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Generalized differentiability conditions for Newton’s method
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The use of majorizing sequences is the usual way to prove the convergence of Newton’s
method. An alternative technique to majorizing sequences is provided in this paper, in
which three scalar sequences are used, so that the analysis of convergence is simplified
when the traditional convergence condition is relaxed. An application to a nonlinear
integral equation is also given, which is also solved and the solution approximated by a
discretization process.
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1. Introduction

One of the more common problems in mathematics is the solution of a nonlinear equation
F(x) =0, ey

where F is some nonlinear operator in a Banach space X. This problem is not always
easy to solve. Frequently, we cannot obtain an exact solution to the previous equation, so
we look for an approximation to a solution. In this case, we use approximation methods,
which are generally iterative ones. The best known iteration to solve nonlinear equations
is the Newton method:

Xna1 = Xp — F'(x2) 'F(x,), n >0, givenxo, 2

provided that F’ (x,) " exists for all n > 0.

For further reference, we recall some notations. Let X, ¥ be Banach spaces and
F:C X — Y a nonlinear once Fréchet differentiable operator in an open convex
domain 2. Let xo € £2 and suppose that F'(xo)~! € L(Y, X) exists at some xo € 2,
where L(Y, X) is the set of bounded linear operators from Y into X.

Most authors have studied the convergence of (2) to a solution x* of (1) under the
original conditions of Kantorovich (see Argyros, 1992; Argyros & Szidarovszky, 1993;
Kantorovich & Akilov, 1982), where it is supposed that the second Fréchet derivative F” is
continuous and bounded in {2 or that the first Fréchet derivative F’ is Lipschitz continuous
in £2.
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Other authors (Argyros, 1992; Keller, 1992; Rokne, 1972) also consider a generaliza-
tion of these conditons, which is given by

IF'(x) = F'WIl < Kllx = yIIP, x,ye, K=0, pel0Il] 3

Observe that if p = 1in (3), F’ is Lipschitz continuous.
In Argyros (1990), for equations defined by differentiable operators, is considered a
generalization of condition (3), that is given by

IF'(x) = FWI < olllx =y, x,y € £, “

where w : Ry — R is a continuous and non-decreasing function such that w(0) > 0.
Obviously, if w(z) = Kz (K = constant), F' is Lipschitz continuous, and if w(z) = Kz”
(K = constant and p € [0, 1]), F' is (K, p)-Holder continuous. This uses real majorizing
sequences, although these sequences are not the usual ones. In this paper, the difficulty in
using majorizing sequences to prove the convergence of Newton’s method, when we want
to relax the required conditions to F’, is laid out.

We provide an alternative technique to majorizing sequences, in which particular real
sequences are also constructed, but they are not majorizing ones. The application of
this technique is very simple as we can see when the semilocal convergence result is
obtained under condition (4). We also obtain the domains of existence and uniqueness
of the solution. Moreover, we can generalize the result obtained in Newton—Kantorovich
type conditions (Kantorovich & Akilov, 1982). With this technique we improve the results
obtained by majorizing sequences when F’ satisfies condition (3), see Keller (1992) and
Rokne (1972). The convergence conditions are relaxed for specific values of the parameter
p, and we establish a result on the uniqueness of the solution, which is not given in Keller
(1992) and Rokne (1972). A result about the R-order of convergence of Newton’s method
is also obtained and some sharp a priori error estimates are provided.

Finally, we apply our semilocal convergence results to nonlinear Hammerstein integral
equations of the second kind (Polyanin & Manzhirov, 1998), and obtain a result on the
existence and uniqueness of solutions for this type of equation. Solutions of particular
Hammerstein integral equations are then approximated by a discretization process.

Throughout the paper we denote

Bx,r)={ye X;lly—xI<r} and B(x,r)={ye X;|y—x| <r}.

2. Semilocal convergence of Newton’s method

Under certain conditions for the pair (F, xp), we study the convergence of the Newton
method to a unique solution of (1). From some real parameters, a system of three recurrence
relations is constructed in which three sequences of positive real numbers are involved. The
convergence of Newton’s sequence (2) is then guaranteed from it.

2.1 Recurrence relations

We suppose that Iy = F'(x0)~! € L(Y, X) exists for some xq € £2. We also assume the
following:
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(C) ol < B,

(C2) lx1 = xoll = [{oF (x0)|l < m,

(C3) |1F'(x) = FO)I < o(lx —yl),x,y € 2, where w : R, — R, is a continuous
and non-decreasing function such that w (0) > 0,

(C4) a continuous and non-decreasing function 4 : [0, 1] — Ry exists, such that
w(tz) < h(t)w(z), witht € [0, 1] and z € [0, 00).

Note that condition (C4) does not involve any restriction, since h always exists, such

that 4(t) = 1, as a consequence of w being a non-decreasing function. We can even
consider h(t) = sup,. ";)((" ZZ)). We use it to sharpen the bounds that we obtain for particular

expressions, as we will see later.
We now denote ag = 1, bg = Bw(ap) and define the following scalar sequences:

th = Hby f(by), n =0, (5
ap =ty_1ay—1, n=1, (6)
b, = h(tn—l)bn—lf(bn—l)a n=l, @)
where H = fol h(t)dt and
1
fx) = T—+ 3
— X

Observe that we consider the case by > 0, since if by = 0, a trivial problem results, as
the solution of (1) is xg.
Next, we see the following recurrence relations that sequences (2), (6) and (7) verify:

Iy = 1 F )™M < £ o)l Toll, )
lx2 — x1]| < a1, (10
I lw(ar) < br. (11)

To do this, we assume that
x1 €8 and by < 1.

As I exists, by the Banach lemma, we have that I'| is defined and

1ol

< f@o)lTol.
— oo S Sl

I <
I <

since
11 — ToF' (eIl < I TollIlF'(x0) — F'(x) || < Bw(ag) = by < 1.

From Taylor’s formula and (2), it follows that

1
F(x1) =/0 [F'(x0 + 1 (x1 — x0)) — F'(x0)1(x1 — x0) dt,

and consequently,

1
IFxD)l = (/0 w(tap) dt)llxl —xoll < Hw(ao)|lx1 — xoll.
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Thus

lxo —xill = I F GO < IHTF G < Hbo f (bo)llx1 — xoll < foao = ai
and

11 llw(ar) < f o)l Tollw(toar) < f(bo)Bh(to)w(ao) = h(to)bo f(bo) = by.

In Theorem 2.2 we will generalize (9)—(11) to every point of sequence (2) and we will
show that (2) is a Cauchy sequence. To this purpose we first investigate the scalar sequences
{t»}, {a,} and {b,} at the beginning of the following section.

2.2 Analysis of the scalar sequences {t,}, {a,} and {b,}

The next goal is to analyse the real sequences (5)—(7) so that the convergence of
sequence (2) is guaranteed. To do this, it suffices to see that x,+; € (2 and b, < 1,
for all n > 1. Next, we generalize the previous recurrence relations, so that we will be able
to prove that (2) is a Cauchy sequence. First, we give a technical lemma.

LEMMA 2.1 Let f be the scalar function defined in (8). If b9 < m, where

1

and H = [, h(t)dt, then

(a) sequences {t,}, {a,} and {b,} are strictly decreasing,
() t, <land b, < 1,foralln > 0.

Iftbo=1-h(t) < ﬁ,thentn =ty < land b, =by < 1,foralln > 1.

Proof. Firstly, we consider the case by < m, where m is defined in (12). Item (a) is proved
by mathematical induction on n. As bg < 1 — h(#p), then by < bg and #; < fp, since f is
increasing. Moreover, a; < ag as a consequence of fyp < 1 and by < m. Next, we suppose
that b; < bj_1,t; <ti_1anda; < a;j_1,foralli =1,2,...,n. Thus

bn-i—l = h(tw)by f(by) < h(t0)bn f(bo) < by,
tay1 = Hb, f(by) < Hby_1 f(by—1) =1y,

ap41 = hay < toa, < ap,

since f and h are increasing in [0, 1). Consequently, the sequences {t,}, {a,} and {b,} are
strictly decreasing.

Secondly, to see (b), we have t, < o < 1 and b, < by < 1, forall n > 0, by (a) and
by < m.

Finally, if bg = 1 — h(t), it follows that i (7y) f (bo) = 1, and therefore, b, = by =
1 — h(tg) < 1, for all n > 0. Moreover, if bg < ﬁ, then we have t, = 1y < 1, for all
n > 0. O
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2.3 A semilocal convergence result

We are now ready to prove a semilocal convergence theorem for Newton’s method when it
is applied to operators that satisfy conditions (C1)—(Cy).

THEOREM 2.2 Let X and Y be two Banach spaces and F : {2 C X — Y a once Fréchet
differentiable operator in an open convex domain 2. We suppose that Iy = F’ xo)~ ! e
L(Y, X) exists for some xg € {2 and conditions (C1)—(C4) hold. If by = Bw(n) < m, where

m is defined in (12), and B(xg, R) C {2, where R = 1“_—‘;0 then sequence (2), starting from
Xo, converges to a solution x* of (1), the solution x* and the iterates x, belong to B(xg, R).

Proof. Firstly, we prove the following items for sequence (2) andn > 1:

(D) I exists and || ]| = 1 F' (o) ™| < fBp—D I Tpt Il
D Nlxpg1 — xall < an,
WD ([ llw(an) < by,
AV) xp41 € 0.

Notice that x| € {2, since n < R. Then, from (9)-(11) and
llx2 — xoll < llx2 — X1l + lIx1 — xoll < a1 + ao,

it follows that (I)-(IV) hold for n = 1. If we now suppose that (I)—(IV) are true for some
n=1,2,...,i we see that (I)-(IV) also hold for n = i + 1. We take into account that
ti <land b; < 1,foralli > 0.

(I) Observe

11 — I F (i) < I o lxipr — xil) < fbi—) i1l (a;)
= fhi—DIi-1llo(ti—rai—1) < fhi—DIi—1llh(ti—Dw(ai-1)
<h(ti—Dbi—1 f(bi1) =b; < 1,

since {b,} is decreasing, by < ﬁ and t;_1 < 1. Then, by the Banach lemma, [} is
defined and I
1Tl < —— = fFBHILI.
1—b;

(IT) By Taylor’s formula and (2) it follows, as for (10), that

1
IF i)l = H /0 [F'(xi +t(xit1 — x)) — F'(x)](xj41 — x;) dt

1
< (/ @ (| xi+1 —xl-ll)dt>||xz'+1 —xill < Ho(a)a;.
0

Therefore
lxiv2 — xip1ll < fFO)Ni N Hw(aj)a; < Hb; f(bi)a; =tia; = a;j11.

(IIT) The inequality
I Fis1llw(aivr) < biv



192 J. A. EZQUERRO AND M. A. HERNANDEZ

follows immediately.
V)

i i,
IXi+2 — xoll < lIxit2 — Xit1ll + lIxXi41 — Xoll < a@i+1 + Zaj = ao (1 + Z (H fj))
j=0 j=0

k=0
) ) Lo 11— ao
1 t! = =R
< ao(—i-goo ) = a0<1—t0

In consequence, x; 2 € B(xg, R) C (2. This completes the induction.
Secondly, we prove that (2) is a Cauchy sequence. To do this, we have, for m > 1 and
n>=l1,

lxn+m — Xnll < 1Xntm — Xntm—1 1l + 1 Xntm—1 — Xptm—2ll + -+ + 1 Xn41 — Xl
m ntm—1 _m
(<) o 1 1y
X a; < apk,

i=n

Thus (2) is a Cauchy sequence.
Thirdly, we show that x* is a solution of (1). As || I}, F(x,)|| = 0 when n — oo, if we
take into account that

IF e ll < IF" ) 10 F G Il = I1F" ) 1l Xn+1 — Xl

and {|| F’(x,)||} is bounded, since

(C3)
IF" Cen) < IF'(xo) |l + @ (llxn — x0ll) < [I1F'(x0) || + @ (R),

it follows that || F (x,,)|| — O when n — oo. In consequence, we obtain F(x*) = 0 by the
continuity of F in B(xg, R). O

REMARK 1 If by = 1 — h(f9) < 13 it follows, similarly to the previous theorem, that
Newton’s sequence is convergent.

2.4 Uniqueness of the solution

Now we provide a result about the uniqueness of the solution x* of (1).

THEOREM 2.3 Let us suppose that conditions (C1)—(Cy4) hold. Assume that there exists a
positive root of the equation

1
2Bw(R +r)/ h(t)dt = 1. (13)
1/2

Then, the solution x* of (1) is unique in 2y = B(xg, r) N {2.
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Proof. To prove the uniqueness of solution x*, we assume that z* is another solution of (1)
in {2y = B(xg, r) N §2. Then, from the approximation

1
0= Io[F(z") — F(x")] = [/ LoF' (x" +1(2" — x*))dt] (" —x") = P@* —x%),
0

we have to prove that the operator P = fol IOF (x* + t(z* — x*)) dt is invertible; then
7* = x*. By the Banach lemma, we only have to note that ||/ — P|| < 1. Indeed,

1
I = Pl < I T0] fo IF/ (4 1(2% = x) — F'(xo) ] d
1
<ﬂ/0 (o — x* — 1(z* — x| dr
1
<ﬁ/0 (1 = 1)(x0 = ¥ — 12" — x0)) dr
1
<ﬂf0 (1 = )" = xoll + 1112 — xol) dr
12
< /3/0 (1 = D(Ix* = xoll + 1* = xol)) di
1
+ ﬁf (3" = xoll + 1% — xol) di
1/2
12 1
<,8/ h(l—t)a)(R+r)dt+ﬂf h()w (R + r) dt
0 12
1
:2,8a)(R+r)f h(r)de = 1. (14)
12

This completes the proof. 0

Observe that the previous r, which satisfies (13), exists if

o(R) < ——————,
28 [}, h(t) de

since w is a non-decreasing function. Moreover, r is unique. If this condition is not satisfied,
r does not exist.
From (14), it is easy to see that the uniqueness of the solution is guaranteed in B(xp, R)

if w(R) = 1/B.

3. Application to a nonlinear integral equation of Hammerstein type

An interesting possibility arising from the study of the convergence of iterative methods for
solving equations is to obtain results of existence and uniqueness of solutions for different
types of equations. In this section, we provide some results of this type for a nonlinear
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Hammerstein integral equation of the second kind (Polyanin & Manzhirov, 1998):

b
x(s) =1(s) +/ G(s,t)®(t,x(t))ds, s €]a,b],

for x € Cla, b], where G(s, t) is the kernel of a linear integral operator in C[a, b] and
@(t, u) is a continuous function for ¢ € [a, b] and —0c0 < u < +o00.
In this study, we consider

b
x(s) =1(s) +/ G (s, t)[x(t)1+p + Ax(t)z]dt, pel0,1], ireR, (15)
a
where [ is a continuous function such that I(s) > 0, s € [a, b], and the kernel G is

continuous and non-negative in [a, b] X [a, b].
Note that if G (s, t) is the Green function (Stakgold, 1998)

(b—bs)ﬂ, <,
Gon =1 _ a)_(zf— ) (16)
b—a ’ =
equation (15) is equivalent to the following boundary value problem:
x" = —x!tP — )x2
{x(a) =uv(a), x(b) = v(b).
3.1 Existence and uniqueness of the solution of (15)
Observe that solving (15) is equivalent to solving (1), where
F:0CCla,b] - Cla,b], §2={xeCla,b]; x(s) >0, s € [a, b]}, a7

b
[F(x)](s) = x(s) — I(s) — f G(s, Dx(O'FP +ax()?1dt, pel0,1], reR.
’ (18)

We apply the study of the last section to obtain different results on the existence and
uniqueness of solutions of (15).
We start by calculating the parameters 8 and 7 that appear in the study. Firstly, we have

b
[F'(x)y1(s) = y(s) —/ G(s, Ol + p)x(®)F +22x )]y (1) dr.

Moreover, for fixed xo(s), we have

11 = F'(xo)ll < (1 + p)llag Il + 2[A]llxo ) M,

b
where the max-norm is considered and M = r[na}))]c f |G (s, t)| dt. By the Banach lemma,
a, a

if (L4 p)lIx) 1l + 21AlIx0lDM < 1, we obtain
1
1= ((1+ p)xf Il + 212 lxolD M

1ol <
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From the definition of the operator F, we have || F (xp)| < ||xo—l||+(||x01+p||+|A|||x§||)M,
and therefore

1
llxo — Ll + (g 21 + A2 1D M
1= ((1+ p)lIxy Il + 2l llxo ) M

[T0F (xo)ll <

On the other hand,

b
[(F'(x) = F'(y)zl(s) = —/ G(s, D[+ p)(x ()P = y(OF) + 24 (x (1) — y(1))]z(1) dt,

and consequently, | F'(x) — F'(y)|| < w(|lx — y||), where
w(z) = (1 + p)z¥ +2[r|z)M. (19)

Moreover, w(tz) < h(t)w(z), where h(t) = tP,and H = fol h(t)dt = ﬁ.
Once the parameters 8 and n are calculated and the function  is known, we can
establish the following result on the existence of the solution for (15) from Theorem 2.2.

THEOREM 3.1 Let F be the operator defined in (17) and (18) and xg € {2 a point such
that ((1 + p)||xg|| + 2|Alllx0l)M < 1. If by = Bw(n) < m, where w is given by (19)

and m by (12), p € [0, 1], and B(xp, R) C {2, where R = %n, then a solution

of (15) exists at least in B(xg, R). Moreover, this solution is unique in {4 = B(xg, r) N {2,
where r is the positive root of

2B0(R+r)2"FP — 1) = (1 + p)2'*7.

I+p.

3rps See

Observe that Newton’s sequence is also convergent if by =1 — tg <
Remark 1.

Note also that the bound given for F(xg) can be improved when the kernel G and the
function [ are fixed.

3.2 Example

If we consider the following particular case of (15):

1
x(s) = 1 +/ Gs. DI + x (D)) dr, (20)
0

where G (s, t) is Green’s function defined by (16) and choose x¢(s) = 1 for Theorem 3.1,
we have

B=2 n=1/2, w()=z/4 and h(t)=t.

Thus, by = Bw(n) = 1/4 < m = 2/3, and the hypotheses of Theorem 3.1 are verified.
Then (20) has a solution x* in {u € C[0,1]; |lu — 1|| < 3/5} and it is unique in
{ueClO,1]; lu—1| <31/15}N L.
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4. A particular case

We now consider the particular case in which F’ is (K, p)-Hélder continuous, namely F’
verifies (3).

A semilocal convergence result is given under condition (3) for the Newton method.
Domains of existence and uniqueness for the solution x* of (1) are also provided.
Moreover, we study the R-order of convergence (Potra & Ptak, 1984) of Newton’s iteration
under condition (3) and a priori error bounds are obtained.

Rokne is one of the authors that analysed the semilocal convergence of the Newton
method for operators F such that F’ satisfies condition (3), see Rokne (1972). But he
obtains neither the domain of uniqueness of solutions nor the R-order of convergence. We
see that we can improve the a priori error bounds given in Rokne (1972) by the technique
presented here.

Keller (1992) also obtained a semilocal convergence result for the Newton process
under condition (3), but did not arrive at the R-order of convergence and the uniqueness
domain of the solution x* of (1). We compare Keller’s result and the one presented here. We
see that the assumptions required in this paper are milder than Keller’s for certain values
of p € [0, 1].

Finally, we apply our semilocal convergence result to a nonlinear Hammerstein integral
equation of the second kind (Polyanin & Manzhirov, 1998), and obtain a result on the
existence and uniqueness of solutions for this type of equation. The solution of a particular
Hammerstein integral equation is then approximated by a discretization process.

4.1 Semilocal convergence results

Obviously, if w(z) = Kz (K = constant), F’ is Lipschitz continuous, and if w(z) = Kz?
(K = constant and p € [0,1]), F’ is (K, p)-Holder continuous. In the first case,
the conditions required in Theorem 2.2 reduce to the ones appearing in the Newton—
Kantorovich theorem.

COROLLARY 4.1 Let X and Y be two Banach spaces and F : {2 € X — Y aonce Fréchet
differentiable operator in an open convex domain 2. We suppose that Iy = F/(xp) ' €
L(Y, X) exists for some xo € {2. Suppose, in addition, that

@) 1ol < B,
(®) llx1 = xoll = [{oF (xo)|l < 0,
© IFFx) - FWI<Klx—yll, x,yef, KZ=0.

Then, provided by = Bw(n) = BKn < 1/2 and B(xo, R) S {2, where R = 251:3[;3)77,
equation (1) has a solution x* and Newton’s process converges to this solution, the solution

x* and the iterates x, belong to B(xg, R).

REMARK 2 Notice that the solution x* is unique in 2y = B(xg,r) N {2, where r =

6b3—18bo+8
0
e@—=3by) See Theorem 2.3.

REMARK 3 In addition, inequalities (I)—(IIT) appearing in the proof of Theorem 2.2 are
reduced to equalities for the polynomial

)Cz—

K
F()C)ZE

n
+ -
B

™| =
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so that (I)—(III) are optimal for it, namely (I)-(III) can be written with equalities. Taking
this into account, we can improve the a priori error bounds given by other authors. Observe
that this polynomial is just the one used to construct the majorizing sequences in the usual
study of the convergence of Newton’s method, see Kantorovich & Akilov (1982).

If we now consider w(z) = Kz, p € [0, 1], Theorem 2.2 reduces to the following
result when p € (0, 1].

COROLLARY 4.2 Let X and Y be two Banach spaces and F : {2 € X — Y aonce Fréchet
differentiable operator in an open convex domain 2. We suppose that Iy = F’(xo)~! €
L(Y, X) exists for some xo € {2. Suppose, in addition, that

(@) |I1oll < B,
(b) llx1 = xoll = [ ToF (xo)|l < m,
© IFF(x)=FWI<Klx=yl?’, x,yef2, K=0 pe(1]

Then, provided by = Bw(n) = BKn? € (0, t], where 7 is the unique zero of the function
px)=1+pPA-x)"*P —xP. pe (1], 2D

. . Y2 Y _ _(+p)d—by)
in the interval (0, 1/2], p € (0, 1] and B(xg, R) C {2, where R = mn, the

sequence (2), starting at xg, converges to a solution x* of (1), and the solution x* and the
iterates x, belong to B(xg, R).

REMARK 4 Note, see Theorem 2.3, that the solution x* is unique in {2y = B(xg, r) N {2,

where

1 1/p

= tp —R. (22)
28K (1 —2-(1+p))

REMARK 5 Observe that in the previous corollary we have not included the value p = 0
in condition (c¢). For this value, condition (c) is reduced to

IF'(x)— F'WI <K, x,yef2, K=>0,
and the semilocal convergence result for (2) is now:

Let X and Y be two Banach spaces and F : 2 € X — Y a Fréchet
differentiable operator in an open convex domain f2. It is supposed that
F'(x0)~! € L(Y, X) exists for some x € {2 and the conditions

@ | oll < B8,
(b) llx1 —xoll = Lo F (xo)|l < 7,
) IFx)— FWI<K, x,yef2, K=>0

hold. If bp = BK € (0,1/2) and B(xg, R) € {2 with R = 11:2bz§)0 n, the
Newton sequence converges, starting at xo, to a solution x* of (1). Moreover,
x* and x, belong to B(xg, R).
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REMARK 6 We compare the assumptions required for the convergence of the Newton
iteration in Corollary 4.2 and the ones appearing in Theorem 4 of Keller (1992).
Under the same general conditions (a)—-(c) appearing in Corollary 4.2, Keller’s

Theorem 4 requires that
1 p
bo < 57— <_p ) ,
24+p\1l+p

by < 1,

and in Corollary 4.2,

where t is the unique zero of function (21) in (0, 1/2]. Note that the former condition for
bo is more restrictive than the latter one if p € (0-2856..., 1], since

— | —) <
24+ p\1+p
In consequence, the chances of finding starting points in the application of Newton’s

iteration for operators with (K, p)-Holder continuous first Fréchet derivative and p €
(0-2856. . ., 1], are greater if Corollary 4.2 is applied.

4.2 Error estimates and R-order of convergence

In the following, we obtain a priori error bounds for the Newton method when it converges
to a solution x* of (1). For that, we use some properties of the sequence {b,} that are
provided in the following lemma.

LEMMA 4.3 Let f be the scalar function defined in (8). If by € (0, t), we define y =
b1 /bg, and then

. (tp)—1
(@) b, < yUtr 'by_1 and b, < y % bo, foralln > 2,

A+p)" -1 "

akp L
®) bufbn) <y 7 bof(bo)=y * TP foralln > 1.

If bg = 7, then b, f(b,)) = bo f (bg) = foralln > 1.

14p
fbo)/p>

Proof. Case by € (0, t). The proof of (a) follows by an induction process. If n = 2, we
have

by = h(t))by f (b1) = 1] by f (b1)

b P e, (o)t
=1  rpHltr =277
A+ pr! @ 1+ p)r

< J/1+pbl — y2+pb0.
We now suppose that

-1
1 n—2 A+p"— -1
by—1 < V( +p) by < 14 P bo.
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Then, by the same reasoning,

1+p

_ 1+
by = h(ta—1)bp—1 f (bp—1) = (1+ )pf( n—1) "

n—2
A S
1+ p)?

n—1
(1+p) by,

n—2 n—1
f(V(1+p) bn—2)1+p < V(1+p) h(th—2)bp_2

(A+p)" 1

(1+p)"_1y(1+17)"_2bn_2 <.--<y P b

=Y -1 <Y

To prove (b), we observe that

(+p)"—1 (+p)"—1
bufby) <y 7 bof(y 7 bo)
(+p)"-1 a+p" 14 p
P by f(by) = —_—, >
<y of(bo) =y TG0 77 n

The case by = t follows by analogy. g

The recurrence relations (I)—(IV) given in Theorem 2.2 and property (b) of sequence
{b,} appearing in the previous lemma are used to obtain the following a priori error bounds
and the R-order of convergence.

THEOREM 4.4 Under the same conditions as in Corollary 4.2, we have the following
a priori error estimates:

(l+p)2"—l A"
[x* —xall < (y 7 )IW’?» n =0, (23)
—y P

where y = bi/bgp and A = (1 — by)'/P. Moreover, sequence (2) has R-order of
convergence at least 1 + p if by € (0, ) or at least one if bg = 7.

Proof. Taking into account that by € (0, 7), ¥ = b1 /by € (0, 1) and A = 1/f(by)'/?, it
follows, form > 1 and n > 1, that

n+m—2 i
X0 +m — xall < ao Z Htj ,
j=0

i=n—1

see Theorem 2.2. Since ap = nand t; = Hb; f(b;) = %f(bj), for all j > 0, we have

n+m—2 i b
J
Pngm —xall <0 Y (H 47 bn)

i=n—1 \j
lemma 4.3 (b) ntm=2 ‘ (1+p) ntm-2 : +p)/
< 2 (I =0 2 ([l 7o
i=n—1 \j=0 i=n—1 \j=0
n+m—2 (1+p)1+i71 (l+p)n+l 1

=n ) o 7 AH= Z(y A = xoll.

i=n—1
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By Bernoulli’s inequality, we have

(+p)" -1 Uep) =L A4p)" (14 )i 1) A+p)"=1  (14p)" .
2 _ 2 2 < 2 i
v r =y ” yr Yy v oro,

and consequently,

a+p"

m—1 n_ n_
A+p)" . . d+p)"-1 1 — (J/ ? A)m (4+p)" -1
IXn4m — xull < ( A ’A’)> y o A< w7 AN
i=0 -y’

(24)

By letting m — oo in (24), we obtain (23).
Now, from (23), it follows that the R-order of convergence of sequence (2) is at least
1+ p, since

n 2 n
Ix* — x|l < )/1/”2(1 L UrA) ()/1/17 )(l+17) )

On the other hand, if by = 7, we have that b, = by = 7, for all n > 0. Following
an analogous procedure to the previous one, we obtain the same results, now taking into

account that y = 1 and A = ﬁ—op f(bg) < 1, except for the R-order of convergence; in

this case, it is at least one. O

REMARK 7 Taking into account that estimates regarding consecutive points are optimal
to measure ||x* — x,| (see Remark 3), we look for a element x; (k > n) of the sequence
{xn} such that ||x* — xi|| is small enough, and ||x* — x,|| is measured from the distance
between two consecutive points. So,

I = xnll < I = X |+ X0t — Xngjtll + -+ I —xall, j 21 n2>1,

and the error given in (23) is then improved.

4.3 Application

We analyse the following particular case of (15):

b
x(s):l(s)—i—/ G(s,Hx(nH'*tPde, pelo, 1], (25)

where [ is a continuous function such that /(s) > 0, s € [a, b], and kernel G is the Green
function (16).
Taking into account that

b
[F'()y1(s) = y(s) — (1 + P)/ G(s, )x ()P y(r) dr.

and

b
[(F'(x) = F'(y))zl(s) = —=(1 + p)/ G(s, Dx(®)? —y®)P1z(1) dt,



GENERALIZED DIFFERENTIABILITY CONDITIONS FOR NEWTON’S METHOD 201

it follows that

1
I Toll < .
1— 1+ pM|xJll
I+p
lxo — LIl + M lxy TPl
I ToF (x0) || < g

1=+ pMx{l
if (14+ p)M|lx}| < 1and
IF'(x) = F'()II < A+ p)M|lx — y||”.

Therefore a result of existence and uniqueness of the solution for (25) is obtained once
the parameters

1
1 o =1+ Mllxy ™|

B = ., K={0+pM,
L=+ p)Mxgl L=+ p)M|xg |l

are calculated for Corollary 4.2.

COROLLARY 4.5 Let F be the operator defined in (17) and (18) with A = 0, and xg € {?
a point such that (1 + p)M||x6U|| < 1.If bp = BKn? € (0, t], where p € (0, 1] and

T is the only zero of (21) in (0, 1/2], and B(xg, R) € {2, where R = %n,

then a solution of (25) exists at least in B(xp, R). Moreover, this solution is unique in
{2 = B(xp,r) N {2, where r is defined by (22).

By analogy, if p = 0, a similar result can be given, see Remark 5.

Note that the bound given for F (xp) is improved once the function / is known.

Localization of the solution for a particular case of (25). We now study the following
particular case of (25):

1
x(s) =1 +/ G(s, H)x(t)3/* dr, (26)
0

where G (s, t) is Green’s function defined in (16). Our immediate goal is to obtain a result
for the existence and uniqueness of the solution of (26).

If we run the operations undertaken for (25) with I(s) = 1, G(s, t) Green’s function
given by (16), p = 1/2 and [a, b] = [0, 1], we obtain the existence of I = F'(x0)~ L,
which is guaranteed by the Banach lemma, since

1
/ G(s,t)drt
0
1/2

and || — F'(xo)|| < 1if lxy" "Il < 16/3. Moreover

1/2

I = F'(xo)yl)ll < 3 "Iy Il

IToll € ——— 5.
16 — 3)1xy |
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We also have
3/2
I Fxo)ll < llxo — LI + %IIXO/ I

and
IF'(x) — FFO)Il < &lx = yI'2 x,y e .

As aresult, taking into account that

3/2
16 16(]1xo — 1]l + L1271
16 — 3|1, |l 16 — 3|1, |l

the following corollary is obtained.

COROLLARY 4.6 With the previous notation, let F : {2 € C[0, 1] — C[O0, 1], where
2 ={xeC[0,1]; x(s) >0, s € [0, 11},
such that ]
[F()](s) = x(s) — 1 —/ G(s, )x(1)*/? dr.
0

If xo € @ satisfies |lx)/*|l < 16/3, bp = BKn'/> < v = 0:3718... and B(xo, R) < £2,

where R = 3;1—;28%, then a solution of (26) exists at least in B(xg, R), and it is unique in

{20 = B(xp, r) N {2, where
4 2
=(——— ) —r.
' (/3(1 . 2—3/2>>

EXAMPLE If we now choose xo(s) = 1, the previous result is satisfied and we have
B=16/13, K =3/16 and n=2/13.

Therefore by = ,3K771/2 = 0-0905--- < 7 = 0-3718..., and the assumptions of
Corollary 4.2 hold. Then (26) has a solution x* in {u € C[0, 1]; |lu — 1] < 0-1647...}
(see Fig. 1) and it is unique in {u# € C[0, 1]; ||lu — 1] < 25-1108...} N §2. Notice that this
is an improvement in the domain of existence {u € C[0, 1]; |lu — 1]| < 0-1842...} which
Keller would obtain from his Theorem 4.

Error estimates for (26) by Newton’s method. 'We can also use Theorem 4.4 to obtain the
a priori error bounds (23) for (26), which improve the ones obtained by Rokne’s technique
(Rokne, 1972). See Table 1.

Moreover, taking into account Remark 7, if we consider

I = 2nll < X = xpp1 | + X1 —xall, 72> 1,

we obtain better bounds than by (23), see Table 2.
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o+ R =1.1647...

x9g — R =10.8353...

FI1G. 1. Approximated solution of equation (26).

TABLE 1 Error bounds ||x* — xy, | for (26)

Bounds (23) Rokne’s bounds
0-010403 0-0109739
0-000 192358 0-000730 658

5.43361 x 10=7  0-000 048 6482
9.00389 x 10~!11  3.23906 x 10~
2.11229 x 10716 2.15661 x 10~

[ N S e

TABLE 2 New error
bounds for (26)

f[x* — xp|l
0-0103999
0-000 179 584
4.17452 x 1077
4.69819 x 10~ 11
5.61115 x 10717

N AW =S

An arithmetic model to approximate the solution of (26). Finally, we discretize (26) to
transform it into a finite-dimensional problem and we apply (2) to obtain an approximated
solution. This procedure consists of approximating the integral appearing in (26) by a
numerical quadrature formula. To obtain a numerical solution, we use the Gauss—Legendre
formula to approximate an integral

1 m
/ v(t)dt ~ Zwiv(t,-),
0 i=1

where the nodes #; and the weights w; are determined; in particular, see Table 3 for m = 8.
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TABLE 3 Nodes and weights for the Gauss—Legendre

Sformula
i ti w; i 1 wi
1 0019855 0-050614 5 0591717 0-181342
2 0101667 0-111191 6 0762766 0-156 853
3 0237234 0-156853 7 0-898333 0-111191
4 0408283 0-181342 8 0980145 0-050614
If we denote the approximation of x(¢;) by x; (j = 1,2, ..., m), (26) is now equivalent

to the following nonlinear system of equations:
- 3
=1+ Y e’ j=12m, 27)
k=1
where

witk(1 —1t;) ifk < j,
witj(1— 1) ifk < j.

Ajk = (28)

System (27) can be written in the form
x=14+Ax? (Fx)=x—-1-Ax*?=0),
where
x=0nx, . x)’, 1=0,1,..., DT,
A=)l =657 nh

Moreover,
F'(x) =1 —3A-diag(x)%, )/, ... 07,

Starting at x© the iterations of Newton’s method are calculated as follows:

(1) solve: F/(x®)y® = —F(x®);
(2) define: x%**+D = y® 4 x®

For m = 8 and taking into account that we have previously considered the starting
function xo(s) = 1, we now choose the vector x©@ = (1, 1, ..., )T as the initial iterate.
We then obtain the numerical solution appearing in Table 4.

We now interpolate the points of Table 4. Taking into account that the solution of (26)
satisfies x(0) = 1 = x(1), an approximation x! of the numerical solution is obtained, see
Fig. 1. Notice that the interpolated approximation x/ lies within the existence domain of
the solutions obtained in Corollary 4.6.
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TABLE 4 Numerical solu-

tion of (26)

i X; i X;

1 1.01148 5 1.14781

2 1.05458 6 1-10966

3 110966 7 1-05458

4 1-14781 8 1.01148
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