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A STUDY OF CONVERGENCE FOR A FOURTH-ORDER TWO-POINT

ITERATION IN BANACH SPACES

J. A . EZQUERRO AND M . A . HERNANDEZ

Abstract

We present a new convergence analysis for two-point iterations by constructing a

system of a priori error bounds for a fourth-order iterative method. We study the

convergence of this method in Banach spaces by means of recurrence relations. This

way provides some good error estimates.

1. Introduction

Consider the equation

(1) F(x)=0,

where F is a nonlinear operator from a Banach space X in another Banach space
Y. Multipoint methods are defined as iterations which use new information at
a number of points. A natural generalization of the Newton method is to apply
a multipoint scheme. Suppose that we already have the expressions of F(xk),
Ff{xk) and F'{xk)~X at a current step x^. In order to obtain a new iteration of
fourth i?-order ([8]) from Newton's method, we add one more evaluation of
F'(c\Xk + C2Λ.)~\ where c\ and ci are real constants that are independent of Xk
and yk, and yk is generated by a Newton step.

A two-point approximation scheme for all currents step n > 0 was intro-
duced in [3] by

(2) H(xn, yn) = F'(xny
ι [F'(xn +\{yn~ *„)) - F'(xn)j,
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= yn --^H(χn,yn)γ- 2H^Xn'y

for generating approximate solutions to (1).
We provide a new semilocal convergence theorem for two-point iteration

(2) on a Banach space setting. This iteration was first introduced in [3] to
approximate a locally unique solution of a nonlinear equation. Observe that (2)
can be viewed as an extension of the classical Newton method. This extension is
of great interest because its computational cost is low. It requires one function
evaluation and one inverse at each step. This method is also cheaper to use than
a two point Newton method, however the order of convergence is the same, four
(see [3]).

We use some ideas considered in [4] and [5] for one-point methods that have
managed to improve the convergence analysis given in [3] for the same method.
These ideas consist of constructing a system of real sequences so that the
convergence in Banach spaces of (2) is assured from analysing these real se-
quences. The use of real sequences simplifies more usual analysis of convergence
for iterations in Banach spaces by means of the majorizing principle [7] or the
punctual criterion [9].

In Section 2, we construct and analyse a system of real sequences, and some
properties are provided. In Section 3, we establish a convergence theorem and
also give an explicit expression for an error bound of method (2). Finally, a
well-known integral equation is considered and error bounds are obtained.

For a more detailed information, see the relevant references [1] and [2] that
deal with the monotone convergence of method (2) on a partially ordered to-
pological space setting. In paper [1] the author has found Ptak and Ptak-like
estimates for method (2).

2. General recurrence relations

Let F be a nonlinear three times Frechet-differentiable operator defined on
some open convex subset Ω of a Banach space X with values in another Banach
space Y. Let xoeΩ. and suppose that Γo = F'(xo)~ι e<£(Y,X) exists, where
J?(Y,X) is the set of bounded linear operators from Y into X.

Assume:

(c2) | |ΓoF(xo)| |<>7,

(c3) ||F"(x)||<M, xeΩ,

(c4) \\F'"(x)\\<N, xeΩ,

(c5) \\Ff"(x)-F"f(y)\\<L\\x-yl xjeΩ, L > 0.
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Let us denote A = Mβη, B = Nβη2 and C = Lβη3. Define the sequences

2A A

3 2

and

an+\ — ~Λ ~Λ 7 T T J # « + l — ~^Γan+\cn+\ >

l-Aan(cn+dn) 3

32 27[4+(l + ( 3 / 2 ) ^ ) 2 μ 3 ^ + \%ABan + \ΊC
Cn+X ~ 2Ϊ87 '

3

for all n > 0.

Based on the above, we prove the previous sequences satisfy:

[In] \\Γn\\ = \\Ff(xny
ι\\<anβ,

[Ώn] \\ΓnF(xn)\\<cnη,

[IΠn] \\H(xniyn)\\<bn,

[TVn] \\xn+ι-yn\\ <dnη,

[\n] \\xn+ι -xn\\ < (cn + dn)η,

for all n > 0. We use mathematical induction on n. It is easy to check the case
when n = 0 by initial hypotheses. Now we assume that [IΛ]-[IVΛ] are true up to
a fixed n > 1.

[I/i+i]: If it is supposed that xn,xn+\ e Ω and Aan(cn + dn) < 1, then

||/ - TnF\xn+ι)\\ < \\Tn\\ \\F\xn) - F\xn+ι)\\

< anβM\\xn+ϊ - xn\\ <Aan(cn + dn)<\

and, by the Banach lemma, Γw+i exists and

[Πw+i]: Following Argyros, Chen and Qian in [3], we have if yn e Ω

F(xn+ι) = f F'\yn + t(xn+ι - Λ ) ) ( 1 - ή dt(xn+x - yn)
2

Jo

7"(χ -X- t( v — x \\(] — A F" [ % -I t( v — Y

\2
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"(*« + t(yn - xn)) -F"[xn + - t{yn - xn) ) \ dt

x (yn - xn)H{xn, yn){yn - xn)

9 f1

+ o F"{xn + t(yn - xn)) dt(yn - xn)H(xn, yn)H{xn, yn)(yn - xn)δ Jo

and

Λ - xn)){\ - 0 - ^F" ̂  + 1 ί ( Λ - xn

f f [F'"(xn + st{yn - xH)) - F'"(xn)} dsί(l- t) dt{yn - xn)
Jo Jo

J :„) dstdt(yn - xn)

Hence, we get

(3) \\Γn+ιF(xn+ι)\\<\\Γn+ι\\\\F(xn+ι)

1

2an*
M\\xn+i-yn\\

an+\

32

(3/2)bn)
2 \1C AB

16

(3/2)bn)
2}A3a2}A3a2

n

2187

i+U

-F'{xn+λ)

2A
=bn+\.
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\\χn+2 - yn+i\\ ^ ^

-bn+\ll +-bn+ιjcn+iη = dn+{η.

\\Xn+2 ~ Xn+\\\ < \\Xn+2 ~ yn+l\\ + lljVn ~ xn+\ II < (<τi+

That completes the induction.
It is clear, from the above, that the following assumptions:

• Aan(cn + dn) < 1,

• {cn + dn} is a Cauchy sequence

are sufficient to prove the convergence of (2).

3. Convergence analysis

In this section, we analyse the sequences {an}, {bn}, {cn} and {dn} so as to
prove the convergence of (2). We first need the following lemma, whose proof is
trivial.

LEMMA 3.1. Let us define the real functions:

(χ) = 2 7 J S

1616 (1 - (3/2)x(l + (3/4)x(l + (3/2)x)))2

and

(4) ί ( x , j ) = / W I + 4 ' 1 ' " ' '

where A, B, C > 0 and denote the real pole of f by τ — 0.4337 Then the

following holds'.

(i) / is increasing for x e [0, τ) and /(0) — 0,

(ii) / ' is increasing for x > 0 and / '(0) = 0,

(iii) g(x, y) < g(x, I) for y>l,

(iv) go{x) — g{x, 1) is increasing for x e [0,τ),

(v) ^oW ^ Creasing for xe [0, τ) α«rf ^TQ(O) = 0.
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Using the sequences {an}, {bn}, {cn} and {dn} we can write

(5) bn+ι=g(bn,an), n > 0,

where g is defined in (4). Next, we give some properties of the sequences {an},
{bn}, {cn} and {dn}.

THEOREM 3.2. Let Λ e (0,1/2), B e (0,(1/(ISA))(p(A) - 17C)) and Ce
(0, p(A)/17), where

(6) p(A) = 2Ί(A - \)(2A - \)(A2 + A + 2)(Λ2 + 2Λ + 4).

(i) bk > bk+ι for all k>0,

(ii) Aak(ck + dk)<\ for all k>0,

(iii) ak > 1 /or all k>0,

(iv) αfc < ak+\ for all k > 0.

We use induction on k. For k — 0, taking into account (5), (i) is
equivalent to

27\ 1 + (1/4)(1 + (3/2)Z>o)2 + (ISABOQ -

l + (3/4)έo(l + (3/2)^o)))2 ° '

and it follows from the fact that B < (l/(\SA))(p(A) - 17C) and C < p(A)/\Ί.
As A < 1/2 and ao — 1, (iii), for k = 0, is trivial and (ii) and (iv) are easily proved
for k = 0. Now suppose that (i)—(iv) for k = 1,2,...,«— 1. By (5), Lemma 3.1
(i), (i) and (iv), for k = n — 1, we obtain (i), for k = n.

The item (ii) for A: = n is immediate from

and bn < τ, where τ = 0.4337... is the real pole of / . Finally (iii) and (iv), for
k — n, follow by recurrence and the induction is concluded. •

THEOREM 3.3. Under the assumptions of Theorem 3.2, if we denote y =
then y < 1,

4-73

(7) bnK^-bu

for all n > 2, limw bn = 0 and X ^ o bn < -f oo.

/V00/ As bι < b\, Theorem 3.2 (i), we have γ — bijb\ < 1.
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On the other hand, as b2 = γb\, from (5), it follows that ό3 = g(b2,a2) <
γ4b2, since a2 > a\. Next, by recurrence, we infer that bn < γ4"~2bn-\, and
consequently, (7) is satisfied for all n > 2. As a result, it is clear that limw bn = 0.
Finally, from Lemma 3.1 (iv)-(v) and limnbn = 0, it follows that there exists a
real number α e (0,1) and a positive integer no such that gf

0(bn) < α, for all
n > no. Thus we have bm+J < α6Πo+7_i, j > 0, as a consequence of Lemma 3.1
(iii) and Theorem 3.2 (iv). Therefore, for j > 0, bm+J <ocJbno and ΣZobn <
+ oo. •

THEOREM 3.4. Under the assumptions of Theorem 3.2, there exists K e R,
K > 1, such that an < K for all n>0.

Proof We can write

, i (3/2)6/0 +(3/4)6,(1+ (3/2)fr)) 1

f i 1 - (3/2)6,(1 + (3/4)6,(1 + (3/2)6,))J

from the definition of the sequence {an}. Taking into account

as well as the sequence {bn} is decreasing, we obtain

3 , 3 , ,, . 3(2 +A + A2)

for all i > 0. Then, as a consequence of the fact that J2^=obn < +00, it follows
that

and the proof is complete.

THEOREM 3.5. Under the assumptions of Theorem 3.2, we have

3 / A 4 " 1 / 3

for all n>\ and γ = b2/b\.

Proof Note that

As the function v(x) = 1 + (3/4)x(l + (3/2)x) is increasing for all x > 0, we get



380 J. A. EZQUERRO AND M. A. HERNANDEZ

v{bn) < 1 + (A/2)(l + A). Hence, we have

3 / A
cn + dn< — l\+-(l+

since an > 1 for all n > 0. By applying Theorem 3.3, the proof is complete.

Remark. Note that ΣZ=o(cn + dn)
 < + 0 0 follows from the previous theorem

and consequently {cn + dn} is a Cauchy sequence.

Due to the above analysis we are ready to prove the main convergence
theorem, where we denote

B(χ, r) = {y e X\ \y - JC|| < r} and B(x, r) = {y e X\ \\y - x\ < r}.

THEOREM 3.6. Let F be a nonlinear operator which is three times Frechet
differentiable in an open convex domain Ω of a Banach space X with values in a
Banach space Y. Assume that:

(a) Γo = F(xo)~l exists at some xoeΩ, | |Γ0 | | <β and \\TQF{XQ)\\ <η,

(b) \\F"(x)\\<M, \\F'"{x)\\ < N, F"\x) - F"\y)\\ < L\\x - y\\, x,yeΩ,

and B(xo, rη) a Ω, where r = limrt Σ?=o(ci + ̂ ')J

(c) Ae (0,1/2), i?e(0,(l/(18^))(^)-17C)) and C e (0,p(A)/Π), where
A = Mβη, B = Nβη2, C = Lβη3 and p(A) is defined in (6).

Then the sequence {xn}, given by (2), is well-defined, xn, yn e B(xo, rη) for all n >
0, and converges to a solution x* e B(xo,rη). Moreover the solution x* is unique
in B(xo,2/(Mβ) — rη) ΠΩ. Furthermore, the following error estimates hold for all
n>0:

(8) ||.

where γ =

Proof Under the assumptions mentioned above, it follows immediately
from the previous theorems that sequence (2) is convergent. We also have

n-\

\\xn -Xo\\ < \\Xn -Xn-l\\ + \\Xn-l ~ Xn-2\\ H + ||̂ 1 -*θ | | < J^fe + φ)η < rη.
ι=0

Hence, we obtain xnG B(xOjrη), n>0, and similarly we have yne B(xo,rη),
n>0.

If x* is the limit of sequence (2), taking into account (3) and the continuity
of F, we obtain F(x*) =0. Indeed, observe that the sequence {cn + dn} is
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decreasing as a consequence of {an} is increasing, {bn} is decreasing and v is
an increasing function. Moreover, limn(cn + dn) = 0. Consequently, limndn = 0,
since limw bn = 0. Now, we can deduce that \\mncn — 0, and the previous as-
sertion is true.

On the other hand, we have ||x«+i — xn\\ < (cn + dn)η and consequently, for
P>0,

\\Xp - Xθ\\ < \\Xp -Xp-l\\ + \\Xp-l -Xp-2\\ H h \\X\ ~ Xθ\\

< {(Cp-χ + dp-i) + {Cp-2 + 4_2) + (Co + *))7

By letting p -^ oo, we obtain ||x* — JCO|| < rη and the error estimates given by (8).
Finally, to show uniqueness, let us assume that y* e B(xo,2/(Mβ) — rη)ΠΩ

is a solution of F(x) = 0. According to Argyros, Chen and Qian [3]

0 = F(y*) - F(x*) = [ F\x* + t(y* - x*)) dt(y* - x*).
Jo

Then we only have to prove that the operator [Jo F'(x* + t(y* — x*)) di\~x exists
and therefore y* =x*. •

4. Application

We obtain, applying Theorem 3.6, an a priori error bound for a well-known
nonlinear integral equation. We consider the integral equation quoted in [6]:

1 f1

F(x)(s) = x(s) -s + -\ scos(x(ή) dt
2Jo

in the space X = C[0,1] of all continuous functions on the interval [0,1] with the
norm \\x\\ =maxJ6[o,i] \x(s)\

Since the three derivatives of F are

F\u)x(s)=x(s)-S-\ x(t)άn(u(ή)dt,

F"{u)xy{s) = -S- \l x(t)y(t)cσs(u(t))dt,
^ J

F"\u)xyz{s) = S- f ^(0^(0^(0 sin(«(0) Λ,

then M = N = L= 1/2.
Our next goal is to calculate β and η. Firstly, we obtain [Ff(u)]~ι. For

that, we take x(s) = [Ff(u)]~ιυ(s), i.e.

fi

χ(ί) sin(ι/(ί)) A.
Jo
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Now we solve the integral appearing in the last formula. So, we do

f1 f1 f1 s Γί1 1
υ(s) sin(u(s)) ds = I x(s) sin(u(s))ds -\ -sm(u(s))\\ x(ή sin(u(ή) dt \ ds.

Jo Jo J o 2 LJo J

! v(s) sin(w(V)) ds
I x{S) sm{U{S)) as = j .

Consequently,

Then

i:x(s) sin(w(V)) ds = •

= [F'(u)]-iv{s)=v(s)+-
s So v(s) sin(n(j)) ds

If we choose as initial iteration the function xo = XQ(S) — s, we have

r // M-l Jo ^ ( ^ ) s i n ^ ^
2 — sin 1 + cos 1

Hence

sin 1

2 — sin 1 4- cos 1= η.

Thus A = Mβη = 03146ΊS..., B=Nβη2 = 0.155867..., C=Lβη3= 0.077204...
and the hypotheses of Theorem 3.6 are satisfied. Therefore, taking into account
that our optimal upper error bounds are related to consecutive points, we
consider

* - xn\\ < [cn + dn)η
ι=n+\

ι=4n

to obtain the ones shown in Table 1.

Table 1

n

1

2

3

4

||x* -.

0.02628999751577572

3.9381432

2.1747787

2.0225998

X

X

X

lo-
7

lo-
26

10
-i03
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