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1. Introduction

The study of the concavity and convexity of a real function is an old
problem studied by the mathematicians. It is perfectly known when a function
is concave or convex. However, it is not so developed how to measure this
concavity or convexity. The degrees of convexity introduced by Jensen and
Popoviciu [4] are interesting from the theoretical standpoint, but their practical
application is too di�cult.

Another measure of the convexity is suggested by Bohr±Mollerup's Theo-
rem [3]. In this result the concept of log-convex function appears that is, a
function whose logarithm is a convex function. The degree of logarithmic
convexity, introduced in Ref. [7], is a measure of this kind of convexity. Let
u : X � R! R be a concave, twice di�erentiable function on an interval X and
f 2 C�m��V �, the class of functions with m continuous derivatives, m P 2.
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Assume that f is a convex function on a neighbourhood V of x0, and
y0 � f �x0� 2 X. It is known that the curvature of a function f at x0 [10] is given
by the expression

K�f ��x0� � f 00�x0�
1� f 0�x0�2
h i3=2

:

If u0�y0� � 1 then K�u � f ��x0� < K�f ��x0�; since

�u � f �0�x0� � u0�y0�f 0�x0�; �1�

�u � f �00�x0� � u00�y0�f 0�x0�2 � u0�y0�f 00�x0�: �2�
So, we can say that when we compose a convex function with a concave one,

we obtain a function ``less convex''. The index constructed in this paper
measures the number of times that f must be composed with the operator u to
get a concave function.

Next, we make a similar study considering the action of a convex operator
on the set of concave functions in C�m��V �; m P 2.

As an application of this index, we obtain convergence results of the Halley
method in the complex plane and Banach spaces.

2. u-convex functions

Before de®ning u-convex functions we give the following de®nitions.

De®nition 2.1. Let f 2 C�m��V �; m P 2. We say that
(A) f is a strictly convex function at x0 if f 00�x0� > 0.
(B) f is a non-strictly convex function at x0 if there exists an even number

k 2 N such that f 00�x0� � � � � � f �kÿ1��x0� � 0 and f �k��x0� > 0.
(C) f has a strong minimum at x0 if f 0�x0� � 0 and f 00�x0� > 0.
(D) f has a non-strong minimum at x0 if f 0�x0� � f 00�x0� � � � � � f �kÿ1��x0� �

0 and f �k��x0� > 0 where k is an even number.

Analogously to De®nition 2.1 we can give the concepts of strictly or non-
strictly concave function and a strong or non-strong maximum.

De®nition 2.2. Let u be a concave function. With the above notation, f is a u-
convex function at x0 if u � f is a convex function at x0.

Next we give an analytic characterization of the u-convex functions. Notice
that if u is a decreasing function in a neighbourhood of y0; u0�y0�6 0, then u �
f will be always a concave function. The same result is obtained if u is a non-
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strictly concave function at y0 � f �x0�, because u00�y0� � 0. Therefore, consider
u to be an increasing and strictly concave function in a neighbourhood W of
y0 �u0�y� > 0 and u00�y� < 0 in W ).

Taking into account (A), (B) and the di�erent types of convexity, we get the
following result.

Theorem 2.3. Let x0 be such that f 0�x0� 6� 0.
(i) If f is a strictly convex function at x0, then we have:

(a) f is a strictly u-convex function at x0 if and only if

ÿ u0�y0�f 00�x0�
u00�y0�f 0�x0�2

> 1:

(b) If f is a non-strictly u-convex function at x0; then

ÿ u0�y0�f 00�x0�
u00�y0�f 0�x0�2

� 1: �3�

(ii) If f is a non-strictly convex function at x0, then f is not u-convex.

Proof. (a) and (b) follow from (A) and (B). As f 00�x0� � 0, we obtain �u �
f �00�x0� � u00�y0�f 0�x0�2 < 0; thus (ii) holds. �

As we can see in the following example, the condition (3) is not su�cient for
the function f to be non-strictly u-convex.

Example 1. Consider the functions

f1�x� � exp
x4

4
� x

� �
; f2�x� � exp xÿ x4

4

� �
;

f3�x� � exp
x3

3
� x

� �
and u�x� � log x:

These functions satisfy the condition (3) at x0. Denote Fi � u � fi, for i � 1; 2; 3,
respectively. Fig. 1 shows that F 001 �0� > 0; F 002 �0� < 0 and F3 has an in¯exion
point at x0.

If x0 is a minimum for f then

lim
x!x0

ÿ u0�f �x��f 00�x�
u00�f �x��f 0�x�2 � �1:

f has a strong minimum at x0 if and only if u � f has a strong minimum at x0,
and f has a non-strong minimum at x0 if and only if u � f has a non-strong
minimum at x0.
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Now we de®ne an index to measure of convexity of a function at each point.
It is de®ned as the number of times that we need to apply the concave operator
u to obtain a concave function. For this, denote N �F ��x� � F �x� ÿ F �x0� �
f �x0� and de®ne the following sequences:

F1�x� � u � f �x�; G1�x� � N �u � f ��x�;
F2�x� � u � G1�x�; G2�x� � N �F2��x�;

..

. ..
.

Fn�x� � u � Gnÿ1�x�; Gn�x� � N �Fn��x�:
Notice that Fk�x0� � u � f �x0� and Gk�x0� � f �x0� for each n 2 N. To mea-

sure the resistance of f to be ``concaved'' by the operator u, we study the
convexity of the functions Fn at x0. So we introduce the concept of nÿ u-
convex function, which is a generalization of the u-convex function that we
have analysed before.

Fig. 1. Example 1.
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De®nition 2.4. f is an nÿ u-convex function at x0 if Fn is convex at x0. If f is
nÿ u-convex function at x0 for each n 2 N, will say that f is inde®nitely u-
convex.

Next, we give an analytic characterization of these concepts and obtain an
expression for the successive derivatives of the function Fn, for each n 2 N. The
proofs follow inductively.

Lemma 2.5. For each n 2 N, we have
(i) F 0n�x0� � u0�y0�nf 0�x0�:
(ii) F 00n �x0� � u00�y0�u0�y0�nÿ1�Pnÿ1

k�0u
0�y0�k�f 0�x0�2 � u0�y0�nf 00�x0�:

Let us observe that if f is nÿ u-convex function at x0, then f is k ÿ u-
convex at x0 for each 16 k6 n.

If Fn is non-strictly convex, we can compute the derivatives of Fn from (A)
and (B) by recurrence. We have

F �k�1�
n �x� �

Xk

t�0

k

t

� �
�u0�Gnÿ1�x����t�F �kÿt�1�

nÿ1 �x�: �4�

Now we characterize the concept of nÿ u-convex function at x0. We
start this study for x0 being a minimum of f . When x0 is not a critical point
of f , there are two situations: f is strictly convex at x0 or f is non-strictly
convex.

Theorem 2.6. With the above notation, we have
(I) Let x0 be a minimum for f .

(i) If x0 is a minimum for f, then x0 is a minimum of the same type for Fn, for
each n 2 N.
(ii) x0 is a minimum for f if and only if f is inde®nitely u-convex at x0.

(II) Let f be a strictly convex function at x0, with f 0�x0� 6� 0, then
(i) IfXn

k�0

u0�y0�k>�a� ÿ u0�y0�f 00�x0�=u00�y0�f 0�x0�2
� �

>
�b�

Xnÿ1

k�0

u0�y0�k;

then Fn is strictly convex at x0 and Fn�1 is strictly concave at x0. Therefore, f
is nÿ u-convex and is not �n� 1� ÿ u-convex.
(ii) If ÿ�u0�y0�f 00�x0�=u00�y0�f 0�x0�2� �

Pnÿ1
k�0 u0�y0�k, then f is �nÿ 1� ÿ u-

convex at x0.
Moreover, Fnÿ1 is strictly convex at x0, and Fn�1 is strictly concave at x0.

Proof. The results of I follow using induction and taking into account (4). To
prove II, by Lemma 2.5, (ii), we have
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F 00n �x0�
u00�y0�u0�y0�nÿ1f 0�x0�2

�
Xnÿ1

k�0

u0�y0�k � u0�y0�f 00�x0�
u00�y0�f 0�x0�2

< 0

from (b), then it follows F 00n �x0� > 0 so, Fn is strictly convex.
From (a) and in a similar way we can derive that Fn�1 is a strictly concave

function. Then (i) holds.
To prove (ii), from the hypothesis we have that

Fnÿ1�x0� � ÿu00�y0�u0�y0�2nÿ3f 0�x0�2 > 0

and as u00�y0� < 0 we obtain that Fnÿ1 is a strictly concave function. �

From this last result, it is clear that the quantity ÿ u0�y0�f 00�x0�=�
u00�y0�f 0�x0�2� and its relation with s �Pnÿ1

k�0 u0�y0�k, de®nes the u-convexity
degree of f at x0 as the natural number n such that Fn is a convex function and
Fn�1 is not a convex function. Taking into account the di�erents values of s it
seems natural to normalize the operator u in the form u0�y0� � 1. This nor-
malization does not alter the geometric properties of u, that is, u is increasing
and a concave function in a neighbourhood W of y0.

The geometric interpretation of the u-convexity degree in relation to the
curvature becomes clear. Thus, given the function u, we consider W�y� �
u�y�=u0�y0� and we repeat the previous process with W. Computing, as before,
the sequences

Hn�x� � W � Knÿ1�x�; where Kn�x� � N �Hn��x�;

H1�x� � W � f �x� and K1�x� � N �H1��x�;
we derive the following result, similar to the last theorem.

Corollary 2.7. Consider f to be a strictly convex function at x0, and f 0�x0� 6� 0,
then

(i) If it is veri®ed that

n� 1 >
ÿ1

W00�y0�
� �

f 00�x0�
f 0�x0�2

> n;

then, Hn is strictly convex at x0 and Hn�1 is strictly concave at x0. Therefore, f
is nÿW-convex and is not �n� 1�ÿW-convex.
(ii) If �ÿ1=W00�y0��� f 00�x0�=f 0�x0�2� � n; then f is �nÿ 1�ÿW-convex at x0 and
is not �n� 1� ÿW-convex, being Hnÿ1 strictly convex and Hn�1 strictly concave
at x0: �

It is immediate to prove the next relation between the curvatures of
the functions Gi: K�f ��x0� > K�G1��x0� > K�G2��x0� > � � � > K�Gn��x0�P 0 >
K�Gn�1��x0� > � � �
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Example 2. Consider the family of convex functions fa�x� � 1
2

exp�xa ÿ 1� for
a 2 Rÿ f0; 1g and x0 � 1. If we take u�y� � log y then y0 � f �x0� � 1

2
and

W�y� � log y=2. In this situation we obtain that

ÿ1

W00�y0�
� �

f 00a �x0�
f 0a�x0�2

� 2ÿ 1

a
:

We obtain di�erent values for this quantity according to the values of a.
From these quantities we know which in terms of the sequence fHng are convex
functions. For example, if we consider a � ÿ2, then we obtain that H1 and H2

are convex and H3 is a concave function (see Fig. 2),

H1�x� � 1

2

1

x2
ÿ 1ÿ log 2

� �
; K1�x� � 1

2x2
;

H2�x� � ÿ log 2

2
ÿ log x; K2�x� � 1

2
ÿ log x

H3�x� � 1

2
log

1

2
ÿ log x

� �
:

Moreover, it is easy to prove that (see Fig. 3)

K�f ��1� > K�H1��1� > K�H2��1� > 0 > K�H3��1�:
Thus, we can de®ne the following.

De®nition 2.8. We call u-convexity degree of f at x0 to the real number given by
the expression

Fig. 2. Example 2.
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Uu�f ��x0� � ÿ1

W00�y0�
f 00�x0�
f 0�x0�2

; �5�

if x0 is not a minimum for f . In this case Uu�f ��x0� � �1:

Making some calculations in Eq. (5), we have

Uu�f ��x0� � ÿ u0�y0�
u00�y0�

f 00�x0�
f 0�x0�2

: �6�

Remarks. This quantity give us the measure of the convexity before
normalization. The above normalization does not a�ect our study, just
simpli®es it.

The next example shows that Uu�f ��x0� 2 �0;�1� and it is not bounded.

Example 3. Let the family of functions fa�x� � ÿ�1=a� log ax in [0,1], with a a
positive real number, and we consider the family of functions ub�x� �
2� xÿ bx2=2, where b is a positive real number. For x0 � 1=a we obtain y0 �
f �x0� � 0 and Uub�f ��1=a� � a=b.

From De®nition 2.7 we can derive the following properties of the u-con-
vexity degree.

Corollary 2.9. With the above notation we have
(i) For each real number r,

(a) If we denote k � W00�y0�=W00�r � y0�; then Uu�r � f ��x0� � kUu�f ��x0�.
(b) If r > 0 and we denote k � W00�y0�=W00�ry0�; then Uu�rf ��x0� �
�k=r�Uu�f ��x0�:

Fig. 3. Example 2.
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(ii) If 1=f is convex in (a), (b), then

Uu
1

f

� �
�x0� � ÿ y0

W00 1
y0

� � �2�W00�y0�y0Uu�f ��x0��:

(iii) Uu�f ��x0�P 0: Besides, Uu�f ��x0� � 0 in W if and only if f is a�ne in W,
that is F �x� � cx� d with, c; d 2 R.
(iv) Let g be a function satisfying the same conditions than f and such that g � f
is de®ned, then

Uu�g � f ��x0� � Uu�g��f �x0�� � 1

g0�f �x0��
W00�f �x0��

g�W00�f �x0��Uu�f ��x0�: �

Now, we obtain an index of convexity concerning all the concave operators.
For this, we consider a convex operator u, as before, and normalize u by the
transformation

u��y� � u�y� ÿ �u0�y0� � u00�y0��y
ÿu00�y0�

so, we obtain a new operator u� with the same geometric characteristics than u
satisfying �u��0�y0� � 1 and �u��00�y0� � ÿ1. Therefore, from Eq. (6) we obtain

Uu� �f ��x0� � f 00�x0�
f 0�x0�2

:

So we give the following de®nition.

De®nition 2.10. The convexity degree of f at x0 is the real positive number given
by the expression

U�f ��x0� � f 00�x0�
f 0�x0�2

; �7�

if x0 is not a minimum for f . In this case U�f ��x0� � �1.

It is easy to prove the following properties of this convexity degree.

Corollary 2.11. It is satis®ed:
(i) For each real number r we have

(a) U�r � f ��x0� � U�f ��x0�, that is, U�f � is invariant by translations.
(b) If r > 0, then U�rf ��x0� � U�f ��x0�=r.

(ii) If 1=f is convex in (a), (b), then

U
1

f

� �
�x0� � f �x0��2ÿ f �x0�U�f ��x0��:
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(iii) U�f ��x0�P 0. Furthermore U�f ��x0� � 0 in (a), (b) if and only if f is af-
®ne, that is, f �x� � cx� d, with c; d 2 R.
(iv) If f and g are two increasing functions, we have

U�f � g��x0�6U�f ��x0� � U�g��x0�:
(v) If f and g are two increasing functions such that g � f is de®ned, then

U�g � f ��x0� � U�g��f �x0�� � 1

g0�f �x0��U�f ��x0�: �

This results tell us that U�f � is a good measure of convexity at each point
[12].

If we consider a concave function f in a neighbourhood of the point x0, and
a convex operator u in a neighbourhood of y0 � f �x0�, we can make a similar
process to obtain the u-concavity degree of f at x0. It is given by the expression

\u �f ��x0� � ÿ u0�y0�
u00�y0�

f 00�x0�
f 0�x0�2

: �8�

As in the case of the u-convexity degree if we normalize the operator u,
making some calculations in Eq. (8) we obtain an index to measure the con-
cavity of f at x0. This one is given by the real positive number

\ �f ��x0� � ÿ f 00�x0�
f 0�x0�2

; �9�

if x0 is not a maximum. In this case \�f ��x0� � �1.
Geometrically, the concavity degree of f at x0 is the convexity degree of ÿf

at x0. Indeed from Eqs. (7) and (9) we obtain

\ �f ��x0� � U�ÿf ��x0�: �10�
From Eq. (10), it is clear that the concavity degree of f at x0 is going to have

the same properties as the convexity degree of f at x0, as we have seen in the
previous corollary.

3. Convexity and the Halley method

As a particular case of these measures of convexity, we consider the degree
of logarithmic convexity of f , Lf �x�. It is obtained taking u�x� � log x in
Eq. (6) and is given by the expression

Lf �x� � f �x�f 00�x�
f 0�x�2 : �11�

In the resolution of nonlinear scalar equations

f �x� � 0; �12�
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by iterative process, there exist methods, as the Whittaker and Newton
methods, in which the velocity of convergence depends on the convexity
or concavity of the function f [11,8]. Besides in Ref. [6], it is proved that
all iterative processes with cubical convergence have an expression of the
form

F �x� � xÿ f �x�
f 0�x�G�x�; with G�x� � H�Lf �x�� � f �x�2b�x�

where b�x� is a bounded function. In particular, for the Halley method
H�Lf �x�� � 2=�2ÿ Lf �x�� and b�x� � 0.

Now, we are going to give conditions for the convergence of the Halley
method for the solution of nonlinear scalar and complex equations by means of
the degree of logarithmic convexity of f and f 0.

Moreover we make a practical study of the Halley method where it is proved
that we can always apply this method to solve a nonlinear equation according
to the convexity of f and f 0. Next, we derive a type of Kantorovich conditions
[9] for the convergence of the Halley method for a nonlinear complex equation
by using majorizing sequences [11]. To ®nish we realize a study of this method
in Banach spaces.

From now on, we consider a real function f 2 C�m���a; b��;m P 2, satisfying
the Fourier conditions, i.e., f �a�f �b� < 0; f 0 6� 0 and the sign of f is constant
in �a; b�. Under these conditions there is only one root t� of Eq. (12) in �a; b�. We
can assume, without loss of generality, that f is a convex and strictly increasing
function in �a; b�, with f �a�f �b� < 0, because otherwise it is su�cient to change
f �t� by f �ÿt�;ÿf �t� or ÿ f �ÿt�.

Besides, for each function h, denote

M�h� � maxfh�x�jx 2 �a; b�g and m�h� � minfh�x�jx 2 �a; b�g:
Next, we will study the convergence of the sequence ftng obtained by the

Halley method which, starting at t0, is given by the expression

tn � P �tnÿ1� � tnÿ1 ÿ f �tnÿ1�
f 0�tnÿ1�

2

2ÿ Lf �tnÿ1� : �13�

Theorem 3.1. Suppose that Lf 0 �t�6 3
2
; Lf �t� < 2 in �a; b� and t0 2 �a; b�.

(i) If f �t0� > 0, then the sequence ftng is decreasing to t�.
(ii) If f �t0� < 0, then the sequence ftng is increasing to t�.

Proof. The result follows by induction, taking into account the mean value
theorem and the expression of the derivative of the function P

P 0�t� � Lf �t�2
�2ÿ Lf �t��2

�3ÿ 2Lf 0 �t��: �14�
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In both cases the sequence ftng obtained converges to a limit u, and making
n!1 in Eq. (13), we deduce f �u� � 0, then u � t�: �

Notice that the condition Lf �t� < 2 in �a; b� is not very restrictive because
Lf �t�� � 0, see Eq. (11), and Lf �t�P 0 in �t�; b�.

De®nition 3.2. Let ftng be a sequence that converges to t�. We say that ftng
oscillates about t�, if t2�jÿ1�P t2j P t�P t2j�1 P t2jÿ1 or t2jÿ1 P t2j�1 P t�P
t2j P t2�jÿ1�; for j P 0.

In the following theorems the sequence ftng oscillates about t�. Then we
need a condition to assure ftng � �a; b�.

Lemma 3.3. Assume that jP 0�t�j < 1 and jLf �t�j < 1 in �a; b�.
(i) Let t0; a 2 �a; b� be such that f �a� < 0 and f �t0� > 0. If 2f �t0�=f 0�t0�6

aÿ a, then ftng � �a; b�.
(ii) Let t0; b 2 �a; b� be such that f �b� > 0 and f �t0� < 0. If 2f �t0�=f 0�t0�P

bÿ b, then ftng � �a; b�.

Proof. (i) As t1 � P �t0�P t0 ÿ 2f �t0�=f 0�t0�P t0 ÿ a� a > a, it is clear that
t1 2 �a; t0� � �a; b�. Now we distinguish two situations, t1 < t� or t1 > t�:

(a) t1 < t� implies f �t1� < 0, then ÿ1 < Lf �t1� < 0, so t1 < t2. Moreover, we
have jt2 ÿ t�j < jt1 ÿ t�j < jt0 ÿ t�j since jP 0�t�j < 1. Therefore, t2 2 �t1; t0� �
�a; b�:

(b) If t1 > t� then t� < t1 < t0, then t1 2 �a; b� and

t2 � P �t1�P t1 ÿ 2f �t1�
f 0�t1� P t1 ÿ 2f �t0�

f 0�t0� P t0 ÿ a� a > a;

since f =f 0 is an increasing function in �t�; b�. Thus we have, t2 2 �a; t1� �
�a; t0� � �a; b�: At this moment there are two cases:

(b.1) tk 2 �t�; b� for all k � 1; . . . ; nÿ 1. By means of an analogous procedure
it is proved that tn 2 �a; t0� and ftng � �a; b�.

(b.2) If there exists tk < t� with t1; . . . ; tkÿ1 2 �t�; b�, a similar reasoning to (a)
proves that tk�1 2 �tk; t0� � �a; b�.

(ii) follows in the same way. �

From now on, we choose t0; a; b 2 �a; b� as in the Lemma 3.3.

Theorem 3.4. With the above notation, we have
(i) If Lf 0 �t� 2 �3=2; 2� and jLf �t�j < 1 in �a; b�, then the sequence ftng converges

to t�. Besides this sequence oscillates about t�.
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(ii) If Lf 0 �t� > 2 and jLf �t�j < w in �a; b�, where

w � ÿ1� �������������������������
2M�Lf 0 � ÿ 3

p
M�Lf 0 � ÿ 2

;

then ftng converges to t�. Moreover, this sequence oscillates about t�.

Proof. From Eq. (14) as Lf 0 �t� > 3=2, it follows that P 0�t� < 0. So, under the
previous hypothesis, we have jP 0�t�j < j3ÿ 2Lf 0 �t�j < 1 in �a; b�. From Lemma 3.3
we obtain that ftng � �a; b�.

Now we prove that ftng is bounded by t� and oscillates about it. For that, if
we consider t0 > t�, then t1 ÿ t� � P 0�h0��t0 ÿ t�� with h0 2 �t�; t0�, so t16 t� and
jt1 ÿ t�j < M�jP 0j�jt0 ÿ t�j. Then, by induction, it is easy to prove that
t2j P t�; t2j�16 t� and jtj�1 ÿ t�j < M�jP 0j�j�1jt0 ÿ t�j for all j P 0. Therefore, as
M�jP 0j� < 1, we obtain that fjtn ÿ t�jg is a decreasing sequence and converges
to zero. So, the result holds.

We can repeat the above proof when f �t0� < 0.
To show (ii), we know that P 0�t� < 0 and jP 0�t�j < 1 in �a; b�. Besides

jLf �t�j < w < 1 in �a; b�. Then, by Lemma 3.3, we obtain that ftng � �a; b�. And
by a similar way as in Theorem 3.1 the result holds. �

In practice, we can always apply the Halley method to solve Eq. (12) from
the previous theorem. Depending on the values of M�Lf 0 � and m�Lf 0 �, we have
the situations of Fig. 4.

(A) M�Lf 0 �6 3
2
:

(B) M�Lf 0 �6 2 and m�Lf 0 � > 3
2
:

Fig. 4. Convergence results.
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(C) 3
2
< M�Lf 0 �6 2 and m�Lf 0 �6 3

2
:

(D) M�Lf 0 � > 2 and m�Lf 0 �6 2:
(E) m�Lf 0 � > 2:
Notice that, in the situations (A), (B), and (E), the convergence of ftng

follows from Theorems 3.1 and 3.3. The cases (C) and (D) are studied in the
next result with some conditions for Lf .

Theorem 3.5. Consider a; t0 2 �a; b� as in the Lemma 3.3, K � maxfj3ÿ
2M�Lf 0 �j; j3ÿ 2m�Lf 0 �jg, and assume that M�jLf �j� < 2=�1� ����

K
p �.

(i) If 3
2
< M�Lf 0 �6 2;m�Lf 0 �6 3

2
and jLf �t�j < 1 in �a; b�, then ftng converges

to t�.
(ii) If M�Lf 0 � > 2 and m�Lf 0 �6 2, then ftng converges to t�.

Proof. In the case (i), from Eq. (14) and jLf �t�j < 1 we derive

jP 0�t�j < M�jLf �j�2K

�2ÿM�jLf �j��2
;

so, jP 0�t�j < 1 in �a; b� and, by Lemma 3.3, ftng � �a; b�:
In order to prove (ii), in that situation we have K > 1, therefore M�jLf j� < 1.

Thus jLf �t�j < 1 in �a; b�. Now we have to prove that jP 0�t�j < 1 in �a; b� i.e.
�K ÿ 1�M�jLf j�2 � 4M�jLf j� ÿ 4 < 0. That follows by the hypothesis that
0 < M�jLf j� < 2=�1� ����

K
p �.

In both cases, (i) and (ii), we can ®nish the proof in a way similar to The-
orem 3.4. �

Notice that if f �t0� < 0, the previous result is also true, with analogous
conditions.

So, we can always apply the Halley method to solve Eq. (12), with some
restrictions according to the values of Lf �t� in �a; b�. But, since Lf �t�� � 0,
see Eq. (11), these results can always be applied in a neighbourhood of the
root t�.

Numerical example: To illustrate this convergence study for the Halley
method, we consider the equation f �t� � ÿ8� et2ÿ4 � 0 with �a; b� � �1; 5�. We
have

Lf �t� � �1� 2t2��ÿ8� et2ÿ4�
2t2 et2ÿ4

and Lf 0 �t� � 2t2�3� 2t2�
�1� 2t2�2 :

As we can show Lf 0 �t�6 3
2

and Lf �t� < 2 in �0;�1�. So, we can take as t0 any
point in [1,5] such that f �t0� > 0. Taking t0 � 4, by Theorem 3.1 we obtain that
the sequence ftng given by Eq. (13) is decreasing and converges to the root t� �
2:465652356209171 of f �t� � 0 (see Table 1).
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4. Kantorovich type conditions for the Halley method in the complex plane

Denote by D a non-empty convex open subset of C and f an holomorphic
complex function in D. We will solve

f �z� � 0: �15�
In this section we give a result on convergence and uniqueness of the solution
for Eq. (15). To do that, we use the Halley method in the complex plane. We
assume that f satis®es some Kantorovich type conditions [2], we use the ma-
jorizing theory [11] and the results obtained in Section 3 for scalar equations.

Starting from z0 2 D, the Halley iteration fzng is given by

zn � F �znÿ1� � znÿ1 ÿ f �znÿ1�
f 0�znÿ1�

2

2ÿ Lf �znÿ1� : �16�

We try to prove the convergence of the sequence fzng to a root z� of Eq. (15).

First, assume that jf �z0�=f 0�z0�j6 g, with g6 1
2
, and denote by t� � 1ÿ��������������

1ÿ 2g
p

the smallest root of p�t� � 0, for p�t� � t2 ÿ 2t � 2g.

Lemma 4.1. If t0 � 0, the sequence ftng given by

tn � P �tnÿ1� � tnÿ1 ÿ p�tnÿ1�
p0�tnÿ1�

2

2ÿ Lp�tnÿ1� �17�

is increasing and converges to t�.

Proof. Consider q�t� � p�ÿt� � t2 � 2t � 2g. This is an increasing convex
function in [ÿ1,0]. Then if s0 � 0, the sequence

sn � snÿ1 ÿ q�snÿ1�
q0�snÿ1�

2

2ÿ Lq�snÿ1�
is decreasing to 1ÿ ��������������

1ÿ 2g
p

from Theorem 3.1, since Lq0 �t� � 06 3
2

and Lq�t� <
2 in [ÿ1,0].

Table 1

Halley method

Iteration tn

0 4.000000000000000

1 3.741961670527600

2 3.465034280857143

3 3.165567038560662

4 2.846385484142443

5 2.563813967367478

6 2.467671172927391

7 2.465652373241162

8 2.465652356209171

9 2.465652356209171
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On the other hand, as tn � ÿsn for each n 2 N, the result holds. �

Denote B�a; r� � fz 2 C : jzÿ aj < rg and B�a; r� � fz 2 C : jzÿ aj6 rg for
a 2 C and r 2 �0;�1�.

Theorem 4.2. Under the above conditions assume that there exists a P 1 such that
(i) jLf �z�j6 Lp�t�=a when jzÿ z0j6 t ÿ t0;

(ii) jLf 0 �z�j 2 B�3=2; 3a2=2� for all z 2 B�z0; t��:
Then, the sequence fzng given by Eq. (16) is well de®ned, lies in B�z0; t�� and

converges to the only root z� of Eq. (15) in B�z0; t��. Besides jz� ÿ znj6 t� ÿ tn.

Proof. Let ftng be the real sequence de®ned in Lemma 4.1. Following Ref. [9]
the sequence ftng majorizes fzng provided that

(a) jF �z0� ÿ z0j6 P�t0� ÿ t0;
(b) jF 0�z�j6 P 0�t� when jzÿ z0j6 t ÿ t0:
Taking into account (i),

jF �z0� ÿ z0j � f �z0�
f 0�z0� 1� Lf �z0�

2

� ����� ����
and P �0� ÿ 0 � 2g=2ÿ g, then (a) holds.

On the other hand, by Eq. (14), (i) and (ii), we can derive (b). The
uniqueness is clear since P �t�� � t� and t� is the only root of p�t� � 0 in
�0; t��: �

Notice that the convergence of this iterative process does not depend on the
initial point z0 2 D. Indeed, if g > 1

2
, we can consider p�t� � t2 ÿ 2gt � g2 ÿ 1

4
,

and obtain, like in Lemma 4.1, that the sequence given by Eq. (17) is increasing
to gÿ 1

2
, for t0 � 0. So we can apply Theorem 4.2, and thus the Halley method

converges for all z0 2 D.
To ®nish, notice that we can obtain a convergence result for the Halley

method in the complex plane from Theorem 3.3. Results on uniqueness are not
given in this case.

5. Halley method in Banach spaces

Let X ; Y be Banach spaces and F : X � X ! Y be a nonlinear twice Fr�echet
di�erentiable operator in an open convex domain X0 � X. We denote by I the
identity operator on X and LF �x� the linear operator de®ned by

LF �x� � F 0�x�ÿ1F 00�x�F 0�x�ÿ1F �x� � C�x�F 00�x�C�x�F �x�; x 2 X ;

provided that C�x� � F 0�x�ÿ1
exists. This operator and its connection with

Newton's method were studied in Ref. [5].
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The Halley method for solving the equation

F �x� � 0 �18�
is de®ned, starting from x0, by

xn�1 � xn ÿ I ÿ 1

2
LF �xn�

� �ÿ1

CnF �xn�: �19�

Using majorizing sequences a convergence result for the Halley method is given
by Yamamoto in Ref. [14]. To prove this result he assumes that

(I) There exists C0 � �F 0�x0��ÿ1; x0 2 X0:
(II) kC0F �x0�k6 a and kC0F 00�x0�k6 b:
(III�) kC0�F 00�x� ÿ F 00�y��k6 kkxÿ yk for x; y 2 X0 and k P 0:
The condition (III�) reduces the Kantorovich±Altman condition [1] because

he relaxes the requirement that there exist F 000 and supfkF 000�x�k; x 2 X0g6M :
In this paper we extend the condition (III�) and we assume that
(III) kC0�F 00�x� ÿ F 00�y��k6 kkxÿ ykp

for x; y 2 X0; k P 0 and p > 0;
and the equation

f �t� � aÿ t � b
2

t2 � k
�p � 1��p � 2� t

p�2 � 0: �20�

has two positive roots r1 and r2 �r16 r2�:
Newton's method under this kind of conditions for F 0 and p 2 �0; 1� has been

studied by di�erent authors [13±15].
(IV) Besides, if p 2 �0; 1�, we assume that there exist F 000 and

kC0F 000�x�k6 ÿ f 000�t�
f 0�t0� when kxÿ x0k6 t ÿ t0:

With the previous notation, we have the following result.

Theorem 5.1. Let x0 2 X0 satisfy �I�; �II�; �III�, and �IV �. And let m > 0 be the
minimum of the function f given by Eq. (20). We denote by r1 the smallest positive
root of Eq. (20) and assume that f �m�6 0 and B�x0;m� � X0. Then, the Halley
sequence fxng given by Eq. (19) is well de®ned and converges to a solution x� of
Eq. (18) in B�x0; r1�. Moreover we also have

kx� ÿ xnk6 r1 ÿ tn; for n P 0:

Notice that the equation f 0�t� � 0 has only one positive solution m which is
a minimum of f . Therefore f �m�6 0 is a necessary and su�cient condition for
the existence of positive solutions of f �t� � 0. So

f �t� � �r1 ÿ t��r2 ÿ t�q�t�
with q�r1� 6� 0 6� q�r2�. Note that f , given by Eq. (20), is a decreasing convex
function in �0;m�; f �0� > 0 P f �m�; Lf 0 �t�6 0 in �0;m� and Lf �t�6 1=2 in �0; r1�
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as it is well known [1]. These conditions are su�cient to show the convergence
to r1 of the sequence

t0 � 0; tn�1 � tn ÿ 1� Lf �tn�
2ÿ Lf �tn�

� �
f �tn�
f 0�tn� ; n P 0; �21�

by Theorem 3.1. To prove the Theorem 5.1, we need the following previous
result.

Lemma 5.2. The sequence ftng de®ned by Eq. (21) is a majorizing sequence of
fxng given by Eq. (19), i.e. kxn�1 ÿ xnk6 tn�1 ÿ tn for n P 0:

Proof. By using induction in n, it is enough to show that the following
statements are true for all n P 0.

[In] There exists Cn � F 0�xn�ÿ1;

[IIn] kC0F 00�xn�k6 ÿ f 00�tn�
f 0�t0� ;

[IIIn] kCnF 0�x0�k6 f 0�t0�
f 0�tn� ;

[IVn] kC0F �xn�k6 ÿ f �tn�
f 0�t0� ;

[Vn] kxn�1 ÿ xnk6 tn�1 ÿ tn:

All the above statements [I0]±[IV0] are true for n � 0 by initial conditions
(I)±(IV). [V0] follows taking into account that under the previous assumptions
for f we have

kLF �x0�k6 Lf �t0� < 1

2
; for t 2 �0; r1�:

Therefore

kx1 ÿ x0k6 t1 ÿ t0 � t16 r1 < m:

Now, assuming [In]±[Vn] prove [In�1]±[Vn�1]. AsZ xn�1

x0

C0�F 00�x� ÿ F 00�x0�� dx � C0F 0�xn�1� ÿ I ÿ C0F 00�x0��xn�1 ÿ x0�

then

kC0F 0�xn�1� ÿ I ÿ C0F 00�x0��xn�1 ÿ x0�k6
Z 1

0

ktpkxn�1 ÿ x0kp�1
dt

� k
p � 1

kxn�1 ÿ x0kp�1
:
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Therefore

kI ÿ C0F 0�xn�1�k6 k
p � 1

kxn�1 ÿ x0kp�1 � bkxn�1 ÿ x0k6 1� f 0�tn�1� < 1:

Applying the Banach lemma, �C0F 0�xn�1��ÿ1
exists. Hence [In�1] and [IIIn�1] are

true. Since

kC0F 00�xn�1�k6 kkxn�1 ÿ x0kp � b6 f 00�tn�1�;
[IIn�1] is also true.

Firstly, if p P 1, using the Altman technique [1,14], and taking into account
Eq. (19), we deduce by Taylor's formula that

F �xn�1� � 1

2
F 00�xn� 1

2
CnF 0�xn�LF �xn� I ÿ 1

2
LF �xn�

� �ÿ1

CnF �xn�
" #2

�
Z 1

0

�F 00�xn � t�xn�1 ÿ xn�� ÿ F 00�xn���xn�1 ÿ xn�2�1ÿ t� dt;

and taking norms we obtain

kC0F �xn�1�k6 f �tn� Lf �tn�2
�2ÿ Lf �tn��2

� k�tn�1 ÿ tn�p�2

Z 1

0

tp�1ÿ t� dt:

Repeating the same process for the function f , we get

f �tn�1� � f �tn� Lf �tn�2
�2ÿ Lf �tn��2

� k
Z tn�1

tn

�zp ÿ tp
n��tn�1 ÿ z� dz:

Moreover it follows immediately if p P 1 that

�tn�1 ÿ tn�p�2

Z 1

0

tp�1ÿ t� dt �
Z tn�1

tn

�zÿ tn�p�tn�1 ÿ z� dz

6
Z tn�1

tn

�zp ÿ tp
n��tn�1 ÿ z� dz

and consequently, for p P 1, we have

kC0F �xn�1�k6 f �tn�1� � ÿ f �tn�1�
f 0�t0� :

Secondly, if p 2 �0; 1�, we use the same process but taking as remainder of
Taylor's formula

1

2

Z rn�1

rn

F 000�x��xn�1 ÿ xn�2 dx:

Therefore [IVn�1] is true.
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Finally, we have

kxn�2 ÿ xn�1k � ÿ I ÿ 1

2
LF �xn�1�

� �ÿ1

Cn�1F �xn�1�













6 ÿ I ÿ 1

2
Lf �tn�1�

� �ÿ1 f �tn�1�
f 0�tn�1� � tn�2 ÿ tn�1:

That completes the proof of Lemma 5.2. �

Proof of Theorem 5.1. The convergence of ftng implies the convergence of fxng
to x�, and making n!1 in [IVn] we obtain F �x�� � 0.

Besides, from [Vn] we have

kxn�s ÿ xnk6 tn�s ÿ tn; for s P 0;

and making s!1, we obtain kx� ÿ xnk6 r1 ÿ tn. Therefore, it follows that

kx� ÿ x0k6 r1 ÿ t0 � r1: �
Numerical example: To illustrate Theorem 5.1, we consider the following

di�erential equation:

y00 � 4y0 � y3 � 12; y�0� � 0 � y�1�: �22�
We divide the interval [0,1] into n subintervals and we set h � 1=n. Let fzkg be
the points of the subdivisions with

0 � z0 < z1 < � � � < zn � 1

and the corresponding values of the function

y0 � y�z0�; y1 � y�z1�; . . . ; yn � y�zn�:
Standard approximations for the ®rst and second derivatives are given re-
spectively by

y0i �
yi�1 ÿ yi

2h
; y00i �

yiÿ1 ÿ 2yi � yi�1

h2
; i � 1; 2; . . . ; nÿ 1:

Noting that y0 � 0 � yn. De®ne the operator F : Rnÿ1 ! Rnÿ1 by

F �y� � G�y� � hJ�y� � h2g�y� ÿ 12h2M ;

where

G �

ÿ2 1 0 0 . . . 0 0

1 ÿ1 1 0 . . . 0 0

0 1 ÿ2 1 . . . 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 ..
.

. . . 1 ÿ2

0BBBBB@

1CCCCCA;
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J �

0 2 0 0 . . . 0 0

ÿ2 0 2 0 . . . 0 0

0 ÿ2 0 2 . . . 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 ..
.

. . . ÿ2 0

0BBBBBBB@

1CCCCCCCA;

g�y� �

y3
1

y3
2

..

.

y3
nÿ1

0BBBB@
1CCCCA; y �

y1

y2

..

.

ynÿ1

0BBBB@
1CCCCA and M �

1

1

..

.

1

0BBBB@
1CCCCA:

Then

F 0�y� � G� hJ � 3h2

y2
1 0 . . . 0

0 y2
2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . y2
nÿ1

0BBBB@
1CCCCA

and

F 00�y� � 6h2

A1

..

.

Anÿ1

0BB@
1CCA with Aj �

0 0 . . . 0 0

..

. ..
. ..

. ..
. ..

.

0 . . . yj . . . 0

0 0 . . . 0 0

0BBBB@
1CCCCA; j � 1; 2; . . . ; nÿ 1:

Let x 2 Rnÿ1; A 2 Rnÿ1 � Rnÿ1 and de®ne the norms of x and A by

kxk � max
16 i6 nÿ1

jxij; kAk � max
16 i6 nÿ1

Xnÿ1

k�1

jaikj:

Note that for each x; y 2 Rnÿ1 we get

kF 00�x� ÿ F 00�y�k � kdiag 6h2�xi ÿ yi�k � 6h2 max
16 i6 nÿ1

jxi ÿ yij

6 6h2kxÿ yk:

We choose n � 10. As a solution would vanish at the endpoints and be positive
in the interior, a reasonable choice of initial approximation seems to be
sin px=10. This gives us the following vector,
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x0 �

0:0309017

0:0587785

0:0809017

0:0951057

0:1

0:0951057

0:0809017

0:0587785

0:0309017

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
:

We get the following results for p � 1 in Theorem 5.1,

a � kC0F �x0�k � 0:806994; b � kC0F 00�x0�k � 0:0288905;

k � 6h2kC0k � 0:355981:

Therefore, Eq. (22) becomes

0:806994 ÿ t � 0:0144452t2 � 0:0593302t3 � 0:

This equation has two positive real solutions: r1 � 0:854571 and r2 � 3:47812:
Hence by Theorem 5.1 the sequence (21) converges to a solution y� �
�y�1 ; y�1 ; . . . ; y�9� of equation f �y� � 0 in B�x0; r1�:

Finally note that so as to solve di�erential equation (22), the following in-
terpolation problem is considered,

0 1
10

2
10

. . . 9
10

1

0 y�1 y�2 . . . y�9 0

 !
and its solution is an approximation to the solution of Eq. (22).
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