

An International Journal COMPUTERS & mathematics with applications

PERGAMON Computers and Mathematics with Applications 44 (2002) 277-285

www.elsevier.com/locate/camwa

Semilocal Convergence of the Secant Method under Mild Convergence Conditions of Differentiability

M. A. HERNÁNDEZ AND M. J. RUBIO Department of Mathematics and Computation, University of La Rioja C/ Luis de Ulloa s/n, 26004 Logroño, Spain (mahernan)(mjesus.rubio)@dmc.unirioja.es

(Received August 2000; revised and accepted December 2001)

Abstract—In this work, we obtain a semilocal convergence result for the secant method in Banach spaces under mild convergence conditions. We consider a condition for divided differences which generalizes those usual ones, i.e., Lipschitz continuous and Hölder continuous conditions. Also, we obtain a result for uniqueness of solutions. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords-The secant method, Recurrence relations, Boundary value problems.

1. INTRODUCTION

In this paper, we are concerned with the problem of finding conditions for the semilocal convergence of secant method in Banach spaces. Such a problem is clearly important in numerical analysis, since many applied problems reduce to solve a nonlinear operator equation

$$F(x) = 0, \tag{1}$$

with $F: \Omega \subseteq X \to Y$ and Ω a convex open subset of X and X, Y Banach spaces. To apply the secant method, it is necessary to first consider divided differences. Let us denote by $\mathcal{L}(X, Y)$, the space of bounded linear operators from X to Y. Remember that an operator $[x, y; F] \in \mathcal{L}(X, Y)$ is called a divided difference of first order for the operator F on the points x and $y \ (x \neq y)$ if the following equality holds:

$$[x, y; F](x - y) = F(x) - F(y).$$
⁽²⁾

Using this definition, Sergeev [1] and Schmidt [2] generalize the secant method to Banach spaces. The secant method is then described by the following algorithm:

$$x_{n+1} = x_n - [x_{n-1}, x_n; F]^{-1} F(x_n), \qquad x_0, \ x_{-1} \text{ given.}$$
(3)

The semilocal convergence of the secant method has usually been studied from majorizing sequences [3-5] or by nondiscrete induction [6,7], under Lipschitz or Hölder continuity conditions for divided differences of operator (1).

Supported in part by a grant from the DGES (Ref. PB-98-0198) and a grant from the University of La Rioja (Ref. API-99/B-14).

^{0898-1221/02/\$ -} see front matter © 2002 Elsevier Science Ltd. All rights reserved. Typeset by A_{MS} -T_EX PII: S0898-1221(02)00147-5

It supposes that, for every pair of distinct points $x, y \in \Omega$, there exists a first-order divided difference of F at these points. If there exists a nonnegative constant k such that

$$\|[x, y; F] - [v, w; F]\| \le k(\|x - v\|^p + \|y - w\|^p), \qquad p \in [0, 1],$$
(4)

for all $x, y, v, w \in \Omega$ with $x \neq y$ and $v \neq w$, we say that F has a (k, p)-Hölder continuous divided difference on Ω . If p = 1, we say that F has a Lipschitz continuous divided difference on Ω .

In this paper, we relax condition (4) and consider

$$\|[x, y; F] - [v, w; F]\| \le \omega(\|x - v\|, \|y - w\|), \qquad x, y, v, w \in \Omega,$$
(5)

where $\omega : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous nondecreasing function in its two arguments. Applying then, this condition to obtain a semilocal convergence result for the secant method, we consider a new technique by means of using recurrence relations.

Finally, the new semilocal convergence result obtained is applied to approximate the solution of a nonlinear boundary value problem.

2. CONVERGENCE ANALYSIS

Before getting the semilocal convergence result for the secant method under these new conditions, we introduce some notations. Let $x_0, x_{-1} \in \Omega$ and we will take into account the following auxiliary functions:

$$a(u) = \frac{\beta\omega(\alpha, u)}{1 - \beta\omega(\alpha, u)}, \qquad b(u) = \frac{\beta\omega(u, 2u)}{1 - \beta\omega(u + \alpha, u)}, \qquad c(u) = \frac{\beta\omega(2u, 2u)}{1 - \beta\omega(u + \alpha, u)}$$

where $\alpha = ||x_0 - x_{-1}||, \beta = ||[x_{-1}, x_0; F]^{-1}||.$

THEOREM 2.1. Assume that, for every pair of points $x, y \in \Omega$, there exists a first-order divided difference $[x, y; F] \in \mathcal{L}(X, Y)$ such that (5) holds. Assume the following.

- The linear operator $L_0 = [x_{-1}, x_0; F]$ is invertible and $||L_0^{-1}F(x_0)|| \le \eta$.
- The equation

$$u = \left(\frac{b(u)a(u)}{1 - c(u)} + a(u) + 1\right)\eta$$
(6)

has at least one positive zero. Let R be the minimum positive one.

If $\beta\omega(R + \alpha, R) < 1$, c(R) < 1, and $\overline{B(x_0, R)} \subset \Omega$, then sequence $\{x_n\}$ given by (3) is well defined, remains in $\overline{B(x_0, R)}$, and converges to a unique solution x^* of equation (1) in $\overline{B(x_0, R)}$.

PROOF. To simplify the notation, we denote a(R) = a, b(R) = b, c(R) = c, and $[x_{n-1}, x_n; F] = L_n$. First, we prove, by mathematical induction, that the sequence given in (3) is well defined, namely, iterative procedure (3) is well defined if, at each step, the operator $[x_{n-1}, x_n; F]$ is invertible and the point x_{n+1} lies in Ω .

From the initial hypotheses, it follows that x_1 is well defined and $||x_1 - x_0|| \le \eta < R$. Therefore, $x_1 \in B(x_0, R) \subseteq \Omega$.

Now, using (5) and assuming that ω is nondecreasing, we obtain

$$\|I - L_0^{-1}L_1\| \le \|L_0^{-1}\| \|L_0 - L_1\| \le \|L_0^{-1}\| \omega (\|x_0 - x_{-1}\|, \|x_1 - x_0\|)$$

$$\le \beta \omega(\alpha, R) \le \beta \omega (R + \alpha, R) < 1,$$

and, by the Banach lemma, L_1^{-1} exists and

$$\left\|L_1^{-1}\right\| \leq \frac{\beta}{1 - \beta \omega(\alpha, R)}$$

By (2) and (3), we get

$$F(x_1) = F(x_0) - [x_0, x_1; F](x_0 - x_1) = (L_0 - L_1)(x_0 - x_1).$$

Then, by (5), we have

$$||F(x_1)|| \le ||L_1 - L_0|| ||x_1 - x_0|| \le \omega (||x_0 - x_{-1}||, ||x_1 - x_0||) ||x_1 - x_0||$$

$$\le \omega (\alpha, \eta) ||x_1 - x_0|| \le \omega (\alpha, R) ||x_1 - x_0||,$$

and consequently, iterate x_2 is well defined. Moreover,

$$\|x_{2} - x_{1}\| \leq \|L_{1}^{-1}\| \|F(x_{1})\| \leq \frac{\beta\omega(\alpha, R)}{1 - \beta\omega(\alpha, R)} \|x_{1} - x_{0}\| = a \|x_{1} - x_{0}\|.$$
⁽⁷⁾

On the other hand, if we take into account that R is a solution of (6), then

$$\|x_2 - x_0\| \le \|x_2 - x_1\| + \|x_1 - x_0\| \le \left[\frac{\beta\omega(\alpha, R)}{1 - \beta\omega(\alpha, R)} + 1\right] \|x_1 - x_0\| \le (a+1)\eta < R$$
(8)

and $x_2 \in B(x_0, R)$.

Next, by analogy,

$$\begin{aligned} \left\| I - L_0^{-1} L_2 \right\| &\leq \left\| L_0^{-1} \right\| \, \left\| L_0 - L_2 \right\| \leq \beta \omega \left(\left\| x_1 - x_{-1} \right\|, \left\| x_2 - x_0 \right\| \right) \\ &\leq \beta \omega \left(\left\| x_1 - x_0 \right\| + \left\| x_0 - x_{-1} \right\|, \left\| x_2 - x_0 \right\| \right) \leq \beta \omega \left(R + \alpha, R \right) < 1, \end{aligned}$$

and consequently, L_2^{-1} exists and

$$\left\|L_2^{-1}\right\| \leq \frac{\beta}{1 - \beta \omega(R + \alpha, R)}$$

Moreover,

$$\begin{aligned} \|F(x_2)\| &\leq \|L_2 - L_1\| \ \|x_2 - x_1\| \leq \omega \left(\|x_1 - x_0\|, \|x_2 - x_1\|\right) \|x_2 - x_1\| \\ &\leq \omega \left(\|x_1 - x_0\|, \|x_2 - x_0\| + \|x_0 - x_1\|\right) \|x_2 - x_1\| \leq \omega \left(R, 2R\right) \|x_2 - x_1\| \end{aligned}$$

and

$$\|x_3 - x_2\| \le \|L_2^{-1}\| \|F(x_2)\| \le \frac{\beta\omega(R, 2R)}{1 - \beta\omega(R + \alpha, R)} \|x_2 - x_1\| = b \|x_2 - x_1\|.$$
(9)

Then, by (6)-(9), we have

$$\begin{aligned} \|x_3 - x_0\| &\leq \|x_3 - x_2\| + \|x_2 - x_0\| \leq b \|x_2 - x_1\| + \|x_2 - x_0\| \\ &\leq (ba + a + 1) \|x_1 - x_0\| \leq (ba + a + 1)\eta < R. \end{aligned}$$

Therefore, $x_3 \in B(x_0, R)$.

Then, by induction on n, the following items can be shown for $n \ge 3$: $(i_n) \exists L_n^{-1} = [x_{n-1}, x_n; F]^{-1}$ such that $||L_n^{-1}|| \le \beta/(1 - \beta\omega(R + \alpha, R))$. $(ii_n) ||x_{n+1} - x_n|| \le c ||x_n - x_{n-1}||$.

We have

$$\begin{aligned} \left\| I - L_0^{-1} L_3 \right\| &\leq \left\| L_0^{-1} \right\| \, \left\| L_0 - L_3 \right\| \leq \beta \omega \left(\left\| x_2 - x_{-1} \right\|, \left\| x_3 - x_0 \right\| \right) \\ &\leq \beta \omega \left(\left\| x_2 - x_0 \right\| + \left\| x_0 - x_{-1} \right\|, \left\| x_3 - x_0 \right\| \right) \leq \beta \omega \left(R + \alpha, R \right) < 1, \end{aligned}$$

Then, by the Banach lemma, L_3^{-1} exists and

$$\left\|L_3^{-1}\right\| \leq \frac{\beta}{1 - \beta \omega (R + \alpha, R)}$$

From the definition of the first divided difference and the secant method, we can obtain

$$F(x_3) = F(x_2) - [x_2, x_3; F](x_2 - x_3) = (L_2 - [x_2, x_3; F]) L_2^{-1} F(x_2) = (L_2 - L_3) (x_2 - x_3).$$

Taking norms in the above equality and (5), we obtain

$$\begin{aligned} \|F(x_3)\| &\leq \|L_3 - L_2\| \|x_3 - x_2\| \leq \omega \left(\|x_2 - x_1\|, \|x_3 - x_2\|\right) \|x_3 - x_2\| \\ &\leq \omega \left(\|x_2 - x_0\| + \|x_0 - x_1\|, \|x_3 - x_0\| + \|x_0 - x_2\|\right) \|x_3 - x_2\| \leq \omega \left(2R, 2R\right) \|x_3 - x_2\|. \end{aligned}$$

Thus,

$$\|x_4 - x_3\| \le \|L_3^{-1}\| \|F(x_3)\| \le \frac{\beta\omega(2R, 2R)}{1 - \beta\omega(R + \alpha, R)} \|x_3 - x_2\| = c \|x_3 - x_2\|.$$
(10)

Now, if we suppose that $(i_k), (i_k)$ hold for all k = 3, ..., n-1, we analogously prove $(i_{k+1}), (i_{k+1})$.

Consequently, from (6)-(10), it follows

$$\begin{aligned} \|x_{n+1} - x_0\| &\leq \|x_{n+1} - x_n\| + \|x_n - x_{n-1}\| + \dots + \|x_3 - x_2\| + \|x_2 - x_0\| \\ &\leq \left[c^{n-2} + c^{n-3} + \dots + 1\right] \|x_3 - x_2\| + \|x_2 - x_0\| \\ &\leq \left[\frac{1 - c^{n-1}}{1 - c}ba + a + 1\right] \|x_1 - x_0\| < \left[\frac{ba}{1 - c} + a + 1\right]\eta = R. \end{aligned}$$

That is, $x_{n+1} \in B(x_0, R)$.

Second, we prove that $\{x_n\}$ is a Cauchy sequence. For $m \ge 1$ and $n \ge 2$, we obtain

$$\begin{aligned} \|x_{n+m} - x_n\| &\leq \|x_{n+m} - x_{n+m-1}\| + \|x_{n+m-1} - x_{n+m-2}\| + \dots + \|x_{n+1} - x_n\| \\ &\leq \left[c^{m-1} + c^{m-2} + \dots + 1 \right] \|x_{n+1} - x_n\| \\ &\leq \frac{1 - c^m}{1 - c} \|x_{n+1} - x_n\| < \frac{1}{1 - c} c^{n-2} \|x_3 - x_2\|. \end{aligned}$$

Therefore, $\{x_n\}$ is a Cauchy sequence and converges to $x^* \in \overline{B(x_0, R)}$.

Finally, we see that x^* is a zero of F. Since

$$||F(x_n)|| \le \omega (2R, 2R) ||x_n - x_{n-1}||$$

and $||x_n - x_{n-1}|| \to 0$ as $n \to \infty$, we obtain $F(x^*) = 0$.

To show uniqueness, we assume that there exists a second solution $y^* \in \overline{B(x_0, R)}$ and consider the operator $A = [y^*, x^*; F]$. Since $A(y^* - x^*) = F(y^*) - F(x^*)$, if operator A is invertible, then $x^* = y^*$. Indeed,

$$\begin{aligned} \left\| L_0^{-1} A - I \right\| &\leq \left\| L_0^{-1} \right\| \, \left\| A - L_0 \right\| \leq \left\| L_0^{-1} \right\| \, \left\| [y^*, x^*; F] - [x_{-1}, x_0; F] \right\| \\ &\leq \beta \omega \left(\left\| y^* - x_{-1} \right\|, \left\| x^* - x_0 \right\| \right) \leq \beta \omega \left(\left\| y^* - x_0 \right\| + \left\| x_0 - x_{-1} \right\|, \left\| x^* - x_0 \right\| \right) \\ &\leq \beta \omega \left(R + \alpha, R \right) < 1 \end{aligned}$$

and the operator A^{-1} exists.

REMARK. Note that the operator F is differentiable when the divided differences are Lipschitz or (k, p)-Hölder continuous. But, under condition (5), F is differentiable if $\omega(0, 0) = 0$. Therefore, if $\omega(0, 0) \neq 0$, our semilocal convergence result also can be true for nondifferentiable operators.

280

Ĩ

3. APPLICATION

Now we apply the semilocal convergence result given above to the following nonlinear boundary value problem:

$$y'' + y^{1+p} + \mu y^2 = 0, \qquad \mu \in \mathbb{R}, \quad p \in [0, 1],$$

$$y(0) = y(1) = 0.$$
 (11)

We divide interval [0,1] into n subintervals and we let h = 1/n. We denote the points of subdivision by $t_i = ih$ and $y(t_i) = y_i$. Notice that y_0 and y_n are given by the boundary conditions, so $y_0 = 0 = y_n$. We first approximate the second derivative y''(t) in the differential equation by

$$y''(t) pprox rac{[y(t+h)-2y(t)+y(t-h)]}{h^2},$$

 $y''(t_i) pprox rac{(y_{i+1}-2y_i+y_{i-1})}{h^2}, \qquad i=1,2,\ldots,n-1.$

By substituting this expression into the differential equation, we have the following system of nonlinear equations:

$$2y_1 - h^2 y_1^{1+p} - h^2 \mu y_1^2 - y_2 = 0,$$

$$-y_{i-1} + 2y_i - h^2 y_i^{1+p} - h^2 \mu y_i^2 - y_{i+1} = 0, \qquad i = 2, 3, \dots, n-2,$$

$$-y_{n-2} + 2y_{n-1} - h^2 y_{n-1}^{1+p} - h^2 \mu y_{n-1}^2 = 0.$$
(12)

We, therefore, have an operator $F : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ such that $F(y) = H(y) - h^2 g(y) - h^2 \mu f(y)$, where

$$y = (y_1, y_2, \dots, y_{n-1})^t$$
, $g(y) = \left(y_1^{1+p}, y_2^{1+p}, \dots, y_{n-1}^{1+p}\right)^t$, $f(y) = \left(y_1^2, y_2^2, \dots, y_{n-1}^2\right)^t$,

and

$$H = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{pmatrix}.$$

Thus,

$$F'(y) = H - h^{2}(1+p) \begin{pmatrix} y_{1}^{p} & 0 & \cdots & 0 \\ 0 & y_{2}^{p} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & y_{n-1}^{p} \end{pmatrix} - 2h^{2}\mu \begin{pmatrix} y_{1} & 0 & \cdots & 0 \\ 0 & y_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & y_{n-1} \end{pmatrix}.$$

Then, we apply Theorem 2.1 to find a solution y^* of the equation

$$F(y) = 0. \tag{13}$$

Let $x \in \mathbb{R}^{n-1}$, and choose the norm $||x|| = \max_{1 \le i \le n-1} |x_i|$. The corresponding norm on $A \in \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$ is

$$||A|| = \max_{1 \le i \le n-1} \sum_{j=1}^{n-1} |a_{ij}|.$$

It is known (see [7]) that F has a divided difference at the points $v, w \in \mathbb{R}^{n-1}$, which is defined by the matrix whose entries are

$$[v,w;F]_{ij} = \frac{1}{v_j - w_j} \left(F_i \left(v_1, \dots, v_j, w_{j+1}, \dots, w_m \right) - F_i \left(v_1, \dots, v_{j-1}, w_j, \dots, w_m \right) \right), \quad m = n - 1.$$

Therefore,

$$[v,w;F] = H - h^2 \begin{pmatrix} \frac{v_1^{1+p} - w_1^{1+p} + \mu(v_1^2 - w_1^2)}{v_1 - w_1} & 0 & \cdots & 0 \\ 0 & \frac{v_2^{1+p} - w_2^{1+p} + \mu(v_2^2 - w_2^2)}{v_2 - w_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{v_{n-1}^{1+p} - w_{n-1}^{1+p} + \mu(v_{n-1}^2 - w_{n-1}^2)}{v_{n-1} - w_{n-1}} \end{pmatrix}.$$

In this case, we have $[v, w; F] = \int_0^1 F'(v + t(w - v)) dt$. So we study the value ||F'(x) - F'(v)|| to obtain a bound for ||[x, y; F] - [v, w; F]||.

For all $x, v \in \mathbb{R}^{n-1}$ with $|x_i| > 0, |v_i| > 0, i = 1, 2, ..., n-1$, and taking into account the max-norm, it follows

$$\begin{split} \|F'(x) - F'(v)\| &= \left\| \operatorname{diag} \left\{ h^2(1+p) \left(v_i^p - x_i^p \right) + 2\mu h^2 \left(v_i - x_i \right) \right\} \right\| \\ &= \max_{1 \le i \le n-1} \left| h^2(1+p) \left(v_i^p - x_i^p \right) + 2\mu h^2 \left(v_i - x_i \right) \right| \\ &\le (1+p) h^2 \max_{1 \le i \le n-1} \left| v_i^p - x_i^p \right| + 2\mu h^2 \max_{1 \le i \le n-1} \left| v_i - x_i \right| \\ &\le (1+p) h^2 \left[\max_{1 \le i \le n-1} \left| v_i - x_i \right| \right]^p + 2\mu h^2 \|v - x\| \\ &= (1+p) h^2 \|v - x\|^p + 2\mu h^2 \|v - x\|. \end{split}$$

Consequently,

$$\begin{split} \|[x,y;F] - [v,w;F]\| &\leq \int_0^1 \|F'(x+t(y-x)) - F'(v+t(w-v))\| \ dt \\ &\leq h^2 \int_0^1 \left((1+p)\|(1-t)(x-v) + t(y-w)\|^p + 2\mu\|(1-t)(x-v) + t(y-w)\|\right) \ dt \\ &\leq h^2(1+p) \int_0^1 \left((1-t)^p \|x-v\|^p + t^p \|y-w\|^p\right) \ dt + 2\mu h^2 \int_0^1 \left((1-t)\|x-v\| + t\|y-w\|\right) \ dt \\ &= h^2 \left(\|x-v\|^p + \|y-w\|^p + \mu(\|x-v\| + \|y-w\|)\right). \end{split}$$

From (5), we consider the function

$$\omega(u_1, u_2) = h^2 \left(u_1^p + u_2^p + \mu(u_1 + u_2) \right).$$
(14)

We now study two situations: $\mu = 0$ and $\mu \neq 0$.

3.1. $\mu = 0$

This example has been also considered by other authors in [3,8]. Problem (11) is now

$$y'' + y^{1+p} = 0, \quad p \in [0, 1],$$

 $y(0) = y(1) = 0.$ (15)

In this case, by (14), the divided difference is (k, p)-Hölder continuous with $k = h^2$.

Now we apply the secant method to approximate the solution of F(y) = 0. We choose p = 1/2 and if n = 10, then (12) gives nine equations. Since a solution of (15) would vanish at the end points and be positive in the interior, a reasonable choice of initial approximation seems to be

 $135\sin \pi t$. This approximate gives us the following vector:

$$z_{-1} = \begin{pmatrix} 41.7172942406179 \\ 79.35100905948387 \\ 109.2172942406179 \\ 128.3926296998458 \\ 135.000000000000 \\ 128.3926296998458 \\ 109.2172942406179 \\ 79.35100905948387 \\ 41.7172942406179 \end{pmatrix}$$

We choose z_0 by setting $z_0(t_i) = z_{-1}(t_i) - 10^{-5}$, i = 1, 2, ..., 9. Using iteration (3), after three iterations, we obtain

	/ 33.64838334335734 \			/ 33.57498274928053	\
İ	65.34766285832966			65.20452867501265	
	91.77113354118937			91.56893412724006	
	109.4133887062593			109.1710943553677	
$z_2 =$	115.6232519796117	and	$z_3 = -$	115.3666988182897	
	109.4133887062593			109.1710943553677	
	91.77113354118937			91.56893412724006	
	65.34766285832964			65.20452867501265	
	33.64838334335733 /			33.57498274928053)

Then we take $y_{-1} = z_2$ and $y_0 = z_3$. With the notation of Theorem 2.1, we can easily obtain the following results:

 $\alpha = 0.256553, \qquad \beta = 26.5446, \qquad \eta = 0.00365901.$

Since $h^2 = 0.01$, in this particular case, the solution of equation (6) is R = 0.0043494. Besides, $\beta \omega(R + \alpha, R) = 0.153092 < 1$ and c(R) = 0.0584655 < 1. Therefore, the hypotheses of Theorem 2.1 are fulfilled, which ensures that a unique solution of equation (13) exists in $\overline{B(y_0, R)}$.

We obtain the vector y^* as the solution of system (12), after seven iterations:

$$y^* = \begin{pmatrix} 33.5739120483378\\ 65.20245092365437\\ 91.5660200355396\\ 109.1676242966424\\ 115.3630336377466\\ 109.1676242966424\\ 91.5660200355396\\ 65.20245092365437\\ 33.5739120483378 \end{pmatrix}$$

If y^* is now interpolated, its approximation \bar{y}^* to the solution of (15) with p = 1/2 is that appearing in Figure 1.

Note that the study made in [3] by Argyros is not applicable if we take as starting points y_{-1} and y_0 , since the requirements considered in that study are not fulfilled. Therefore, by Argyros' study, the convergence of the secant method is not guaranteed.

Figure 1. y^* and the approximate solution \bar{y}^* .

3.2. $\mu \neq 0$

We consider, for example, $\mu = 1$. From (14), we consider the function $\omega(u_1, u_2) = h^2(u_1^p + u_2^p + u_1 + u_2)$. Then, as in the previous example, we choose p = 1/2, n = 10 and the initial approximation seems to be $10 \sin \pi t$.

Now we apply the secant method to approximate the solution of (13). This approximate gives us the following vector:

$$z'_{-1} = \begin{pmatrix} 3.090169943749474 \\ 5.877852522924731 \\ 8.090169943749475 \\ 9.51056516295136 \\ 10.0000000000000 \\ 9.51056516295136 \\ 8.090169943749475 \\ 5.877852522924731 \\ 3.090169943749474 \end{pmatrix}$$

Choose z'_0 by setting $z'_0(t_i) = z'_{-1}(t_i) - 10^{-5}$, i = 1, 2, ..., 9. Using iteration (3), after two iterations, we obtain

	(2.453176290658909 \			/ 2.404324055268407 \	
	4.812704101582601			4.713971539035271	
	6.8481873135861			6.7003394962933925	
	8.252997367741953			8.066765882171131	
$z'_1 =$	8.75737771678512	and	$z'_2 = $	8.556329565792526	
	8.252997367741953			8.066765882171131	
	6.8481873135861			6.7003394962933924	
	4.812704101582601			4.713971539035271	
	2.453176290658909			2.404324055268407	

Taking $y_{-1} = z'_1$ and $y_0 = z'_2$, we obtain $\alpha = 0.201048$, $\beta = 15.319$, $\eta = 0.0346555$. In this case, equation (6) given in Theorem 2.1 has a minimum positive solution R = 0.0408385. Besides, $\beta\omega(R + \alpha, R) = 0.14961 < 1$ and c(R) = 0.132392 < 1. Therefore, we obtain by Theorem 2.1 that sequence $\{y_n\}$ given by the secant method converges to a unique solution y^* in $\overline{B(x_0, R)}$ of equation F(y) = 0.

We obtain the following vector \bar{y} as the solution of system (12), after 11 iterations:

$$\bar{y} = \begin{pmatrix} 2.394640794786742 \\ 4.694882371216001 \\ 6.672977546934751 \\ 8.033409358893319 \\ 8.520791423704788 \\ 8.033409358893319 \\ 6.67297754693475 \\ 4.694882371216 \\ 2.394640794786742 \end{pmatrix}$$

Note that, in this example, the convergence cannot be guaranteed by classical studies, where divided differences used are Lipschitz or (k, p)-Hölder continuous, whereas we can achieve this by the technique presented in this paper.

REFERENCES

- 1. A. Sergeev, On the method of chords, Sibirsk. Mat. Z. 2, 282-289 (1961).
- J.W. Schmidt, Regula-Falsi Verfahren mit Konsistenter Steigung und Majoranten Prinzip, Periodica Mathematica Hungarica 5, 187-193 (1974).
- 3. I.K. Argyros, On the secant method, Publ. Math. Debrecen 43 (3/4), 223-238 (1993).
- J.R. Dennis, Toward a unified convergence theory for Newton-like methods, In Nonlinear Functional Analysis and Applications, (Edited by L.B. Rall), pp. 425–472, Academic Press, New York, (1970).
- 5. W.C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5 (1), 42-63 (1968).
- F.A. Potra, An application of the induction method of V. Pták to the study of regula falsi, Aplikace Matematiky 26, 111-120 (1981).
- 7. F.A. Potra and V. Pták, Nondiscrete Induction and Iterative Processes, Pitman, (1984).
- 8. J. Rokne, Newton's method under mild differentiability conditions with error analysis, Numer. Math. 18, 401-412 (1972).