
An International Journal 

computers & 
mathematics 
with applicanans 

PERGAMON Computers and Mathematics with Applications 44 (2002) 277-285 
www.elsevier.com/locate/camwa 

Semilocal Convergence of the 
Secant Method under Mild Convergence 

Conditions of Differentiability 

M. A. HERNANDEZ AND M. J. RUBIO 
Department of Mathematics and Computation, University of La Rioja 

C/ Luis de Ulloa s/n, 26004 Logroiio, Spain 
(mahernan)(mjesus.rubio)Qdmc.unirioja.es 

(Received August 2000; revised and accepted December 2001) 

Abstract-In this work, we obtain a semilocal convergence result for the secant method in Banach 
spaces under mild convergence conditions. We consider a condition for divided differences which 
generalizes those usual ones, i.e., Lipschitz continuous and Holder continuous conditions. Also, we 
obtain a result for uniqueness of solutions. @ 2002 Elsevier Science Ltd. All rights reserved. 

Keywords-The secant method, Recurrence relations, Boundary value problems. 

1. INTRODUCTION 

In this paper, we are concerned with the problem of finding conditions for the semilocal con- 
vergence of secant method in Banach spaces. Such a problem is clearly important in numerical 
analysis, since many applied problems reduce to solve a nonlinear operator equation 

F(Z) = 0, (1) 

with F : R C X -+ Y and R a convex open subset of X and X, Y Bansch spaces. To apply the 
secant method, it is necessary to first consider divided differences. Let us denote by l(X, Y), the 
space of bounded linear operators from X to Y. Remember that an operator [IC, y; F] E 13(X, Y) 
is called a divided difference of first order for the operator F on the points 2 and y (Z # y) if the 
following equality holds: 

kc, Y; 4b - Y) = F(s) - F(Y). (2) 

Using this definition, Sergeev [l] and Schmidt [2] generalize the secant method to Banach spaces. 
The secant method is then described by the following algorithm: 

x,+1 = 2, - [x,-i, z,; Fl %rn), 20, x-1 given. (3) 

The semilocal convergence of the secant method has usually been studied from majorizing 
sequences [3-51 or by nondiscrete induction [6,7], under Lipschitz or Holder continuity conditions 
for divided differences of operator (1). 
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It supposes that, for every pair of distinct points x, y E R, there exists a first-order divided 
difference of F at these points. If there exists a nonnegative constant k such that 

Ilh~;Fl - b,~;J’lll I 4x -41p+ IIY - .wll’), P E [O, 11, (4) 

for all x, y, v, w E $2 with x # y and v # w, we say that F has a (k, p)-Hijlder continuous divided 
difference on R. If p = 1, we say that F has a Lipschitz continuous divided difference on s1. 

In this paper, we relax condition (4) and consider 

II[x,Y;FI - b,wFlll I4lx - 41, IIY - 4th X,Y,U,W E 02, (5) 

where w : R+ x B+ -+ R+ is a continuous nondecreasing function in its two arguments. Applying 
then, this condition to obtain a semilocal convergence result for the secant method, we consider 
a new technique by means of using recurrence relations. 

Finally, the new semilocal convergence result obtained is applied to approximate the solution 
of a nonlinear boundary value problem. 

2. CONVERGENCE ANALYSIS 

Before getting the semilocal convergence result for the secant method under these new condi- 
tions, we introduce some notations. Let x0,x-l E 0 and we will take into account the following 
auxiliary functions: 

u(u) = Pw (a7 u) Pw (UT 24 Pw (2% 2u) 
1 - Pw(a, u) ’ 

b(u) = 1 -~w(u+cE,u)’ 
c(u) = 

l-Pw(u+a,u)’ 

where cr = llxo - x-111, P = ~~[x_~,xo; F]-‘11. 

THEOREM 2.1. Assume that, for every pair of points x, y E 0, there exists a first-order divided 
difference [x, y; F] E C(X, Y) such that (5) holds. Assume the following. 

l The linear operator LO = [x-l, x0; F] is invertible and [[LO-’ F(xo)ll 5 7. 
l The equation 

u = 1 -c(u) ( 
Wa(u) - +a(u) + 1 77 

> 
(6) 

has at least one positive zero. Let R be the minimum positive one. 

Ifpw(R + o, R) < 1, c(R) < 1, and B( x0, R) c R, then sequence {cE~} given by (3) is well defined, 
remains in B(x:o, R), and converges to a unique solution x* of equation (1) in B(xo, R). 

PROOF. To simplify the notation, we denote a(R) =a, b(R)=b, c(R) =c, and [X,-I, x,; F] = L,. 
First, we prove, by mathematical induction, that the sequence given in (3) is well defined, namely, 
iterative procedure (3) is well defined if, at each step, the operator [x,-l, x,; F] is invertible and 
the point xn+l lies in a. 

From the initial hypotheses, it follows that x1 is well defined and llxl -x011 < 77 < R. Therefore, 
x1 E B(x,,, R) 2 Cl. 

Now, using (5) and assuming that w is nondecreasing, we obtain 

III - Lo-lLIII I IILo-‘ll IWO - Llll 5 I\Lo-ljj w (11x0 -5-11~,~~21 - x011) 
L ,@~(a, R) L Pw(R + cq R) < 1, 

and, by the Banach lemma, Ll-’ exists and 

IIK1ll < p 1 - /~w((-Y, R) ’ 
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By (2) and (3), we get 

F (21) = F (50) - [ xo,n; F] (zo - 51) = (Lo - LI) (50 - a). 

Then, by (5), we have 

and consequently, iterate 22 is well defined. Moreover, 

11x2 -2111 L \jK’l\ llF(xdll I 1 y;$+ya, 11~1 - xoll = a 11x1 - x011 . (7) 

On the other hand, if we take into account that R is a solution of (6), then 

11x2 - 2011 I 11x2 - XIII + 11x1 - ~011 I XI - xoll L (a + 1)~ < R (8) 

and x2 E B(xc, R). 
Next, by analogy, 

I/L - Lo-lL211 I IIL0-y IILO - J52ll I Pw (11x1 - x-111 7 11x2 - xoll) 

5 Pw (11~1 - ~011 + 11x0 - x-111 ,11x2 - ~011) 5 Pw (R + a, R) < 1, 

and consequently, Lp-’ exists and 

IIL2-111 I p 
1 -/?w(R+a,R)’ 

Moreover, 

II@411 I lb52 - Llll 1122 -2111 I w (lb1 - x011 > 11x2 -x111) 11x2 - all 

I w (11x1 - xoll,1lx2 - ~011 + 11x0 - ~111) 1152 - ~111 5 w (R, 2R) 11x2 - XI Il 

and 

11x3 - 5211 I IILz-‘ll llF(x2)ll I 1 _yw;y; R) 11x2 - all = b 11x2 - x111 . (9) 7 

Then, by (6)-(g), we have 

11x3 - xoll I 11x3 - 2211 + 1152 - xoll I b 11x2 - all + 11x2 - ~011 

I (ba + a + 1) 11x1 - xoll I (ba + a + 1)~ < R. 

Therefore, x3 E B(xc, R). 
Then, by induction on n, the following items can be shown for n 2 3: 

(in) 3 L,_’ = [xn__l,xn; F]-’ such that IILn-‘ll I P/(1 - Pw(R + a, R)). 
(iin) 11x,+1 - Gbll I cllxn - &a-111. 

We have 

III - Lo-‘L311 I IILo-‘ll (ILO - LBII I Pw (11x2 -x-111 7 lb3 - xoll) 
I Pw (11x2 - xoll + 11x0 - x-111 ,11x3 - ~011) I B-J (R + a, RI < 1, 
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Then, by the Banach lemma, Ls-’ exists and 

From the definition of the first divided difference and the secant method, we can obtain 

F(z3) = F(z2) - [ x2,23; F](zz - 23) = (Lz - [22,x3; F]) L,Qy22) = (L2 - L3) (22 - z3). 

Taking norms in the above equality and (5), we obtain 

llO3)ll I II3 - w 11x3 - 2211 I w (11~2 - Qll ,I123 - ~2lI) 1113 - 22)) 

I w (11~2 - ~011 + 11x0 - all 9 11x3 - 2011 + 1120 - x211) ((23 - 5211 I w (2R2R) ((23 - z2ll. 

Thus, 

Now, if we suppose that (ik),(iik) hold for all Ic = 3, . . . , n - 1, we analogously prove (ik+r),(iik+r). 
Consequently, from (6)-(lo), it follows 

II%+1 - ~011 5 II%+1 - GIlI + 11% - 211-111 + ... + 1123 - 5211 + 11x2 - 2011 

< p-2 + F3 + * * * + q 11x3 - 221) + 1122 - zo]\ 

1 ll21-2011 < &+a+1 v=R. 
I 

That is, z,,+r E B(zc, R). 
Second, we prove that {zn} is a Cauchy sequence. For m 2 1 and n 2 2, we obtain 

ll%+m - Al I II %+nl - %+m-111 + II Gl+m-1 - &z+m-2ll+ . . * + II%+1 - %I( 
I [cm-l -I- P-2 + . . . + 11 112,+1 - z,ll 

< E II %+1- %ll< 1 i c -r2 (1x3 - 2211. 

Therefore, (2,) is a Cauchy sequence and converges to z* E B(zo, R). 
Finally, we see that z* is a zero of F. Since 

IlFhdll 5 w PR, 2R) 11~ - ~-1 II, 

and (1~~ - ~,_rl( + 0 as n -+ 03, we obtain F(z*) = 0. 
To show uniqueness, we assume that there exists a second solution y* E B(zc, R) and consider 

the operator A = [y*, cc*; F]. Since A(y* - a~*) = F(y*) - F(x*), if operator A is invertible, then 
x* = y*. Indeed, 

\\Lo-~A - I)) I \ILo-‘\\ IIA - Loll 5 \/Lo-‘\\ llj~*>x*;Fl - l~-~,~o;FIll 

I Pw (IlY’ - z-111 3 II x* - ~011) I Pw u\y* - xoll + 11~0 - z-111 7 11x* - xoll> 
I@w(R+a,R) < 1 

and the operator A-’ exists. I 
REMARK. Note that the operator F is differentiable when the divided differences are Lipschitz or 
(Ic,p)-Holder continuous. But, under condition (5), F is differentiable if w(O,O) = 0. Therefore, 
if ~(0, 0) # 0, our semilocal convergence result also can be true for nondifferentiable operators. 
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3. APPLICATION 

Now we apply the semilocal convergence result given above to the following nonlinear boundary 
value problem: 

Y” + Y l+p + py2 = 0, PER PE [O,Il, 

y(0) = y(1) = 0. 
(II) 

We divide interval [0, l] into n subintervals and we let h = l/n. We denote the points of 
subdivision by ti = ih and y(ti) = yi. Notice that yc and yn are given by the boundary conditions, 
so y. = 0 = yn. We first approximate the second derivative y”(t) in the differential equation by 

y”(t) M [y(t + h) - 3/(t) + y(t - h)l 
h2 , 

y”(Q = (Yi+1 - 2Yi + Y&l) 
h2 ’ 

i = 1,2 )..., n-l. 

By substituting this expression into the differential equation, we have the following system of 
nonlinear equations: 

2yi - h2y;+p - h2py; - y2 = 0, 

-yi-1 + 2yi - h2y,f+’ - h2pyT - yi+l = 0, i = 2,3, . . . , n - 2, (12) 

-Y~.-~ + 2~,_~ - h”y;+- - h2py;_, = 0. 

We, therefore, have an operator F : lR”-’ -+ !Rnpl such that F(y) = H(y) - h2g(y) - h2pf(y), 
where 

y = (Yl, Y2,. ‘. 1 Yn-1t S(Y) = (Y:+p,Y:+p,. . . ,Y:+$: f(Y) = (YKY22,. . .1 YL>t, 

and 

Thus, 

Then, we apply Theorem 2.1 to find a solution y* of the equation 

F(y) = 0. (13) 

Let 2 E Rn-1, and choose the norm 11x11 = maxi<i<,_i ]zi]. The corresponding norm on A E -- 
Rn-1 x own-1 is 

n-1 

IlAll = i<%y_i x leijl. 
-- j=l 

It is known (see [7]) that F has a divided difference at the points w, UJ E P-l, which is defined 
by the matrix whose entries are 

1 
[v,w;F]ij == (Fi(vl,...,vj,utj+l,...rw,)--~(vl,...,vj-1,wj,.-.,w,)), m = n-l. 

3 3 
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Therefore, 

[w,w;F]=H-h2 I 
, yl+P_w;+P 

1 +p vf-w: 
%-WI 

0 

0 

0 
l+P 

v2 -uJ;+p+p 7J,‘-wl’ 
9J2-w2 

. . . 0 

. . . 0 

. . 
I+P 

0 u,,-l-Wn-l . . . l+p+j&:_l-w:_l) 
v,-l-w”.-1 

In this case, we have [v, WJ; F] = Jci F’(v + t(w - w)) dt. S o we study the value /IF’(z) -F’(v)]] to 
obtain a bound for (1 [z, y; F] - [w, w; F] ]I. 

For all 5, w E RY1 with ]zi] > 0, ]2ri] > 0, i = 1,2,. . . , n - 1, and taking into account the 
max-norm, it follows 

[IF’(z) - F’(v)]] = /diag {h2(1 + p) (VP - $‘) + 2ph2 (vi - Q)} I] 

= i<m<y_i ]h2(1 +p) (w; -z;) + 2ph2 (vi - xi)] 
-- 

I (1 +p)h2 l<y<y_l I$ - x;I+ 2M2 1<y<y_I loi - ~1 
-- -- 

I (1 +dh2 1<y<y_I bi - GI ’ + 2M21b - 511 
-- 1 

= (1 +p)h211w - ~11’ + 2ph211w - zll. 

Consequently, 

s 

1 

II[&y;Fl - b,‘W;FlII I IIF’ (x + t(y - x)) - F’ (w + t(w - w))II dt 
0 

5 h2 
s 

’ ((1 +~)Il(l - t)(a: - w) +t(y - w)ll” + 2dl(1 - t)(x -w) +t(y - w)ll) dt 
0 

5 h2(1+p) J 0 
l((l-t)Pllz-wIIP+tPlly-uf’) dt+2ph2/1((1-t)~jx-w~I+tj/y-ur~j) dt 

= h2 (lb - dip + IIY - ~11’ + ~(11~ - 41 : Ily - ~11)). 

Prom (5), we consider the function 

w (~1, ~2) = h2 (u: + u; + /I (UI + ~2)). (14) 

We now study two situations: p = 0 and /J # 0. 

3.1. p = 0 

This example has been also considered by other authors in [3,8]. Problem (11) is now 

Y” + Y l+P = 0 P E IO, 111 
y(0) = ;(I) = 0. 

(15) 

In this case, by (14), the divided difference is (k,p)-Holder continuous with k = h2. 
Now we apply the secant method to approximate the solution of F(y) = 0. We choose p = l/2 

and if n = 10, then (12) gives nine equations. Since a solution of (15) would vanish at the end 
points and be positive in the interior, a reasonable choice of initial approximation seems to be 
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135 sin rt. This approximate gives us the following vector: 

t-1 = 

41.7172942406179 ’ 
79.35100905948387 

109.2172942406179 
128.3926296998458 
135.0000000000000 
128.3926296998458 
109.2172942406179 
79.35100905948387 
41.7172942406179 , 

We choose ze by setting ze(ti) = z-l(&) - 10°5, i = 1,2,. . . ,9. Using iteration (3), after three 
iterations, we obtain 

33.64838334335734 
65.34766285832966 
91.77113354118937 

109.4133887062593 
zp = 115.6232519796117 

109.4133887062593 
91.77113354118937 
65.34766285832964 
33.64838334335733 

and z3 = 

33.57498274928053 
65.20452867501265 
91.56893412724006 

109.1710943553677 
115.3666988182897 
109.1710943553677 
91.56893412724006 
65.20452867501265 
33.57498274928053 

Then we take y-i = 22 and ye = zs. With the notation of Theorem 2.1, we can easily obtain the 
following results: 

cu = 01256553, p = 26.5446, 71 = 0.00365901. 

Since h2 = 0.01, in this particular case, the solution of equation (6) is R = 0.0043494. Be- 
sides, /3w(R + a, R) = 0.153092 < 1 and c(R) = 0.0584655 < 1. Therefore, the hypotheses of 
Theorem 2.1 are fulfilled, which ensures that a unique solution of equation (13) exists in B( yc, R). 

We obtain the vector y* as the solution of system (12), after seven iterations: 

y* = 

33.5739120483378 
65.20245092365437 
91.5660200355396 

109.1676242966424 
115.3630336377466 
109.1676242966424 

91.5660200355396 
65.20245092365437 
33.5739120483378 

If y* is now interpolated, its approximation y* to the solution of (15) with p = l/2 is that 
appearing in Figure 1. 

Note that the study made in (31 by Argyros is not applicable if we take as starting points Y__~ 
and ye, since the requirements considered in that study are not fulfilled. Therefore, by Argyros’ 
study, the convergence of the secant method is not guaranteed. 
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3 

3.2. p # 0 

Figure 1. y’ and the approximate solution fj* 

We consider, for example, p = 1. From (14), we consider the function w(ur,us) = h2($’ + 
ug + ur + ~2). Then, as in the previous example, we choose p = l/2, n = 10 and the initial 
approximation seems to be lOsin&. 

Now we apply the secant method to approximate the solution of (13). This approximate gives 
us the following vector: 

zi_r = 

3.090169943749474 
5.877852522924731 
8.090169943749475 
9.51056516295136 

10.00000000000000 
9.51056516295136 
8.090169943749475 
5.877852522924731 
3.090169943749474 

Choose z& by setting zh(ti) = zl_,(ti) - 10m5, i = 1,2,. . . ,9. Using iteration (3), after two 
iterations, we obtain 

2.453176290658909 
4.812704101582601 
6.8481873135861 
8.252997367741953 

z; = 8.75737771678512 
8.252997367741953 
6.8481873135861 
4.812704101582601 
2.453176290658909 

and ~4 = 

/ 2.404324055268407 
4.713971539035271 
6.7003394962933925 
8.066765882171131 
8.556329565792526 
8.066765882171131 
6.7003394962933924 
4.713971539035271 

\ 2.404324055268407 

Taking y-r = zi and yc = ~4, we obtain a = 0.201048, /3 = 15.319, n = 0.0346555. In this case, 
equation (6) given in Theorem 2.1 has a minimum positive solution R = 0.0408385. Besides, 
@(R + Q, R) = 0.14961 < 1 and c(R) = 0.132392 < 1. Therefore, we obtain by Theorem 2.1 
that sequence {yn} given by the secant method converges to a unique solution y* in B(ze, R) of 
equation F(y) = 0. 
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We obtain the following vector 5 as the solution of system (12), after 11 iterations: 
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jj= 

2.394640794786742 ’ 
4.694882371216001 
6.672977546934751 
8.033409358893319 
8.520791423704788 
8.033409358893319 
6.67297754693475 
4.694882371216 
2.394640794786742 I 

Note that, in this example, the convergence cannot be guaranteed by classical studies, where 
divided differences used are Lipschitz or (k,p)-Hijlder continuous, whereas we can achieve this by 
the technique presented in this paper. 
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