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a b s t r a c t

We present sufficient convergence conditions for two-step New-
ton methods in order to approximate a locally unique solution of
a nonlinear equation in a Banach space setting. The advantages
of our approach over other studies such as Argyros et al. (2010)
[5], Chen et al. (2010) [11], Ezquerro et al. (2000) [16], Ezquerro
et al. (2009) [15], Hernández and Romero (2005) [18], Kantorovich
and Akilov (1982) [19], Parida and Gupta (2007) [21], Potra (1982)
[23], Proinov (2010) [25], Traub (1964) [26] for the semilocal con-
vergence case are: weaker sufficient convergence conditions, more
precise error bounds on the distances involved and at least as pre-
cise information on the location of the solution. In the local con-
vergence case more precise error estimates are presented. These
advantages are obtained under the same computational cost as in
the earlier stated studies. Numerical examples involving Hammer-
stein nonlinear integral equations where the older convergence
conditions are not satisfied but the new conditions are satisfied are
also presented in this study for the semilocal convergence case. In
the local case, numerical examples and a larger convergence ball
are obtained.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x⋆ of
the nonlinear equation

F(x) = 0, (1.1)
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where, F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space X with
values in a Banach space Y. Many problems in Applied Sciences reduce to solving an equation in the
form (1.1). These solutions can be rarely found in closed form. That is why the most solution methods
for these equations are iterative. The convergence analysis of iterativemethods is usually divided into
two categories: semilocal and local convergence analysis. In the semilocal convergence analysis one
derives convergence criteria from the information around an initial pointwhereas in the local analysis
one finds estimates of the radii of convergence balls from the information around a solution.

The Newton method defined by

xn+1 = xn − F ′(xn)−1F(xn), for each n = 0, 1, 2, . . . , (1.2)

where x0 is an initial point, is undoubtedly the most popular iterative method for generating a
sequence approximating x⋆. TheNewtonmethod is quadratically convergent if x0 is chosen sufficiently
close to the solution x⋆. There is a plethora of local as well as semilocal convergence results for the
Newtonmethod.We refer the reader to [1–26] (and the references there in) for the history and recent
results on the Newton method. In order to increase the convergence order higher convergence order
iterative methods have also been used [1,3,5–7,9,11,14–18,21,22,26,27]. The convergence domain
usually gets smaller as the order of convergence of the method increases. That is why it is important
to enlarge the convergence domain as much as possible using the same conditions and constants
as before. This is our main motivation for this paper. In particular, we revisit the two-step Newton
methods defined for each n = 0, 1, 2, . . . by

yn = xn − F ′(xn)−1F(xn),
xn+1 = yn − F ′(yn)−1F(yn)

(1.3)

and

yn = xn − F ′(xn)−1F(xn),
xn+1 = yn − F ′(xn)−1F(yn).

(1.4)

Two-step Newton methods (1.3) and (1.4) are of convergence order four and three, respectively
[1,3,6,7,15,18]. It is well known that if the Lipschitz condition

∥F ′(x0)−1(F ′(x) − F ′(y))∥ ≤ L∥x − y∥ for each x and y ∈ D (1.5)

as well as

∥F ′(x0)−1F(x0)∥ ≤ ν (1.6)

holds for some L > 0 and ν > 0, then the sufficient semilocal convergence condition for both the
Newtonmethod (1.2) and the two-step Newtonmethod (1.3) is given by the famous, for its simplicity
and clarity, Newton–Kantorovich hypothesis [19]:

h = Lν ≤
1
2
. (1.7)

Hypothesis (1.7) is only sufficient for the convergence of the Newton method. That is why we
challenged it in a series of papers [1–8] by introducing the center-Lipschitz condition

∥F ′(x0)−1(F ′(x) − F ′(x0))∥ ≤ L0∥x − x0∥ for each x ∈ D. (1.8)

Notice that

L0 ≤ L (1.9)

holds in general and L
L0

can be arbitrarily large [2,3,6,8]. Our sufficient convergence conditions are
given by

h1 = L1ν ≤
1
2
, (1.10)

h2 = L2ν ≤
1
2
, (1.11)
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and

h3 = L3ν ≤
1
2
, (1.12)

where

L1 =
L0 + L

2
,

L2 =
1
8


L + 4L0 +


L2 + 8L0L


and

L3 =
1
8


4L0 +


L0L +


L2 + 8L0L


.

(1.13)

Moreover, notice that

h ≤
1
2

⇒ h1 ≤
1
2

⇒ h2 ≤
1
2

⇒ h3 ≤
1
2

(1.14)

but not necessarily vice versa unless if L0 = L and

h1

h
→

1
2
,

h2

h
→

1
4
,

h2

h1
→

1
2
,

h3

h
→ 0,

h3

h1
→ 0 and

h3

h2
→ 0 as

L0
L

→ 0.
(1.15)

Hence, the convergence domain for the Newton method (1.2) has been extended under the same
computational cost, since in practice the computation of L requires the computation of L0. Moreover,
the error estimates on the distances ∥xn+1 − xn∥ and ∥xn − x⋆

∥ are more precise and the information
on the location of the solution at least as precise.

In the case of the two-step Newton method (1.4) the sufficient convergence condition using only
(1.5) is given by [6,15,18]

h4 = L4ν ≤
1
2
, (1.16)

where

L4 =
4 +

√
21

4
L. (1.17)

In the present paper using (1.5) and (1.8) we show that (1.12) can be used as the sufficient
convergence condition for the two-step Newton method (1.3). Moreover, we show that the sufficient
convergence condition for (1.4) is given by

h5 = L5ν ≤
1
2
, (1.18)

where

L5 =
1
4


3L0 + L +


(3L0 + L)2 + L(4L0 + L)


. (1.19)

Notice that

h4 ≤
1
2

⇒ h5 ≤
1
2

(1.20)

but not necessarily vice versa unless if L0 = L and

h5

h4
→

1 +
√
2

4 +
√
21

< 1 as
L0
L

→ 0. (1.21)

Condition (1.18) can be weakened even further (see Lemma 3.3).
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In the local convergence case using the Lipschitz condition

∥F ′(x⋆)−1(F ′(x) − F ′(y))∥ ≤ l∥x − y∥ for each x and y ∈ D and some l > 0 (1.22)

the convergence radius used in the literature (see Rheinboldt [20] and Traub [26]) for both theNewton
method (1.2) and the two-step Newton method (1.3) is given by

R0 =
2
3l

. (1.23)

Here, we use the center-Lipschitz condition

∥F ′(x⋆)−1(F ′(x) − F ′(x⋆))∥ ≤ l∥x − x⋆
∥ for each x ∈ D and some l0 > 0, (1.24)

to show that the convergence radius for both the Newton method (1.2) and the two-step Newton
method (1.3) is given by

R0 =
2

2l0 + l
. (1.25)

Note that again

l0 ≤ l (1.26)

holds in general and l
l0
can be arbitrarily large [2,3,6]. We also have that

R0 ≤ R (1.27)

and

R
R0

→ 3 as
l0
l

→ 0. (1.28)

The radius of convergence Rwas found by us in [2,3,6] only for the Newton method. Here, we also
have this result for the two-step Newtonmethod (1.3). Moreover, in view of (1.22) there exists l1 > 0
such that

∥F ′(x⋆)−1(F ′(x) − F ′(x0))∥ ≤ l1∥x − x0∥ for all x ∈ D. (1.29)

Note that

l1 ≤ l (1.30)

holds and l
l1

can be arbitrarily large. Although the convergence radius R does not change, the error
bounds aremoreprecisewhenusing (1.29). Finally, the corresponding results for the two-stepNewton
method (1.4) are presented with

R =
2

2l0 + 5l
. (1.31)

Many high convergence order iterative methods can be written as two-step methods [1,3,6,7,14–
18,26,27]. Therefore, the technique of recurrent functions or the technique of simplified majorizing
sequences given in this study can be used to study other high convergence order iterative methods.
As an example, we suggest the Chebyshev method or the method of tangent parabolas, defined
by

xn+1 = xn − (I − Mn)F ′(xn)−1F(xn) for each n = 0, 1, 2, . . . , (1.32)

where x0 is an initial point and

Mn =
1
2
F ′(xn)−1F ′′(xn)F ′(xn)−1F(xn) for each n = 0, 1, 2, . . . .
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Here, F ′′(x)denotes the second Fréchet-derivative of operator F [3,6,19,26]. The Chebyshevmethod
can be written as a two-step method of the form

yn = xn − F ′(xn)−1F(xn),

xn+1 = yn −
1
2
F ′(xn)−1F ′′(xn)(yn − xn)2 for each n = 0, 1, 2, . . . .

(1.33)

The paper is organized as follows. The convergence results of the majorizing sequences for two-
step Newton methods (1.3) and (1.4) are given in Sections 2 and 3 respectively. The semilocal and
local convergence analysis of two-step Newtonmethods (1.3) and (1.4) is presented in Sections 4 and
5, respectively. Finally, numerical examples are given in Section 6.

2. Majorizing sequences for the two-step Newton method (1.3)

We present sufficient convergence conditions and bounds on the limit points of majorizing
sequences for the two-step method (1.3).

Lemma 2.1. Let L0 > 0, L ≥ L0 and ν > 0 be given parameters. Set

α =
2L

L +


L2 + 8L0L

. (2.1)

Suppose that

h1 = L1ν ≤
1
2
, (2.2)

where

L1 =
1
8
(L + 4L0 +


L2 + 8L0L). (2.3)

Then, scalar sequence {tn} given by
t0 = 0, s0 = ν,

tn+1 = sn +
L(sn − tn)2

2(1 − L0sn)

sn+1 = tn+1 +
L(tn+1 − sn)2

2(1 − L0tn+1)
for each n = 0, 1, 2, . . .

(2.4)

is well defined, increasing, bounded from above by

t∗∗
=

ν

1 − α
(2.5)

and converges to its unique least upper bound t∗ which satisfies

ν ≤ t∗ ≤ t∗∗. (2.6)

Moreover, the following estimates hold

tn+1 − sn ≤ α(sn − tn) ≤ α2n+1ν, (2.7)

sn − tn ≤ α(tn − sn−1) ≤ α2nν (2.8)

t∗ − sn ≤
α2nν

1 − α
(2.9)

and

t∗ − tn ≤
α2nν

1 − α
+ α2nν. (2.10)
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Proof. We first notice that α ∈ [
1
2 , 1) by (2.1). We shall show using mathematical induction that

L(sk − tk)
2(1 − L0sk)

≤ α (2.11)

and

L(tk+1 − sk)
2(1 − L0tk+1)

≤ α. (2.12)

If k = 0 in (2.11) we must have that

L(s0 − t0)
2(1 − L0s0)

≤ α or
Lν

2(1 − L0ν)
≤ α. (2.13)

Using the value of α in (2.13) we can show instead that L
2

+
2LL0

L +


L +


L2 + 8L0L

 ν ≤
2L

L +


L +


L2 + 8L0L

which is (2.2). If k = 0 in (2.12) we must have

L(t1 − s0)
2(1 − L0t1)

≤ α or (L2 − 4L20α + 2L0Lα)ν2
+ 8L0αν − 4α ≤ 0. (2.14)

Case 1. L2 − 4L20α + 2L0Lα ≥ 0.
Then, (2.14) is satisfied provided that

ν ≤

−8L0α +


(8L0α)2 + 16α(L2 − 4L20α + 2L0Lα)

2(L2 − 4L20α + 2L0Lα)
(2.15)

or

2L0α +


αL2 + 2L0Lα2

2α
ν ≤ 1. (2.16)

In view of (2.2) and (2.16) we must show

2L0α +


αL2 + 2L0Lα2

2α
≤

1
4
(L + 4L0 +


L2 + 8L0L)

or

2


αL2 + 2L0Lα2 ≤ αL + α

L2 + 8L0L

or

α ≥
2L

L +


L2 + 8L0L

,

which is true as equality by (2.1).
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Case 2. L2 − 4L20α + 2L0Lα < 0.
Then, again we must show that (2.15) is satisfied, which was shown in Case 1.
Case 3. L2 − 4L20α + 2L0Lα = 0.
Inequality (2.14) reduces to 2L0ν ≤ 1 which is true by (2.2). Hence, estimates (2.11) and (2.12)

hold for k = 0. Let us assume they hold for k ≤ n. Then, using (2.4), (2.11) and (2.12) we have in turn
that

tk+1 − sk =
L(sk − tk)
2(1 − L0sk)

(sk − tk) ≤ α(sk − tk)

sk+1 − tk+1 =
L(tk+1 − sk)
2(1 − L0tk+1)

(tk+1 − sk) ≤ α(tk+1 − sk)

leading to

tk+1 − sk ≤ α(α2)kν, (2.17)

sk+1 − tk+1 ≤ (α2)k+1ν, (2.18)

tk+1 ≤ sk + α(α2)kν ≤ tk + α2kν + αα2kν

≤ tk−1 + α2(k−1)ν + αα2(k−1)ν + α2kν + αα2kν

≤ · · · ≤ t0 + [α2·0
+ · · · + α2k

]ν + α[α2·0
+ · · · + α2k

]ν

= (1 + α)
1 − α2(k+1)

1 − α2
ν < t∗∗ (2.19)

and

sk+1 ≤ (1 + α)
1 − α2(k+1)

1 − α2
ν + α2(k+1)ν. (2.20)

In view of (2.11) and (2.17)–(2.19) we must show

L
2
(sk+1 − tk+1) + L0αsk+1 − α ≤ 0

or
L
2
α2(k+1)ν + L0α[(1 + α)

1 − α2(k+1)

1 − α2
+ α2(k+1)

]ν − α ≤ 0.

(2.21)

Estimate (2.21) motivates us to define recurrent functions fk on [0, α2
] by

fk(t) =
L
2
tk+1ν + L0

√
t

(1 +

√
t)

1 − tk+1

1 − t
+ tk+1


ν −

√
t. (2.22)

We need a relationship between two consecutive functions fk. Using (2.22) we get that

fk+1(t) = fk(t) +


L
2
t + L0

√
tt + L0

√
t(1 +

√
t)


(t − 1)tkν ≤ fk(t), (2.23)

since α ∈ [0, 1) and the quantity in the bracket for t = α2 is non-negative. Then, in view of (2.21)–
(2.23) we must show that

f0(α2) ≤ 0
or
L
2
α + L0(1 + α + α2)


ν ≤ 1.

(2.24)
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We have that α is the unique positive root of equation

2L0t2 + Lt − L = 0. (2.25)

It follows from (2.24) and (2.25) that we must show

1
2
(L + 2L0 + 2L0α)ν ≤ 1 (2.26)

or in view of (2.2)

1
2
(L + 2L0 + 2L0α) ≤

1
4
(L + 4L0 +


L2 + 8L0L)

or

α ≤
2L

L +


L2 + 8L0L

,

which is true as equality. The induction for (2.11) is completed. Estimate (2.12) is satisfied, if

L
2
(tk+1 − sk) + αL0tk+1 − α ≤ 0

or
L
2
αα2kν + αL0(1 + α)

1 − α2(k+1)

1 − α2
ν − α ≤ 0.

(2.27)

Estimate (2.27) motivates us to define recurrent functions gk on [0, α2
] by

gk(t) =
L
2

√
ttk+1ν +

√
tL0(1 +

√
t)

1 − tk+1

1 − t
ν −

√
t. (2.28)

We must have that

gk+1(t) = gk(t) +


L
2

√
tt + L0

√
t(1 +

√
t)


(t − 1)tkν ≤ gk(t) for all t ∈ [0, α2
], (2.29)

since α ∈ [0, 1). Hence, we have that gk+1(α
2) ≤ gk(α2) ≤ · · · ≤ g1(α2) in view of (2.28), estimate

(2.27) holds, if

g1(α2) ≤ 0 (2.30)

or

1
2
(Lα2

+ 2L0(1 + α)(1 + α2))ν ≤ 1. (2.31)

We have by (2.25) that

Lα2
+ 2L0(1 + α)(1 + α2) =

L(L − Lα)

2L0
+ 2L0(1 + α)


1 +

L − Lα
2L0


=

L2 − L2α + 2L0(1 + α)[2L0 + L − Lα]

2L0

=
L2 − L2α + 4L20 + 4L20α + 2L0L + 2L0Lα − 2L0Lα − 2L0Lα2

2L0

=
L(L − Lα − 2L0α2) + 4L20 + 4L20α + 2L0L

2L0

=
2L0(L + 2L0 + 2αL0)

2L0
= L + 2L0 + 2αL0.
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So, we must have
L
2

+ (1 + α)L0


ν ≤ 1. (2.32)

Then, in view of (2.2) it suffices to show that

L
2

+ (1 + α)L0 ≤
1
4


L + 4L0 +


L2 + 8L0L


or

α ≤
−L +


L2 + 8L0L
4L0

=
2L

L +


L2 + 8L0L

which is true as equality. The induction for (2.12) is complete. Hence, sequence {tn} is increasing,
bounded from above by t∗∗ given by (2.5) and as such it converges to its unique least upper bound t∗
which satisfies (2.6). Moreover, using (2.17) and (2.18) we have that

tk+m − sk = tk+m − sk+m + sk+m − sk

and

sk+m − sk = (sk+m − sk+m−1) + (sk+m−1 − sk) ≤ · · ·

≤ αα2(k+m−1)ν + α2(k+m−1)ν + αα2(k+m−2)ν + α2(k+m−2)ν + · · · + αα2kν + α2kν

so

tk+m − sk ≤ α2(m+k)ν + αα2kν(1 + · · · + α2(m−1)) + α2kν(1 + · · · + α2(m−1))

= α2k(1 + · · · + α2m)ν + αα2k(1 + · · · + α2(m−1))ν. (2.33)

By lettingm → ∞ in (2.33) we obtain (2.9). Furthermore, we have that

sk+m − tk ≤ sm+k − sm+k−1 + sm+k−1 − tk
≤ αα2(m+k−1)ν + α2(k+m−1)ν + · · · + sk − tk

≤ αα2k(1 + · · · + α2(m−1))ν + α2k(1 + · · · + α2(m−1))ν + α2kν. (2.34)

By lettingm → ∞ in (2.34) we obtain (2.10). That completes the proof of the lemma. �

Remark 2.1. Let us define sequence {t̄n} by
t̄0 = 0, s̄0 = ν, t̄1 = s̄0 +

L0(s̄0 − t̄0)2

2(1 − L0s̄0)

t̄n+1 = s̄n +
L(s̄n − t̄n)2

2(1 − L0s̄n)

s̄n+1 = t̄n+1 +
L(t̄n+1 − s̄n)2

2(1 − L0 t̄n+1)
for each n = 0, 1, 2, . . . .

(2.35)

Clearly, {t̄n} converges under (2.2) and is tighter than {tn}. Indeed, a simple inductive argument shows
that

t̄n ≤ tn (2.36)
s̄n ≤ sn (2.37)

t̄n+1 − s̄n ≤ tn+1 − sn (2.38)

s̄n+1 − t̄n+1 ≤ sn+1 − tn+1 (2.39)
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and

t̄∗ = lim
n→∞

t̄n ≤ t∗. (2.40)

Moreover, a strict inequality holds in (2.36)–(2.39) if L0 < L for n ≥ 1. Note also that sequence {t̄n}
may converge under weaker hypothesis than (2.2) (see [8] and the Lemmas that follow).

Next, we present a different technique for studying sequence {tn}. This technique is easier but it
provides a less precise upper bound on t∗ and t∗∗. We will first simplify sequence {tn}. Let L = bL0 for
some b ≥ 1, rn = L0tn and qn = L0sn. Then, we have that sequence {rn} is given by

r0 = 0, q0 = L0ν,

rn+1 = qn +
b(qn − rn)2

2(1 − qn)

qn+1 = rn+1 +
b(rn+1 − qn)2

2(1 − rn+1)
.

Then, set pn = 1 − rn,mn = 1 − qn to obtain sequence {pn} given by
p0 = 1, m0 = 1 − L0ν,

pn+1 = mn −
b(mn − pn)2

2mn

mn+1 = pn+1 −
b(pn+1 − mn)

2

2pn+1
.

Finally, set βn = 1 −
pn

mn−1
and αn = 1 −

mn
pn

to obtain the sequence {βn} defined by

αn+1 =
b
2


βn+1

1 − βn+1

2

(2.41)

βn+1 =
b
2


αn

1 − αn

2

. (2.42)

We also have by substituting and eliminating βn+1 that

αn+1 =
b3

8
α4
n

(1 − αn)4

1 −

b
2

α2
n

(1−αn)2

2 .

Moreover, it follows from (2.41) and (2.42) that the convergence of the sequences {αn}, {βn} (i.e.
{rn}, {qn}) is related to the equation

x =
b
2

x2

(1 − x)2

which has zeros

x = 0, x =
4L0

L + L0 +


L2 + 8L0L

and x =
L + L0 +


L2 + 8L0L

4L0
.

Hence, we arrived at the following.

Lemma 2.2. Suppose that (2.2) holds. Then, sequence {tn} is increasing, bounded from above by 1
L0

and
converges to its unique least upper bound t∗, which satisfies

ν ≤ t∗ ≤
1
L0

.
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The following is an obvious and useful extension of Lemma 2.1.

Lemma 2.3. Suppose that there exists N = 0, 1, 2, . . . such that

t0 < s0 < t1 < s1 < · · · < sN < tN+1 <
1
L0

and

hN
= L2(sN − tN) ≤

1
2
,

(2.43)

where L2 is given in (2.3). Then, scalar sequence {tn} given in (2.4) is well defined, increasing, bounded from
above by

t∗∗

N =
sN − tN
1 − α

and converges to its unique least upper bound t∗N which satisfies

ν ≤ t∗N ≤ t∗∗

N .

Moreover, estimates (2.7)–(2.10) hold with sN − tN replacing n for n ≥ N. Notice that if N = 0, we
obtain (1.11) and for N = 1 we obtain (1.12) [8].

3. Majorizing sequences for the two-step Newton method (1.4)

In this section we present majorizing sequences for the two-step method (1.4) along the lines of
Section 2.

Lemma 3.1. Let L0 > 0, L ≥ L0 and ν > 0 be given parameters. Set

α =
L

2L0 + L
. (3.1)

Suppose that

h5 = L5ν ≤
1
2
, (3.2)

where

L5 =
1
4


L + 3L0 +


(L + 3L0)2 + L(L + 4L0)


. (3.3)

Then, scalar sequence {tn} given by
t0 = 0, s0 = ν,

tn+1 = sn +
L(sn − tn)2

2(1 − L0tn)

sn+1 = tn+1 +
L[(tn+1 − sn) + 2(sn − tn)]

2(1 − L0tn+1)
(tn+1 − sn) for each n = 0, 1, 2, . . .

(3.4)

is well defined, increasing, bounded from above by

t∗∗
=

ν

1 − α
(3.5)

and converges to its unique least upper bound t∗ which satisfies

ν ≤ t∗ ≤ t∗∗. (3.6)



544 Á.A. Magreñán Ruiz, I.K. Argyros / Journal of Complexity 30 (2014) 533–553

Moreover, the following estimates hold

tn+1 − sn ≤ α(sn − tn) ≤ α2n+1ν, (3.7)

sn − tn ≤ α(tn − sn−1) ≤ α2nν (3.8)

t∗ − sn ≤
α2nν

1 − α
(3.9)

and

t∗ − tn ≤
α2nν

1 − α
+ α2nν. (3.10)

Proof. We first notice that α ∈ [
1
3 , 1) by (3.1). As in Lemma 2.1 we shall show that

L(sk − tk)
2(1 − L0sk)

≤ α (3.11)

and

L(tk+1 − sk) + 2L(sk − tk)
2(1 − L0tk+1)

≤ α. (3.12)

If k = 0, (3.11) is satisfied, if

1
4
(2L0 + L)ν ≤

1
2

which is true, since 2L0+L
4 ≤ L2. For k = 0, (3.12) becomes

L2ν2
2 + 2Lν

2

1 − L0


ν +

Lν2
2

 ≤
L

2L0 + L

or

L(4L0 + L)ν2
+ 4(3L0 + L)ν − 4 ≤ 0 (3.13)

which is true by (3.2). Hence, estimates (3.11) and (3.12) hold for k = 0. Then, assume they hold for
all k ≤ n. As in Lemma 2.1, we have that

tk+1 − sk ≤ α2k+1ν, (3.14)

sk+1 − tk+1 ≤ (α2)k+1ν, (3.15)

tk+1 = (1 + α)
1 − α2(k+1)

1 − α2
ν < t∗∗ (3.16)

and

sk+1 ≤ (1 + α)
1 − α2(k+1)

1 − α2
ν + α2(k+1)ν. (3.17)

In view of (3.14)–(3.16), estimate (3.11) is satisfied if

L
2
α2nν + L0α(1 + α)

1 − α2n

1 − α2
ν − α ≤ 0. (3.18)

Estimate (3.18) motivates us to define recurrent functions fk on [0, α2
] by

fk(t) =
L
2
tkν + L0

√
t(1 +

√
t)

1 − tk

1 − t
ν −

√
t. (3.19)
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Then, we have that

fk+1(t) = fk(t) +
1
2
g(t)(t − 1)tk−1ν ≤ fk(t), (3.20)

by the choice of α, where,

g(t) = 2L0
√
t(1 +

√
t) + Lt.

In view of (3.20) we have that for t = α2

fk+1(α
2) ≤ fk(α2). (3.21)

Hence, it follows from (3.21) that (3.18) is satisfied, if

f1(α2) ≤ 0 (3.22)

or

2L0 + L
2

ν ≤ 1. (3.23)

But (3.23) is true by (3.2). Similarly, (3.12) is satisfied if

L
2
α2k+1ν + Lα2kν + αL0(1 + α)

1 − α2(k+1)

1 − α2
ν − α ≤ 0 (3.24)

leading to the introduction of functions f 1k on [0, α2
] by

f 1k (t) =
L
2

√
ttkν + Ltkν +

√
tL0(1 +

√
t)

1 − tk+1

1 − t
ν −

√
t. (3.25)

Then, we have that

f 1k+1(t) = f 1k (t) + g1(t)(t − 1)tkν ≤ f 1k (t), (3.26)

where

g1(t) =
L
2

√
t + L0

√
t(1 +

√
t) + L. (3.27)

Hence, it follows from (3.26) that (3.24) is satisfied if f 10 (α2) ≤ 0, (since f 1k (α2) ≤ fk−1(α
2) ≤ · · · ≤

f 10 (α2)), which reduces to showing (3.13). The rest of the proof is identical to the proof of Lemma 2.1.
The proof of Lemma 3.1 is complete. �

Remark 3.1. Let us define sequence {t̄n} by

t̄0 = 0, s̄0 = ν, t̄1 = s̄0 +
L0(s̄0 − t̄0)2

2(1 − L0 t̄0)

s̄1 = t̄1 +
L(t̄1 − s̄0)2 + 2L0(s̄0 − t̄0)(t̄1 − s̄0)

2(1 − L0 t̄1)

t̄n+1 = s̄n +
L(s̄n − t̄n)2

2(1 − L0 t̄n)

s̄n+1 = t̄n+1 +
L[(t̄n+1 − s̄n) + 2(s̄n − t̄n)](t̄n+1 − s̄n)

2(1 − L0 t̄n+1)
for each n = 0, 1, 2, . . . .

(3.28)

Then, sequence {t̄n} is at least as tight as majorizing sequence {tn}.
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Using the sequence of modifications of sequence {tn} following Remark 2.1 we obtain in turn that
r0 = 0, q0 = L0ν,

rn+1 = qn +
b(qn − rn)2

2(1 − qn)

qn+1 = rn+1 +
b[(rn+1 − qn) + 2(qn − rn)](rn+1 − qn)

2(1 − qn+1)
.

pn+1 = mn −
b(mn − pn)2

2mn

mn+1 = pn+1 −
b[(pn+1 − mn) − 2b(pn − mn)](pn+1 − mn)

2mn+1
.

αn+1 =
bβn+1(1 − αn)(1 − αn+1) + 2bαnβn+1

2(1 − βn+1)(1 − αn)(1 − βn+1)

βn+1 =
b
2


αn

1 − αn

2

.

Hence, we arrive at the following.

Lemma 3.2. Suppose that (3.2) holds. Then, the sequence {tn} is increasing, bounded from above by 1
L0

and converges to its unique least upper bound which satisfies

ν ≤ t∗ ≤
1
L0

.

We also get the following.

Lemma 3.3. Suppose that there exists N = 0, 1, 2, . . . such that

t0 < s0 < t1 < s1 < · · · < sN < tN+1 <
1
L0

and

hN
= L5(sN − tN) ≤

1
2

(3.29)

where L5 is given in (3.3). Then, the conclusions of Lemma 2.3 hold but with sequence {tn} given by (3.4).

4. Convergence of the two-step Newton method (1.3)

Wepresent the semilocal convergence of two-stepmethod (1.3) followed by the local convergence.
FromnowonU(ω, ρ) and Ū(ω, ρ) stand, respectively, for the open and the closed ball inX with center
ω and radius ρ > 0.

First, for the semilocal convergence, we use (1.3) to obtain the identities

xn+1 − yn = [−F ′(yn)−1F ′(x0)]

F ′(x0)−1

 1

0
[F ′(xn + t(yn − xn)) − F ′(xn)](yn − xn)dt


, (4.1)

yn+1 − xn+1 = [−F ′(xn+1)
−1F ′(x0)]


F ′(x0)−1

 1

0
[F ′(yn + t(xn+1 − yn))

− F ′(yn)](xn+1 − yn)dt


. (4.2)

Moreover, if F(x∗) = F(y∗) = 0, we have that

0 = F(y∗) − F(x∗) =

 1

0
F ′(x∗

+ t(y∗
− x∗))(y∗

− x∗)dt. (4.3)

Then, using (4.1)–(4.3), it is standard to show (cf [2,3,6–8,18]) the following.
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Theorem 4.1. Let F : D ⊂ X → Y be Fréchet differentiable. Suppose that there exists x0 ∈ D and
parameters L0 > 0, L ≥ L0, ν ≥ 0 such that for each x, y ∈ D ,

F ′(x0)−1
∈ Ł(Y , X),

∥F ′(x0)−1F(x0)∥ ≤ ν,

∥F ′(x0)−1
[F ′(x) − F ′(x0)]∥ ≤ L0∥x − x0∥,

∥F ′(x0)−1
[F ′(x) − F ′(y)]∥ ≤ L∥x − y∥.

Moreover, suppose that hypotheses of Lemma 2.1, Lemma 2.2 or Lemma 2.3 hold and

Ū(x0, t∗) ⊆ D,

where t∗ is given in Lemma 2.1. Then, the sequence {xn} generated by two-stepmethod (1.3) is well defined,
remains in Ū(x0, t∗) for each n = 0, 1, 2, . . . and converges to a solution x∗

∈ Ū(x0, t∗) of equation
F(x) = 0. Moreover the following estimates hold for each n = 0, 1, 2, . . .

∥xn+1 − yn∥ ≤ t̄n+1 − s̄n,
∥yn − xn∥ ≤ s̄n − t̄n,
∥xn − x∗

∥ ≤ t∗ − t̄n

and

∥yn − y∗
∥ ≤ t∗ − s̄n

where the sequence {t̄n} is given in (2.35). Furthermore, if there exists r ≥ t∗ such that

Ū(x0, r) ⊆ D

and

L0(t∗ + r) < 2,

then, the limit point x∗ is the unique solution of equation F(x) = 0 in Ū(x0, r).

Remark 4.1. (a) The limit point t∗ can be replaced by 1
L0

or t∗∗ (given in closed form in (2.5)) in
Theorem 4.1.

(b) As already noted in the introduction the earlier results in the literature [9–27] use L0 = L in their
theorems which clearly reduce to Theorem 4.1 (if L = L0). The advantages of our approach have
already been stated in the introduction.

Second, for the local convergence we obtain the identities

yn − x∗
= [−F ′(xn)−1F ′(x∗)]


F ′(x∗)−1

 1

0
[F ′(x∗

+ t(xn − x∗)) − F ′(xn)](xn − x∗)dt


(4.4)

and

xn+1 − x∗
= [−F ′(yn)−1F ′(x∗)]


F ′(x∗)−1

 1

0
[F ′(x∗

+ t(yn − x∗)) − F ′(yn)](yn − x∗)dt


(4.5)

we can arrive at [2,3,6,8] the following.

Theorem 4.2. Let F : D ⊂ X → Y be Fréchet differentiable. Suppose that there exist x∗
∈ D and

parameters l0 > 0, l1 > 0, l > 0 such that for each x, y ∈ D ,

F(x∗) = 0,
F ′(x∗)−1

∈ Ł(Y , X),

∥F ′(x∗)−1(F ′(x) − F ′(x∗))∥ ≤ l0∥x − x∗
∥,

∥F ′(x∗)−1
[F ′(x) − F ′(x0)]∥ ≤ l1∥x − x0∥,

∥F ′(x∗)−1
[F ′(x) − F ′(y)]∥ ≤ l∥x − y∥



548 Á.A. Magreñán Ruiz, I.K. Argyros / Journal of Complexity 30 (2014) 533–553

and

Ū(x∗, R) ⊆ D,

where

R =
2

2l0 + l
.

Then, the sequence {xn} generated by two-step method (1.3) is well defined for each n = 0, 1, 2, . . .
and converges to x∗

∈ Ū(x0, R) provided that x0 ∈ U(x∗, R). Moreover the following estimates hold for
each n = 0, 1, 2, . . .

∥yn − x∗
∥ ≤

l̄∥xn − x∗
∥
2

2(1 − l0∥xn − x∗∥)

and

∥xn+1 − x∗
∥ ≤

l∥yn − x∗
∥
2

2(1 − l0∥yn − x∗∥)

where

l̄ =

l1 if n = 0
l if n => 0.

Remark 4.2. If l1 = l = l0 the result reduces to [20,26] in the case of the Newton method. The radius
is then given by R0 =

2
3l .

If l1 = l the result reduces to [2,3,6] in the case of the Newton method. The radius is again given
by R. However, if l1 < l, then the error bounds are finer (see l̄ and ∥y0 − x∗

∥).

5. Convergence of the two-step Newton method (1.4)

As in Section 4, we obtain the following identities for the semilocal convergence, but using (4.1),
(4.3) and

yn+1 − xn+1 = [−F ′(xn+1)
−1F ′(x0)]


F ′(x0)−1

 1

0
[F ′(yn + t(xn+1 − yn))

− F ′(yn)](xn+1 − yn)dt


. (5.1)

Then, again we arrive at the following.

Theorem 5.1. Let F : D ⊂ X → Y be Fréchet differentiable. Suppose that there exist x0 ∈ D and
parameters L0 > 0, L ≥ L0, ν ≥ 0 such that for each x, y ∈ D ,

F ′(x0)−1
∈ Ł(Y , X),

∥F ′(x0)−1F(x0)∥ ≤ ν,

∥F ′(x0)−1
[F ′(x) − F ′(x0)]∥ ≤ L0∥x − x0∥,

∥F ′(x0)−1
[F ′(x) − F ′(y)]∥ ≤ L∥x − y∥.

Moreover, suppose that hypotheses of Lemma 3.1, Lemma 3.2 and Lemma 3.3 hold and

Ū(x0, t∗) ⊆ D,

where t∗ is given in (3.5). Then, the sequence {xn} generated by two-step method (1.4) is well defined,
remains in Ū(x0, t∗) for each n = 0, 1, 2, . . . and converges to a solution x∗

∈ Ū(x0, t∗) of equation
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F(x) = 0. Furthermore, the following estimates hold for each n = 0, 1, 2, . . .

∥xn+1 − yn∥ ≤ t̄n+1 − s̄n,
∥yn − xn∥ ≤ s̄n − t̄n,
∥xn − x∗

∥ ≤ t∗ − t̄n
and

∥yn − y∗
∥ ≤ t∗ − s̄n

where the sequence {t̄n} is given in (3.28). If there exists r ≥ t∗ such that

Ū(x0, r) ⊆ D

and

L0(t∗ + r) < 2,

then, the limit point x∗ is the unique solution of equation F(x) = 0 in Ū(x0, r).

Remark 5.1. These remarks as similar to the Remarks in 4.2 are omitted.

The identities for the local convergence case using (1.4) are (4.4) and

xn+1 − x∗
= [−F ′(xn)−1F ′(x∗)]


F ′(x∗)−1

 1

0
[F ′(x∗

+ t(yn − x∗)) − F ′(yn)](yn − x∗)dt

+ (F ′(yn) − F ′(xn))(yn − x∗)


to obtain the following.

Theorem 5.2. Let F : D ⊂ X → Y be Fréchet differentiable. Suppose that there exist x∗
∈ D and

parameters l0 > 0, l1 > 0, l > 0 such that for each x, y ∈ D ,

F(x∗) = 0,
F ′(x∗)−1

∈ Ł(Y , X),

∥F ′(x∗)−1(F ′(x) − F ′(x∗))∥ ≤ l0∥x − x∗
∥,

∥F ′(x∗)−1
[F ′(x) − F ′(x0)]∥ ≤ l1∥x − x0∥,

∥F ′(x∗)−1
[F ′(x) − F ′(y)]∥ ≤ l∥x − y∥

and

Ū(x∗, R) ⊆ D,

where

R =
2

2l0 + 5l
.

Then, the sequence {xn} generated by two-step method (1.4) is well defined for each n = 0, 1, 2, . . .
and converges to x∗

∈ Ū(x0, R) provided that x0 ∈ U(x∗, R). Moreover the following estimates hold for
each n = 0, 1, 2, . . .

∥yn − x∗
∥ ≤

l̄∥xn − x∗
∥
2

2(1 − l0∥xn − x∗∥)

and

∥xn+1 − x∗
∥ ≤

l[∥yn − x∗
∥ + 2∥yn − xn∥]∥yn − x∗

∥

2(1 − l0∥yn − x∗∥)

where l̄ is given in Theorem 4.2.
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Remark 5.2. We are not aware of any results in the literature involving the local convergence of the
two-step Newton method (1.4). But if there is, see Remark 4.2.

6. Numerical examples

In the semilocal convergence the old convergence conditions are not satisfied but the new
conditions are satisfied. Moreover in the local convergence case our convergence ball is larger than
the older ones. We present six numerical examples. The first four involve the semilocal convergence
and the last two the local convergence.
Example 1: Semilocal convergence for the two-step Newton method (1.3). In the following example, we
consider the real function

x3 − 0.49 = 0. (6.1)

We take the starting point x0 = 1 and we consider the domain Ω = B(x0, 0.5). In this case, we obtain

ν = 0.17, (6.2)
L = 3 (6.3)

and

L0 = 2.5. (6.4)

Notice that Kantorovich hypothesis Lν ≤ 0.5 is not satisfied, but condition (2.2) in Lemma 2.1 is sat-
isfied since

L1 = 2.66333 · · ·

and

h1 = L1ν = 0.452766 · · · ≤ 0.5.

So, the two-step Newton method starting from x0 ∈ B(x0, 0.5) converges to the solution of (6.1) from
Theorem 4.1.
Example 2: Semilocal convergence for the two-step Newtonmethod (1.3). Let X = Y = C[0, 1], the space
of continuous functions defined in [0, 1] equipped with the max-norm. Let Ω = {x ∈ C[0, 1]; ∥x∥ ≤

R}, such that R > 1 and F defined on Ω and given by

F(x)(s) = x(s) − f (s) − λ

 1

0
G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, λ is a real constant and the kernel G is the Green function

G(s, t) =


(1 − s)t, t ≤ s,
s(1 − t), s ≤ t.

In this case, for each x ∈ Ω, F ′(x) is a linear operator defined on Ω by the following expression:

[F ′(x)(v)](s) = v(s) − 3λ
 1

0
G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f (s) = 1, it follows ∥I − F ′(x0)∥ ≤ 3|λ|/8. Thus, if |λ| < 8/3, F ′(x0)−1 is defined
and

∥F ′(x0)−1
∥ ≤

8
8 − 3|λ|

.

Moreover,

∥F(x0)∥ ≤
|λ|

8
,

∥F ′(x0)−1F(x0)∥ ≤
|λ|

8 − 3|λ|
.
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On the other hand, for x, y ∈ Ω we have

[(F ′(x) − F ′(y))v](s) = 3λ
 1

0
G(s, t)(x(t)2 − y2(t))v(t) dt.

Consequently,

∥F ′(x) − F ′(y)∥ ≤ ∥x − y∥
3|λ|(∥x∥ + ∥y∥)

8
≤ ∥x − y∥

6R|λ|

8
,

∥F ′(x) − F ′(1)∥ ≤ ∥x − 1∥
1 + 3|λ|(∥x∥ + 1)

8
≤ ∥x − 1∥

1 + 3(1 + R)|λ|

8
.

Choosing λ = 1 and R = 2.6, we have

ν =
1
5
,

L = 3.12

and

L0 = 2.16.

Hence, condition (1.7), 2Lν = 1.248 ≤ 1 is not satisfied, but condition (2.2) L1ν = 0.970685 ≤ 1 is
satisfied. We can ensure the convergence of {xn} by Theorem 4.1.
Example3: Semilocal convergence for the two-stepNewtonmethod (1.4). LetX = Y = C[0, 1], equipped
with the max-norm. Consider the following nonlinear boundary value problem

u′′
= −u3

− γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s +

 1

0
Q(s, t) (u3(t) + γ u2(t)) dt (6.5)

where, Q is the Green function:

Q(s, t) =


t (1 − s), t ≤ s
s (1 − t), s < t.

We observe that

max
0≤s≤1

 1

0
|Q(s, t)| dt =

1
8
.

Then problem (6.5) is in the form (1.1), where, F : D −→ Y is defined as

[F(x)] (s) = x(s) − s −

 1

0
Q(s, t) (x3(t) + γ x2(t)) dt.

Set u0(s) = s and D = U(u0, R0). It is easy to verify that U(u0, R0) ⊂ U(0, R0 + 1) since ∥u0∥ = 1.
If 2 γ < 5, the operator F ′ satisfies conditions of Theorem 5.1 with

ν =
1 + γ

5 − 2 γ
, L =

γ + 6 R0 + 3
4(5 − 2 γ )

, L0 =
2 γ + 3 R0 + 6
8(5 − 2 γ )

.

Note that L0 < L. Choosing R0 = 1 and γ = 0.6, condition (1.16) 4+
√
21

4 Lν = 0.570587 · · · ≤ 0.5
is not satisfied, but condition (3.2) is satisfied as

1
4


3L0 + L +


(3L0 + L)2 + L(4L0 + L)


ν = 0.381116 · · · ≤ 0.5.

So, we can ensure the convergence of {xn} by Theorem 5.1.
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Example 4: Semilocal convergence for the two-step Newton method (1.4). Let X = [−1, 1], Y = R, x0 =

0 and F : X → Y be the polynomial:

F(x) =
1
6
x3 +

1
6
x2 −

5
6
x +

1
9
.

In this case, since ∥F ′(0)−1F(0)∥ ≤ 0.13333 · · · = ν, L =
22
10 and L0 =

13
10 , condition (1.16) 4+

√
21

4

Lν = 0.629389 · · · ≤ 0.5 is not satisfied, but condition (3.2) 1
4


L+3L0+


(L + 3L0)2 + L(L + 4L0)


ν =

0.447123 · · · ≤ 0.5, is satisfied. Hence, by Theorem 5.1, the sequence {xn} generated by the two step
Newton method (1.4), is well defined and converges to a solution x∗ of F(x) = 0.
Example 5: Local convergence for both two step Newton methods. Let X = Y = R3,D = U(0, 1), x∗

=

(0, 0, 0) and define the function F on D by

F(x, y, z) = (ex − 1, y2 + y, z). (6.6)

We have that for u = (x, y, z)

F ′(u) =

ex 0 0
0 2y + 1 0
0 0 1


. (6.7)

Using the norm of the maximum of the rows and (6.6)–(6.7) we see that since F ′(x∗) =

diag{1, 1, 1}, we can define parameters for the Newton method by

l = l1 = e, (6.8)

and

l0 = 2. (6.9)

Then the two-step Newton method (1.3) starting from x0 ∈ B(x∗, R∗) converges to a solution of
(6.6). Note that this radius is greater than the Rheinboldt or Traub one [26] given by R∗

TR =
2
3e <

2
4+e = R∗. Moreover, hypotheses of Theorems 5.3 hold. Note that again l0 < l. Then, the two-step
Newton method (1.4) starting from x0 ∈ B(x∗, R), where R =

2
2l0+5l =

2
4+5e , converges to x∗.

Example 6: Local convergence for both two step Newton methods. Let X = Y = C[0, 1], the space of
continuous functions defined on [0, 1], equipped with the max norm and D = U(0, 1). Define the
function F on D given by

F(h)(x) = h(x) − 5
 1

0
x θ h(θ)3 dθ. (6.10)

Then, we have:

F ′(h[u])(x) = u(x) − 15
 1

0
x θ h(θ)2 u(θ) dθ for all u ∈ D.

Using (6.10), hypotheses of Theorem 4.2 hold for x⋆(x) = 0 (x ∈ [0, 1]), l = l1 = 15 and l0 = 7.5.
Then the two-step Newton method (1.3) starting from x0 ∈ B(x∗, R∗) converges to a solution of

(6.6). Note that the radius R∗ is bigger than Rheinboldt or Traub one [26] given by R∗

TR =
2
45 < 1

15 = R∗.
Moreover, hypotheses of Theorem 5.2 hold for the same value of the constants. Note that again l0 < l.
Then, the two-step Newton method (1.4) starting from x0 ∈ B(x∗, R), where R =

2
2l0+5l =

1
45 ,

converges to x∗.
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