn+1‖ + ‖xn+1 − xn‖, n � 1,

we obtain better bounds than by (23), see Table 2.
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FIG. 1. Approximated solution of equation (26).

TABLE 1 Error bounds ‖x∗−xn‖ for (26)

n Bounds (23) Rokne’s bounds
1 0·010 403 0·010 973 9
2 0·000 192 358 0·000 730 658
3 5·433 61 × 10−7 0·000 048 6482
4 9·003 89 × 10−11 3·239 06 × 10−6

5 2·112 29 × 10−16 2·156 61 × 10−7

TABLE 2 New error
bounds for (26)

n ‖x∗ − xn‖
1 0·010 399 9
2 0·000 179 584
3 4·174 52 × 10−7

4 4·698 19 × 10−11

5 5·611 15 × 10−17

An arithmetic model to approximate the solution of (26). Finally, we discretize (26) to
transform it into a finite-dimensional problem and we apply (2) to obtain an approximated
solution. This procedure consists of approximating the integral appearing in (26) by a
numerical quadrature formula. To obtain a numerical solution, we use the Gauss–Legendre
formula to approximate an integral∫ 1

0
v(t) dt �

m∑
i=1

wiv(ti ),

where the nodes ti and the weights wi are determined; in particular, see Table 3 for m = 8.
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TABLE 3 Nodes and weights for the Gauss–Legendre
formula

i ti wi i ti wi
1 0·019 855 0·050 614 5 0·591 717 0·181 342
2 0·101 667 0·111 191 6 0·762 766 0·156 853
3 0·237 234 0·156 853 7 0·898 333 0·111 191
4 0·408 283 0·181 342 8 0·980 145 0·050 614

If we denote the approximation of x(t j ) by x j ( j = 1, 2, . . . , m), (26) is now equivalent
to the following nonlinear system of equations:

x j = 1 +
m∑

k=1

α jk x3/2
k , j = 1, 2, . . . , m, (27)

where

α jk =
{

wk tk(1 − t j ) if k � j,

wk t j (1 − tk) if k < j .
(28)

System (27) can be written in the form

x = 1 + Ax3/2, (F(x) ≡ x − 1 − Ax3/2 = 0),

where

x = (x1, x2, . . . , xm)T , 1 = (1, 1, . . . , 1)T ,

A = (α jk)
m
j,k=1, x3/2 = (x3/2

1 , x3/2
2 , . . . , x3/2

m )T .

Moreover,
F ′(x) = I − 3

2 A · diag{x1/2
1 , x1/2

2 , . . . , x1/2
m }.

Starting at x (0), the iterations of Newton’s method are calculated as follows:

(1) solve: F ′(x (k))y(k) = −F(x (k));
(2) define: x (k+1) = y(k) + x (k).

For m = 8 and taking into account that we have previously considered the starting
function x0(s) = 1, we now choose the vector x (0) = (1, 1, . . . , 1)T as the initial iterate.
We then obtain the numerical solution appearing in Table 4.

We now interpolate the points of Table 4. Taking into account that the solution of (26)
satisfies x(0) = 1 = x(1), an approximation x I of the numerical solution is obtained, see
Fig. 1. Notice that the interpolated approximation x I lies within the existence domain of
the solutions obtained in Corollary 4.6.
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TABLE 4 Numerical solu-
tion of (26)

i xi i xi
1 1·011 48 5 1·147 81
2 1·054 58 6 1·109 66
3 1·109 66 7 1·054 58
4 1·147 81 8 1·011 48
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