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Abstract. In this paper, we build up a modi®cation of the Midpoint method, reducing its
operational cost without losing its cubical convergence. Then we obtain a semilocal convergence result
for this new iterative process and by means of several examples we compare it with other iterative
processes.
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1. Introduction

Several scienti®c problems can be written in the form

F�x� � 0: �1�
In order to generalize as much as possible, let F be a nonlinear operator de®ned in
an open convex domain 
 of a Banach space X with values in a Banach space Y.
There is a lot of research work concerning the numerical solution of (1) by means
of iterative processes, mainly by using Newton's method ([4], [8]).

But there are other iterative processes for solving (1). One of them is the
Midpoint method ([2], [8]) given by:

yn � xn ÿ F0�xn�ÿ1
F�xn�;

xn�1 � xn � F0
xn � yn

2

� �ÿ1

F�xn�: �2�
It is a third order method. In practice, for a given xn in each iterate of (2), the
following steps are needed: First we have to solve a linear system

F0�xn��yn ÿ xn� � ÿF�xn�;
to obtain yn, and then we need to solve another linear system given by

F0
xn � yn

2

� �
�xn�1 ÿ xn� � ÿF�xn�:
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We discuss the high computational cost of this method. We need to evaluate F0 at
two points and to solve two linear equations systems with their LR decompositions.

In this paper, we consider a modi®cation of the Midpoint method such that the
cubical convergence is preserved but we avoid the double evaluation of F0 and the
realization of two LR decompositions. For that we consider an iterative process in
the form:

F0�xn��yn ÿ xn� � ÿF�xn�;
F0�xn��xn�1 ÿ yn� � ÿ�F�xn� ÿ �F

xn � yn

2

� �
; �; � 2 R:

So, we have changed an evaluation of F0 in
xn � yn

2
by an evaluation of F at the

same point. Moreover we only need one LR decomposition for their application. In
this way, the operational cost has been considerably reduced.

Observe that the method obtained has an operational cost similar to the Newton
method and for a particular choice of � and � we can reach cubical convergence.
Then we will prove that iteration given by

F0�xn��yn ÿ xn� � ÿF�xn�;F0�xn��xn�1 ÿ yn� � 2F�xn� ÿ 4F
xn � yn

2

� �
; �3�

has cubical convergence and a result of semilocal convergence for this new iterative
process is given. The local and global behaviors for this algorithm are not the aim
of this paper. For the study of these situations, it is very interesting the paper of
Wang and Li [9] based on Smale's creative work [7].

Finally, we consider several examples where we compare our results with the
results obtained by others methods. Thus, we check the usefulness of the new
iterative process de®ned in this paper.

2. Convergence Analysis

To prove the convergence of the iterative process (3) we write it in the form

yn � xn ÿ ÿnF�xn�;
xn�1 � yn � 2ÿnH�xn; yn�; �4�

where

ÿn � F0�xn�ÿ1; H�xn; yn� � F�xn� ÿ 2F
xn � yn

2

� �
:

We denote B�x; r� � fy 2 X; kyÿ xk4 rg and B�x; r� � fy 2 X; kyÿ xk< rg.

Table 1. Operational cost

Method Eval. of F Eval. of F0 Decomp. LR

Midpoint M. 1 2 2
Midpoint modif. 2 1 1
Newton M. 1 1 1
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We analyse the convergence of (4) to a solution x� of F�x� � 0. Let x0 2 
 and
suppose that ÿ0 � F0�x0�ÿ1 2L�Y ;X� exists at some x0 2 
, where L�Y ;X� is
the set of bounded linear operators from Y into X.

We assume the following conditions:

�c1� kÿ0k4�;
�c2� ky0 ÿ x0k � kÿ0F�x0�k4 �;
�c3� kF00�x�k4M; x 2 
; M 5 0;
�c4� kF00�x� ÿ F00�y�k4Kkxÿ yk; x; y 2 
; K 5 0:

Let us denote a0 � M��; b0 � K��2 and de®ne sequences

an�1 � an f �an; bn�2g�an; bn�; bn�1 � bn f �an; bn�3g�an; bn�2; �5�
where

f �x; y� � 6

6ÿ 3x2 ÿ 10xyÿ 6x
; �6�

and

g�x; y� � x3

8
� 25

18
xy2 � 5

6
x2y� 1

4
x2 � 5

6
xy� 181

108
y: �7�

First, we observe that

H�xn; yn� � F�xn� ÿ 2F
xn � yn

2

� �
� ÿ 1

2

�1

0

F00 yn � t
xn ÿ yn

2

� �� �
�1ÿ t�dt�yn ÿ xn�2

ÿ 2

�1

0

�F00�xn � t�yn ÿ xn�� ÿ F00�xn���1ÿ t�dt�yn ÿ xn�2

ÿ
�1

0

�F00�xn� ÿ F00�xn � t�yn ÿ xn���dt�yn ÿ xn�2; �8�

then taking into account initial hypotheses (c1)±(c4) and assuming that y0 2 
, the
iterate x1 is well de®ned, and by (8)

kx1 ÿ y0k4 2kÿ0kkH�x0; y0�k4 1

2
a0 � 5

3
b0

� �
kx0 ÿ y0k

and

kx1 ÿ x0k4 kx1 ÿ y0k � ky0 ÿ x0k4 1

2
a0 � 5

3
b0 � 1

� �
kx0 ÿ y0k

Next we prove the following items hold for all n5 1 by mathematical
induction:

�In� kÿnk � kF0�xn�ÿ1k4 f �anÿ1; bnÿ1�kÿnÿ1k;
�IIn� kyn ÿ xnk4 f �anÿ1; bnÿ1�g�anÿ1; bnÿ1�kynÿ1 ÿ xnÿ1k;
�IIIn� kxn�1 ÿ xnk4 1

2
an � 5

3
bn � 1

� �kyn ÿ xnk:
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We now assume xn; yn 2 
 for all n5 0. The proof of this is given in Theorem
2.4. If we suppose

bn <
3

5

1

an

ÿ 1ÿ an

2

� �
; n5 0; �9�

then we have

kI ÿ ÿ0F0�x1�k4 kÿ0kkF0�x0� ÿ F0�x1�k4Mkÿ0kkx1 ÿ x0k

4 a0
1

2
a0 � 5

3
b0 � 1

� �
< 1;

by (9). Hence ÿ1 is de®ned and kÿ1k4 f �a0; b0�kÿ0k.
Using the equalities

F�xn�1� �
�xn�1

yn

F00�x��xn�1 ÿ x�dx� F�yn� � F0�yn��xn�1 ÿ yn�;

F
xn � yn

2

� �
�
�xn�yn

2

yn

F00�x� xn � yn

2
ÿ x

� �
dx�

�yn

xn

F00�x��yn ÿ x�dx

� 1

2

�xn

yn

F00�x�dxÿnF�xn� � 1

2
F�xn�;

and (4), we get

F�xn�1� � 4

�1

0

F00�yn � t�xn�1 ÿ yn���1ÿ t�dt�ÿnH�xn; yn��2

�
�1

0

F00�xn � t�yn ÿ xn�� ÿ F00 yn � t
xn � yn

2

� �� �h i
�1ÿ t�dt�yn ÿ xn�2

ÿ 4

�1

0

�F00�xn � t�yn ÿ xn�� ÿ F00�xn���1ÿ t�dt�yn ÿ xn�2

ÿ 2

�1

0

�F00�xn� ÿ F00�xn � t�yn ÿ xn���dt�yn ÿ xn�2

� 2

�1

0

F00�xn � t�yn ÿ xn���1ÿ t�dt�yn ÿ xn�ÿnH�xn; yn�: �10�
Then, for n � 0, we obtain

kF�x1�k4 2M�2 M2�2

16
� 25

36
K2�4 � 5

12
MK�3

� �
�2

� 181

108
K�3 �M�2�

1

4
M� � 5

6
K�2

� �
:

So,

ky1 ÿ x1k4 f �a0; b0�g�a0; b0�ky0 ÿ x0k
and [II1] holds. To show [III1], we note that

kH�x1; y1�k4 1

4
Mf �a0; b0�g�a0; b0�� � 5

6
Kf �a0; b0�2g�a0; b0�2�2

� �
ky1 ÿ x1k:
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Finally, we easily deduce

kx2 ÿ y1k4 1

2
a1 � 5

6
b1

� �
ky1 ÿ x1k;

kx2 ÿ x1k4 1

2
a1 � 5

3
b1 � 1

� �
ky1 ÿ x1k:

Now if we suppose that [In]±[IIIn] hold for a ®xed n5 1, we can prove [In�1]±
[IIIn�1] by induction.

Our next goal is to analyse the real sequences (5) to obtain the convergence of
sequence (4) de®ned in Banach spaces. To obtain the convergence of (4), we only
have to prove (4) is a Cauchy sequence under assumption (9). First, we provide a
technical lemma whose proof is trivial.

Lemma 2.1. Let f and g two real functions given in (6) and (7) respectively.
Then

(i) f is increasing in both variables x and y and f �x; y�> 1 for x; y5 0,
(ii) g is increasing in both variables x and y,
(iii) f �
x; 
y�< f �x; y� and g�
x; 
y�<
g�x; y� for 
 2 �0; 1�.
It is convenient to introduce auxiliary functions:

y1�x� � 181� 450xÿ 270x2 ÿ 180x3 ÿ �����������������������������������������������������������������������������������
32761� 227700xÿ 154440x2 ÿ 65160x3
p

300x�2xÿ 1� ;

y2�x� � 181� 450xÿ 270x2 ÿ 180x3 � �����������������������������������������������������������������������������������
32761� 227700xÿ 154440x2 ÿ 65160x3
p

300x�2xÿ 1� ;

and

y3�x� � 3

5

1

x
ÿ 1ÿ x

2

� �
;

whose graphs can be seen in Figures 1, 2 and 3.
Some properties for sequences fang and fbng given by (5) are shown below.

Figure 1. Graph y1�x�
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Lemma 2.2. Let f and g two real functions given by (6) and (7) respectively. If
a0 2 �0; 0:544582 . . .�, then

(i) f �a0; b0�2g�a0; b0�< 1,
(ii) sequences fang and fbng are decreasing,
(iii) an

an

2
� 5

3
bn � 1

ÿ �
< 1 for all n5 0.

Proof. Notice that condition f �a0; b0�2g�a0; b0�< 1 is equivalent to
u�a0; b0�< 0, where

u�x; y� � ÿ216� 432x� 54x2 ÿ 189x3 � �362� 900xÿ 540x2 ÿ 360x3�y
� �300xÿ 600x2�y2:

The roots of u�x; y� � 0 are functions y1�x� and y2�x�. Moreover, condition
a0

a0

2
� 5

3
b0 � 1

ÿ �
< 1 is equivalent to v�a0; b0�< 0, where

v�x; y� � x
x

2
� 5

3
y� 1

� �
ÿ 1;

v�x; y� � 0 has a root, called y3�x�.

Figure 2. Graph y2�x�

Figure 3. Graph y3�x�
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It is easy to prove that y1 < y3 and y1 < y2 in �0; 0:544582 . . .�, so item (i)
follows immediately. We show item (ii) by mathematical induction on n. The fact
that 0< a1 < a0 and 0< b1 < b0 follows by previous item (i) and lemma 2.1 (i) and
(ii). Next, it is supposed that aj < ajÿ1 and bj < bjÿ1 for j � 1; 2; . . . ; n. Then

an�1 � an f �an; bn�2g�an; bn�< an f �a0; b0�2g�a0; b0�< an

and

bn�1 � bn f �an; bn�3g�an; bn�2 < bn f �a0; b0�3g�a0; b0�2

< bn f �a0; b0�4g�a0; b0�2 < bn

since f and g are increasing and f �x; y�> 1 for x; y> 0.

Finally, we have an

an

2
� 5

3
bn � 1

� �
< a0

a0

2
� 5

3
b0 � 1

� �
for all n5 0, since

fang and fbng are decreasing sequences and a0 2 �0; 0:544582 . . .�. &

Lemma 2.3. Let us suppose the hypotheses of Lemma 2.2 and de®ne 
 � a1=a0.
Then,
�in� an <


3nÿ1

anÿ1 <

3nÿ1

2 a0, for all n5 2,

�iin� bn < �
3nÿ1�2bnÿ1 <

3nÿ1b0, for all n5 2,

�iiin� f �an; bn�g�an; bn�<
3nÿ1f �a0; b0�g�a0; b0� � 
3n

f �a0; b0�, for all n5 1.

Proof. We prove (in) following an inductive procedure. As a1 � 
a0

and b1 � b0 f �a0; b0�3g�a0; b0�2 < b0 f �a0; b0�4g�a0; b0�2 <
2b0, we have a2 �
a1 f �a1; b1�2g�a1; b1�<
3a1, and b2<b1 f �a1; b1�4g�a1; b1�2 < b1

a2

a1

� �2

< �
3�2b1.

If we suppose that (in) hold, then

an�1 � an f �an; bn�2g�an; bn�
<
3nÿ1

anÿ1 f �
3nÿ1

anÿ1; �
3nÿ1�2bnÿ1�2g�
3nÿ1

anÿ1; �
3nÿ1�2bnÿ1�
<
3nÿ1�
3nÿ1�2an � 
3n

an:

Moreover,

an <

3nÿ1

anÿ1 <

3nÿ1


3nÿ2

anÿ2 < � � � <
3nÿ1
2 a0;

Item (iin) follows in a similar way.
On the other hand, we observe that

f �an; bn�g�an; bn�< f �
3nÿ1
2 a0; 


3nÿ1

b0�g�
3nÿ1
2 a0; 


3nÿ1

b0�

<
3nÿ1f �a0; b0�g�a0; b0� � 
3n

f �a0; b0� ; n5 1:

The proof is complete. &

After that we show the following result on the semilocal convergence of
sequence (4).
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Theorem 2.4. Let X, Y be Banach spaces and F : 
 � X ! Y be a nonlinear
twice FreÂchet differentiable operator in an open convex domain 
. Let us assume
that ÿ0 � F0�x0�ÿ1 2L�Y ;X� exists at some x0 2 
 and (c1)±(c4) are satis®ed.
Denote by a0 � M�� and b0 � K��2. Under conditions of Lemma 2.2, if

B�x0;R�� � 
, where R � 1

2
a0 � 5

3
b0 � 1

� �
1

1ÿ 
�
; 
 � a1=a0 and � �

1=f �a0; b0�, the sequence fxng de®ned in (4) has at least R-order of convergence
three, and starting at x0 converges to a solution x� of F�x� � 0. The solution x� and
the iterates xn and yn belong to B�x0;R��. Moreover, the solution x� is unique in

B x0;
2

M�
ÿ R�

� �
\ 
. Furthermore, the following error bounds hold:

kx� ÿ xnk4 1

2



3nÿ1
2

� �
a0 � 5

3
�
3nÿ1�b0 � 1

� �



3nÿ1
2

�n

1ÿ 
3n�
�; n5 0: �11�

Proof. Firstly, we prove that fxng is a Cauchy sequence. From [IIn], we observe
that

kxn�1 ÿ xnk4 1

2
an � 5

3
bn � 1

� �
kyn ÿ xnk

4
1

2
a0 � 5

3
b0 � 1

� �
f �anÿ1; bnÿ1�g�anÿ1; bnÿ1�kynÿ1 ÿ xnÿ1k

4 � � � 4 1

2
a0 � 5

3
b0 � 1

� �
ky0 ÿ x0k

Ynÿ1

j�0

f �aj; bj�g�aj; bj�:

We now have, from Lemma 2.3

Ynÿ1

j�0

f �aj�g�aj�4
Ynÿ1

j�0

�
3j�� � 
3nÿ1
2 �n;

where 
 � a1=a0 < 1 and � � 1=f �a0�< 1. So, for m5 1 and n5 1,

kxn�m ÿ xnk4 kxn�m ÿ xn�mÿ1k � kxn�mÿ1 ÿ xn�mÿ2k � � � � � kxn�1 ÿ xnk

4
1

2
an�mÿ1 � 5

3
bn�mÿ1 � 1

� �
�
Yn�mÿ2

j�0

f �aj; bj�g�aj; bj�

� � � � � 1

2
an � 5

3
bn � 1

� �
�
Ynÿ1

j�0

f �aj; bj�g�aj; bj�

4
1

2
an � 5

3
bn � 1

� �



3n�mÿ1ÿ1
2 �n�mÿ1 � � � � � 
3nÿ1

2 �n
� �

�

4
1

2



3nÿ1
2

� �
a0 � 5

3
�
3nÿ1�b0 � 1

� �



3nÿ1
2 �n 1ÿ 
3nm

2 �m

1ÿ 
3n�
�; �12�
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by Bernouilli's inequality. Thus fxng is a Cauchy sequence. For m5 1 and n � 0,
we obtain

kxm ÿ x0k< 1

2
a0 � 5

3
b0 � 1

� �
1� 
�

1ÿ �
3��mÿ1

1ÿ 
�

 !
�<R�: �13�

On the other hand, it follows from (13) that xm 2 B�x0;R�� for all m5 0. We
similarly have yn 2 B�x0;R�� for all n5 0.

To see that x� is a solution of F�x� � 0, we note that kÿnF�xn�k ! 0 as
n!1. Taking into account kF�xn�k4 kF0�xn�kkÿnF�xn�k and that the sequence
fkF0�xn�kg is bounded, we infer that kF�xn�k ! 0 as n!1. Consequently, we
obtain F�x�� � 0 by continuity of F.

To prove uniqueness, let us assume another solution z� of F�x� � 0 exists in

B x0;
2

M�
ÿ R�

� �
\ 
. Using the identity

0 � ÿ0�F�z�� ÿ F�x��� � ÿ0

�1

0

F0�x� � t�z� ÿ x���dt�z� ÿ x��;
it suf®ces to prove that the operator

� 1

0
F0�x� � t�z� ÿ x���dt is invertible and then

z� � x�. Indeed, from

kÿ0k
�1

0

kF0�x� � t�z� ÿ x��� ÿ F0�x0�kdt

4M�

�1

0

kx� � t�z� ÿ x�� ÿ x0kdt

4M�

�1

0

��1ÿ t�kx� ÿ x0k � tkz� ÿ x0k�dt< 1;

it follows that �� 1

0
F0�x� � t�z� ÿ x���dt�ÿ1

exists.
Finally, by letting m!1 in (12) and (13), we obtain (11) for all n5 0. In

addition, from (11) it follows that the R-order of convergence [5] of (4) is at least
three, since

kx� ÿ xnk4 1� a0

2

� � �


1=2�1ÿ 
�� �

1=2�3n

; n5 0:

The proof is complete. &

3. Applications

Finally we give two examples to illustrate the previous results. We consider two
functions used as a test in several papers. In these examples, we compare the error
bounds obtained for different third order iterative processes.

Example 1 ([1]). Let X � C�0; 1� be the space of continuous functions de®ned
on the interval [0,1], with the max-norm and consider the integral equation
F�x� � 0, where

F�x��s� � �x�s�
�1

0

s

s� t
x�t�dt ÿ x�s� � 1;
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with s 2 �0; 1�; x 2 C�0; 1� and 0<�4 2. Integral equations of this kind (called
Chandrasekhar equations) arise in elasticity or neutron transport problems (see [1],
[6]).

For � � 1=4, and starting at x0 � x0�s� � 1, we obtain (see [1]), kÿ0k �
1:53039421 � �; kÿ0F�x0�k4 0:2651971 � �; kF00�x�k4 0:3465735 � M and
K � 0. So a0 � M�� � 0:140659 and b0 � 0. We give the upper bound
C � 2:307135 to the number 1010kx� ÿ x2k, where x2 is the second iterate of
the new method (4). Taking into account the error estimates given in ([2]) and ([3]),
the upper bound for 1010kx� ÿ x2k to the Midpoint method are C � 5:67272 and
C � 5:59621 respectively. We slightly improved both constants.

Example 2. Let us consider the system of equations F�x; y� � 0 where
F : �5; 6:5� � �5; 6:5� ! R2 and

F�x; y� � �x2 ÿ yÿ 19; y3=6ÿ x2 � yÿ 17�:
Then we have

F0�x; y�ÿ1 � 1

y2

1� y2=2

x
1=x

2 2

0@ 1A
if (x; y) does not belong to the lines x � 0 or y � 0. The second derivative is a
bilinear operator on R2 given by

F00�x; y� �

2 0

0 0

ÿ2 0

0 y

0BBBB@
1CCCCA:

We take the max-norm in R2 and the norm kAk � maxfja11j � ja12j;
ja21j � ja22jg for

A � a11 a12

a21 a22

� �
:

As in [6] we de®ne the norm of a bilinear operator B on R2 by

kBk � sup
kxk�1

max
i

X2

j�1

X2

k�1

b
jk
i xk

�����
�����;

where x � �x1; x2� and

B �

b11
1 b12

1

b21
1 b22

1

b11
2 b12

2

b21
2 b22

2

0BBBB@
1CCCCA:

If we choose x0 � �5:5; 6:5�, then the parameters appearing in theorem 2.4 are

� � 0:0995159; � � 0:473866; M � 6:5 and K � 1:
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Thus, a0 � 0:306522, and b0 � 0:0223462. Therefore the hypotheses of theorem
2.4 are veri®ed and we obtain the existence domain B�x0; 1:29556�. Moreover this
solution is unique in B�x0; 2:47797�.

In Tables 4, 5 and 6, we see, under an operational cost similar to the one of
Newton's method, that the speed of convergence is increased using iteration (4). A
similar speed of convergence close to the one of the Midpoint method iteration is
obtained.
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