# Indices of convexity and concavity. Application to Halley method 

M.A. Hernández *, M.A. Salanova<br>Department of Mathematics and Computation, University of La Rioja, C/Luis de Ulloa s/n, 26004 Logroño, Spain


#### Abstract

We define an index to measure the convexity of a convex function $f$ at each point. We use this index to establish conditions on the convergence of the Halley method in the complex plane and in Banach spaces. © 1999 Elsevier Science Inc. All rights reserved.

AMS Classification: 26A51; 47H10; 65J15 Keywords: Convex function; Nonlinear equations in Banach spaces; Third-order method; Halley method; Majorizing sequences


## 1. Introduction

The study of the concavity and convexity of a real function is an old problem studied by the mathematicians. It is perfectly known when a function is concave or convex. However, it is not so developed how to measure this concavity or convexity. The degrees of convexity introduced by Jensen and Popoviciu [4] are interesting from the theoretical standpoint, but their practical application is too difficult.

Another measure of the convexity is suggested by Bohr-Mollerup's Theorem [3]. In this result the concept of log-convex function appears that is, a function whose logarithm is a convex function. The degree of logarithmic convexity, introduced in Ref. [7], is a measure of this kind of convexity. Let $\varphi: \Omega \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a concave, twice differentiable function on an interval $\Omega$ and $f \in C^{(m)}(V)$, the class of functions with $m$ continuous derivatives, $m \geqslant 2$.

[^0]Assume that $f$ is a convex function on a neighbourhood $V$ of $x_{0}$, and $y_{0}=f\left(x_{0}\right) \in \Omega$. It is known that the curvature of a function $f$ at $x_{0}[10]$ is given by the expression

$$
K(f)\left(x_{0}\right)=\frac{f^{\prime \prime}\left(x_{0}\right)}{\left[1+f^{\prime}\left(x_{0}\right)^{2}\right]^{3 / 2}}
$$

If $\varphi^{\prime}\left(y_{0}\right)=1$ then $K(\varphi \circ f)\left(x_{0}\right)<K(f)\left(x_{0}\right)$, since

$$
\begin{align*}
& (\varphi \circ f)^{\prime}\left(x_{0}\right)=\varphi^{\prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right),  \tag{1}\\
& (\varphi \circ f)^{\prime \prime}\left(x_{0}\right)=\varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}+\varphi^{\prime}\left(y_{0}\right) f^{\prime \prime}\left(x_{0}\right) \tag{2}
\end{align*}
$$

So, we can say that when we compose a convex function with a concave one, we obtain a function "less convex". The index constructed in this paper measures the number of times that $f$ must be composed with the operator $\varphi$ to get a concave function.

Next, we make a similar study considering the action of a convex operator on the set of concave functions in $C^{(m)}(V), m \geqslant 2$.

As an application of this index, we obtain convergence results of the Halley method in the complex plane and Banach spaces.

## 2. $\varphi$-convex functions

Before defining $\varphi$-convex functions we give the following definitions.
Definition 2.1. Let $f \in C^{(m)}(V), m \geqslant 2$. We say that
(A) $f$ is a strictly convex function at $x_{0}$ if $f^{\prime \prime}\left(x_{0}\right)>0$.
(B) $f$ is a non-strictly convex function at $x_{0}$ if there exists an even number $k \in \mathbb{N}$ such that $f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(k-1)}\left(x_{0}\right)=0$ and $f^{(k)}\left(x_{0}\right)>0$.
(C) $f$ has a strong minimum at $x_{0}$ if $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$.
(D) $f$ has a non-strong minimum at $x_{0}$ if $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(k-1)}\left(x_{0}\right)=$ 0 and $f^{(k)}\left(x_{0}\right)>0$ where $k$ is an even number.

Analogously to Definition 2.1 we can give the concepts of strictly or nonstrictly concave function and a strong or non-strong maximum.

Definition 2.2. Let $\varphi$ be a concave function. With the above notation, $f$ is a $\varphi$ convex function at $x_{0}$ if $\varphi \circ f$ is a convex function at $x_{0}$.

Next we give an analytic characterization of the $\varphi$-convex functions. Notice that if $\varphi$ is a decreasing function in a neighbourhood of $y_{0}, \varphi^{\prime}\left(y_{0}\right) \leqslant 0$, then $\varphi \circ$ $f$ will be always a concave function. The same result is obtained if $\varphi$ is a non-
strictly concave function at $y_{0}=f\left(x_{0}\right)$, because $\varphi^{\prime \prime}\left(y_{0}\right)=0$. Therefore, consider $\varphi$ to be an increasing and strictly concave function in a neighbourhood $W$ of $y_{0}\left(\varphi^{\prime}(y)>0\right.$ and $\varphi^{\prime \prime}(y)<0$ in $\left.W\right)$.

Taking into account (A), (B) and the different types of convexity, we get the following result.

Theorem 2.3. Let $x_{0}$ be such that $f^{\prime}\left(x_{0}\right) \neq 0$.
(i) If $f$ is a strictly convex function at $x_{0}$, then we have:
(a) $f$ is a strictly $\varphi$-convex function at $x_{0}$ if and only if

$$
-\frac{\varphi^{\prime}\left(y_{0}\right) f^{\prime \prime}\left(x_{0}\right)}{\varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}}>1
$$

(b) If $f$ is a non-strictly $\varphi$-convex function at $x_{0}$, then

$$
\begin{equation*}
-\frac{\varphi^{\prime}\left(y_{0}\right) f^{\prime \prime}\left(x_{0}\right)}{\varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}}=1 \tag{3}
\end{equation*}
$$

(ii) If $f$ is a non-strictly convex function at $x_{0}$, then $f$ is not $\varphi$-convex.

Proof. (a) and (b) follow from (A) and (B). As $f^{\prime \prime}\left(x_{0}\right)=0$, we obtain $(\varphi \circ$ $f)^{\prime \prime}\left(x_{0}\right)=\varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}<0$, thus (ii) holds.

As we can see in the following example, the condition (3) is not sufficient for the function $f$ to be non-strictly $\varphi$-convex.

Example 1. Consider the functions

$$
\begin{aligned}
& f_{1}(x)=\exp \left(\frac{x^{4}}{4}+x\right), \quad f_{2}(x)=\exp \left(x-\frac{x^{4}}{4}\right) \\
& f_{3}(x)=\exp \left(\frac{x^{3}}{3}+x\right) \quad \text { and } \quad \varphi(x)=\log x
\end{aligned}
$$

These functions satisfy the condition (3) at $x_{0}$. Denote $F_{i}=\varphi \circ f_{i}$, for $i=1,2,3$, respectively. Fig. 1 shows that $F_{1}^{\prime \prime}(0)>0, F_{2}^{\prime \prime}(0)<0$ and $F_{3}$ has an inflexion point at $x_{0}$.

If $x_{0}$ is a minimum for $f$ then

$$
\lim _{x \rightarrow x_{0}}-\frac{\varphi^{\prime}(f(x)) f^{\prime \prime}(x)}{\varphi^{\prime \prime}(f(x)) f^{\prime}(x)^{2}}=+\infty
$$

$f$ has a strong minimum at $x_{0}$ if and only if $\varphi \circ f$ has a strong minimum at $x_{0}$, and $f$ has a non-strong minimum at $x_{0}$ if and only if $\varphi \circ f$ has a non-strong minimum at $x_{0}$.


Fig. 1. Example 1.

Now we define an index to measure of convexity of a function at each point. It is defined as the number of times that we need to apply the concave operator $\varphi$ to obtain a concave function. For this, denote $N[F](x)=F(x)-F\left(x_{0}\right)+$ $f\left(x_{0}\right)$ and define the following sequences:

$$
\begin{array}{cc}
F_{1}(x)=\varphi \circ f(x), & G_{1}(x)=N[\varphi \circ f](x), \\
F_{2}(x)=\varphi \circ G_{1}(x), & G_{2}(x)=N\left[F_{2}\right](x), \\
\vdots & \vdots \\
F_{n}(x)=\varphi \circ G_{n-1}(x), & G_{n}(x)=N\left[F_{n}\right](x) .
\end{array}
$$

Notice that $F_{k}\left(x_{0}\right)=\varphi \circ f\left(x_{0}\right)$ and $G_{k}\left(x_{0}\right)=f\left(x_{0}\right)$ for each $n \in \mathbb{N}$. To measure the resistance of $f$ to be "concaved" by the operator $\varphi$, we study the convexity of the functions $F_{n}$ at $x_{0}$. So we introduce the concept of $n-\varphi$ convex function, which is a generalization of the $\varphi$-convex function that we have analysed before.

Definition 2.4. $f$ is an $n-\varphi$-convex function at $x_{0}$ if $F_{n}$ is convex at $x_{0}$. If $f$ is $n-\varphi$-convex function at $x_{0}$ for each $n \in \mathbb{N}$, will say that $f$ is indefinitely $\varphi$ convex.

Next, we give an analytic characterization of these concepts and obtain an expression for the successive derivatives of the function $F_{n}$, for each $n \in \mathbb{N}$. The proofs follow inductively.

Lemma 2.5. For each $n \in \mathbb{N}$, we have
(i) $F_{n}^{\prime}\left(x_{0}\right)=\varphi^{\prime}\left(y_{0}\right)^{n} f^{\prime}\left(x_{0}\right)$.
(ii) $F_{n}^{\prime \prime}\left(x_{0}\right)=\varphi^{\prime \prime}\left(y_{0}\right) \varphi^{\prime}\left(y_{0}\right)^{n-1}\left[\sum_{k=0}^{n-1} \varphi^{\prime}\left(y_{0}\right)^{k}\right] f^{\prime}\left(x_{0}\right)^{2}+\varphi^{\prime}\left(y_{0}\right)^{n} f^{\prime \prime}\left(x_{0}\right)$.

Let us observe that if $f$ is $n-\varphi$-convex function at $x_{0}$, then $f$ is $k-\varphi$ convex at $x_{0}$ for each $1 \leqslant k \leqslant n$.

If $F_{n}$ is non-strictly convex, we can compute the derivatives of $F_{n}$ from (A) and (B) by recurrence. We have

$$
\begin{equation*}
F_{n}^{(k+1)}(x)=\sum_{t=0}^{k}\binom{k}{t}\left[\varphi^{\prime}\left(G_{n-1}(x)\right)\right]^{(t)} F_{n-1}^{(k-t+1)}(x) . \tag{4}
\end{equation*}
$$

Now we characterize the concept of $n-\varphi$-convex function at $x_{0}$. We start this study for $x_{0}$ being a minimum of $f$. When $x_{0}$ is not a critical point of $f$, there are two situations: $f$ is strictly convex at $x_{0}$ or $f$ is non-strictly convex.

Theorem 2.6. With the above notation, we have
(I) Let $x_{0}$ be a minimum for $f$.
(i) If $x_{0}$ is a minimum for $f$, then $x_{0}$ is a minimum of the same type for $F_{n}$, for each $n \in \mathbb{N}$.
(ii) $x_{0}$ is a minimum for $f$ if and only if $f$ is indefinitely $\varphi$-convex at $x_{0}$.
(II) Let $f$ be a strictly convex function at $x_{0}$, with $f^{\prime}\left(x_{0}\right) \neq 0$, then
(i) If
$\sum_{k=0}^{n} \varphi^{\prime}\left(y_{0}\right)^{k} \underset{\text { (a) }}{ }-\left(\varphi^{\prime}\left(y_{0}\right) f^{\prime \prime}\left(x_{0}\right) / \varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}\right)>\sum_{(\mathrm{b})}^{n-1} \sum_{k=0}^{\prime}\left(y_{0}\right)^{k}$,
then $F_{n}$ is strictly convex at $x_{0}$ and $F_{n+1}$ is strictly concave at $x_{0}$. Therefore, $f$ is $n-\varphi$-convex and is not $(n+1)-\varphi$-convex.
(ii) If $-\left(\varphi^{\prime}\left(y_{0}\right) f^{\prime \prime}\left(x_{0}\right) / \varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}\right)=\sum_{k=0}^{n-1} \varphi^{\prime}\left(y_{0}\right)^{k}$, then $f$ is $(n-1)-\varphi$ convex at $x_{0}$.
Moreover, $F_{n-1}$ is strictly convex at $x_{0}$, and $F_{n+1}$ is strictly concave at $x_{0}$.
Proof. The results of I follow using induction and taking into account (4). To prove II, by Lemma 2.5, (ii), we have

$$
\frac{F_{n}^{\prime \prime}\left(x_{0}\right)}{\varphi^{\prime \prime}\left(y_{0}\right) \varphi^{\prime}\left(y_{0}\right)^{n-1} f^{\prime}\left(x_{0}\right)^{2}}=\sum_{k=0}^{n-1} \varphi^{\prime}\left(y_{0}\right)^{k}+\frac{\varphi^{\prime}\left(y_{0}\right) f^{\prime \prime}\left(x_{0}\right)}{\varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}}<0
$$

from (b), then it follows $F_{n}^{\prime \prime}\left(x_{0}\right)>0$ so, $F_{n}$ is strictly convex.
From (a) and in a similar way we can derive that $F_{n+1}$ is a strictly concave function. Then (i) holds.

To prove (ii), from the hypothesis we have that

$$
F_{n-1}\left(x_{0}\right)=-\varphi^{\prime \prime}\left(y_{0}\right) \varphi^{\prime}\left(y_{0}\right)^{2 n-3} f^{\prime}\left(x_{0}\right)^{2}>0
$$

and as $\varphi^{\prime \prime}\left(y_{0}\right)<0$ we obtain that $F_{n-1}$ is a strictly concave function.
From this last result, it is clear that the quantity $-\left(\varphi^{\prime}\left(y_{0}\right) f^{\prime \prime}\left(x_{0}\right) /\right.$ $\left.\varphi^{\prime \prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)^{2}\right)$ and its relation with $s=\sum_{k=0}^{n-1} \varphi^{\prime}\left(y_{0}\right)^{k}$, defines the $\varphi$-convexity degree of $f$ at $x_{0}$ as the natural number $n$ such that $F_{n}$ is a convex function and $F_{n+1}$ is not a convex function. Taking into account the differents values of $s$ it seems natural to normalize the operator $\varphi$ in the form $\varphi^{\prime}\left(y_{0}\right)=1$. This normalization does not alter the geometric properties of $\varphi$, that is, $\varphi$ is increasing and a concave function in a neighbourhood $W$ of $y_{0}$.

The geometric interpretation of the $\varphi$-convexity degree in relation to the curvature becomes clear. Thus, given the function $\varphi$, we consider $\Psi(y)=$ $\varphi(y) / \varphi^{\prime}\left(y_{0}\right)$ and we repeat the previous process with $\Psi$. Computing, as before, the sequences

$$
\begin{aligned}
& H_{n}(x)=\Psi \circ K_{n-1}(x), \quad \text { where } K_{n}(x)=N\left[H_{n}\right](x), \\
& H_{1}(x)=\Psi \circ f(x) \quad \text { and } \quad K_{1}(x)=N\left[H_{1}\right](x),
\end{aligned}
$$

we derive the following result, similar to the last theorem.
Corollary 2.7. Consider $f$ to be a strictly convex function at $x_{0}$, and $f^{\prime}\left(x_{0}\right) \neq 0$, then
(i) If it is verified that

$$
n+1>\left[\frac{-1}{\Psi^{\prime \prime}\left(y_{0}\right)}\right] \frac{f^{\prime \prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)^{2}}>n
$$

then, $H_{n}$ is strictly convex at $x_{0}$ and $H_{n+1}$ is strictly concave at $x_{0}$. Therefore, $f$ is $n-\Psi$-convex and is not $(n+1)-\Psi$-convex.
(ii) If $\left[-1 / \Psi^{\prime \prime}\left(y_{0}\right)\right]\left(f^{\prime \prime}\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)^{2}\right)=n$, then $f$ is $(n-1)-\Psi$-convex at $x_{0}$ and is not $(n+1)-\Psi$-convex, being $H_{n-1}$ strictly convex and $H_{n+1}$ strictly concave at $x_{0}$.

It is immediate to prove the next relation between the curvatures of the functions $G_{i}: K(f)\left(x_{0}\right)>K\left(G_{1}\right)\left(x_{0}\right)>K\left(G_{2}\right)\left(x_{0}\right)>\cdots>K\left(G_{n}\right)\left(x_{0}\right) \geqslant 0>$ $K\left(G_{n+1}\right)\left(x_{0}\right)>\cdots$

Example 2. Consider the family of convex functions $f_{\alpha}(x)=\frac{1}{2} \exp \left(x^{\alpha}-1\right)$ for $\alpha \in \mathbb{R}-\{0,1\}$ and $x_{0}=1$. If we take $\varphi(y)=\log y$ then $y_{0}=f\left(x_{0}\right)=\frac{1}{2}$ and $\Psi(y)=\log y / 2$. In this situation we obtain that

$$
\left[\frac{-1}{\Psi^{\prime \prime}\left(y_{0}\right)}\right] \frac{f_{\alpha}^{\prime \prime}\left(x_{0}\right)}{f_{\alpha}^{\prime}\left(x_{0}\right)^{2}}=2-\frac{1}{\alpha}
$$

We obtain different values for this quantity according to the values of $\alpha$. From these quantities we know which in terms of the sequence $\left\{H_{n}\right\}$ are convex functions. For example, if we consider $\alpha=-2$, then we obtain that $H_{1}$ and $H_{2}$ are convex and $H_{3}$ is a concave function (see Fig. 2),

$$
\begin{aligned}
& H_{1}(x)=\frac{1}{2}\left[\frac{1}{x^{2}}-1-\log 2\right], \quad K_{1}(x)=\frac{1}{2 x^{2}}, \\
& H_{2}(x)=-\frac{\log 2}{2}-\log x, \quad K_{2}(x)=\frac{1}{2}-\log x \\
& H_{3}(x)=\frac{1}{2} \log \left[\frac{1}{2}-\log x\right] .
\end{aligned}
$$

Moreover, it is easy to prove that (see Fig. 3)

$$
K(f)(1)>K\left(H_{1}\right)(1)>K\left(H_{2}\right)(1)>0>K\left(H_{3}\right)(1) .
$$

Thus, we can define the following.
Definition 2.8. We call $\varphi$-convexity degree of $f$ at $x_{0}$ to the real number given by the expression


Fig. 2. Example 2.


Fig. 3. Example 2.

$$
\begin{equation*}
U_{\varphi}(f)\left(x_{0}\right)=\frac{-1}{\Psi^{\prime \prime}\left(y_{0}\right)} \frac{f^{\prime \prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)^{2}}, \tag{5}
\end{equation*}
$$

if $x_{0}$ is not a minimum for $f$. In this case $U_{\varphi}(f)\left(x_{0}\right)=+\infty$.
Making some calculations in Eq. (5), we have

$$
\begin{equation*}
U_{\varphi}(f)\left(x_{0}\right)=-\frac{\varphi^{\prime}\left(y_{0}\right)}{\varphi^{\prime \prime}\left(y_{0}\right)} \frac{f^{\prime \prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)^{2}} . \tag{6}
\end{equation*}
$$

Remarks. This quantity give us the measure of the convexity before normalization. The above normalization does not affect our study, just simplifies it.

The next example shows that $U_{\varphi}(f)\left(x_{0}\right) \in[0,+\infty)$ and it is not bounded.
Example 3. Let the family of functions $f_{\alpha}(x)=-(1 / \alpha) \log \alpha x$ in $[0,1]$, with $\alpha$ a positive real number, and we consider the family of functions $\varphi_{\beta}(x)=$ $2+x-\beta x^{2} / 2$, where $\beta$ is a positive real number. For $x_{0}=1 / \alpha$ we obtain $y_{0}=$ $f\left(x_{0}\right)=0$ and $U_{\varphi \beta}(f)(1 / \alpha)=\alpha / \beta$.

From Definition 2.7 we can derive the following properties of the $\varphi$-convexity degree.

Corollary 2.9. With the above notation we have
(i) For each real number $r$,
(a) If we denote $k=\Psi^{\prime \prime}\left(y_{0}\right) / \Psi^{\prime \prime}\left(r+y_{0}\right)$, then $U_{\varphi}(r+f)\left(x_{0}\right)=k U_{\varphi}(f)\left(x_{0}\right)$.
(b) If $r>0$ and we denote $k=\Psi^{\prime \prime}\left(y_{0}\right) / \Psi^{\prime \prime}\left(r y_{0}\right)$, then $U_{\varphi}(r f)\left(x_{0}\right)=$ $(k / r) U_{\varphi}(f)\left(x_{0}\right)$.
(ii) If $1 / f$ is convex in $(a),(b)$, then

$$
U_{\varphi}\left(\frac{1}{f}\right)\left(x_{0}\right)=-\frac{y_{0}}{\Psi^{\prime \prime}\left(\frac{1}{y_{0}}\right)}\left[2+\Psi^{\prime \prime}\left(y_{0}\right) y_{0} U_{\varphi}(f)\left(x_{0}\right)\right] .
$$

(iii) $U_{\varphi}(f)\left(x_{0}\right) \geqslant 0$. Besides, $U_{\varphi}(f)\left(x_{0}\right)=0$ in $W$ if and only if $f$ is affine in $W$, that is $F(x)=c x+d$ with, $c, d \in \mathbb{R}$.
(iv) Let $g$ be a function satisfying the same conditions than $f$ and such that $g \circ f$ is defined, then

$$
U_{\varphi}(g \circ f)\left(x_{0}\right)=U_{\varphi}(g)\left(f\left(x_{0}\right)\right)+\frac{1}{g^{\prime}\left(f\left(x_{0}\right)\right)} \frac{\Psi^{\prime \prime}\left(f\left(x_{0}\right)\right)}{g\left(\Psi^{\prime \prime}\left(f\left(x_{0}\right)\right)\right.} U_{\varphi}(f)\left(x_{0}\right) .
$$

Now, we obtain an index of convexity concerning all the concave operators. For this, we consider a convex operator $\varphi$, as before, and normalize $\varphi$ by the transformation

$$
\varphi^{*}(y)=\frac{\varphi(y)-\left[\varphi^{\prime}\left(y_{0}\right)+\varphi^{\prime \prime}\left(y_{0}\right)\right] y}{-\varphi^{\prime \prime}\left(y_{0}\right)}
$$

so, we obtain a new operator $\varphi^{*}$ with the same geometric characteristics than $\varphi$ satisfying $\left(\varphi^{*}\right)^{\prime}\left(y_{0}\right)=1$ and $\left(\varphi^{*}\right)^{\prime \prime}\left(y_{0}\right)=-1$. Therefore, from Eq. (6) we obtain

$$
U_{\varphi^{*}}(f)\left(x_{0}\right)=\frac{f^{\prime \prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)^{2}}
$$

So we give the following definition.

Definition 2.10. The convexity degree of $f$ at $x_{0}$ is the real positive number given by the expression

$$
\begin{equation*}
U(f)\left(x_{0}\right)=\frac{f^{\prime \prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)^{2}}, \tag{7}
\end{equation*}
$$

if $x_{0}$ is not a minimum for $f$. In this case $U(f)\left(x_{0}\right)=+\infty$.
It is easy to prove the following properties of this convexity degree.
Corollary 2.11. It is satisfied:
(i) For each real number $r$ we have
(a) $U(r+f)\left(x_{0}\right)=U(f)\left(x_{0}\right)$, that is, $U(f)$ is invariant by translations.
(b) If $r>0$, then $U(r f)\left(x_{0}\right)=U(f)\left(x_{0}\right) / r$.
(ii) If $1 / f$ is convex in $(a),(b)$, then

$$
U\left(\frac{1}{f}\right)\left(x_{0}\right)=f\left(x_{0}\right)\left[2-f\left(x_{0}\right) U(f)\left(x_{0}\right)\right]
$$

(iii) $U(f)\left(x_{0}\right) \geqslant 0$. Furthermore $U(f)\left(x_{0}\right)=0$ in (a), (b) if and only if $f$ is affine, that is, $f(x)=c x+d$, with $c, d \in \mathbb{R}$.
(iv) If $f$ and $g$ are two increasing functions, we have

$$
U(f+g)\left(x_{0}\right) \leqslant U(f)\left(x_{0}\right)+U(g)\left(x_{0}\right)
$$

(v) If $f$ and $g$ are two increasing functions such that $g \circ f$ is defined, then

$$
U(g \circ f)\left(x_{0}\right)=U(g)\left(f\left(x_{0}\right)\right)+\frac{1}{g^{\prime}\left(f\left(x_{0}\right)\right)} U(f)\left(x_{0}\right) .
$$

This results tell us that $U(f)$ is a good measure of convexity at each point [12].

If we consider a concave function $f$ in a neighbourhood of the point $x_{0}$, and a convex operator $\varphi$ in a neighbourhood of $y_{0}=f\left(x_{0}\right)$, we can make a similar process to obtain the $\varphi$-concavity degree of $f$ at $x_{0}$. It is given by the expression

$$
\begin{equation*}
\cap_{\varphi}(f)\left(x_{0}\right)=-\frac{\varphi^{\prime}\left(y_{0}\right)}{\varphi^{\prime \prime}\left(y_{0}\right)} \frac{f^{\prime \prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)^{2}} . \tag{8}
\end{equation*}
$$

As in the case of the $\varphi$-convexity degree if we normalize the operator $\varphi$, making some calculations in Eq. (8) we obtain an index to measure the concavity of $f$ at $x_{0}$. This one is given by the real positive number

$$
\begin{equation*}
\cap(f)\left(x_{0}\right)=-\frac{f^{\prime \prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)^{2}}, \tag{9}
\end{equation*}
$$

if $x_{0}$ is not a maximum. In this case $\cap(f)\left(x_{0}\right)=+\infty$.
Geometrically, the concavity degree of $f$ at $x_{0}$ is the convexity degree of $-f$ at $x_{0}$. Indeed from Eqs. (7) and (9) we obtain

$$
\begin{equation*}
\cap(f)\left(x_{0}\right)=U(-f)\left(x_{0}\right) . \tag{10}
\end{equation*}
$$

From Eq. (10), it is clear that the concavity degree of $f$ at $x_{0}$ is going to have the same properties as the convexity degree of $f$ at $x_{0}$, as we have seen in the previous corollary.

## 3. Convexity and the Halley method

As a particular case of these measures of convexity, we consider the degree of logarithmic convexity of $f, L_{f}(x)$. It is obtained taking $\varphi(x)=\log x$ in Eq. (6) and is given by the expression

$$
\begin{equation*}
L_{f}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}} . \tag{11}
\end{equation*}
$$

In the resolution of nonlinear scalar equations

$$
\begin{equation*}
f(x)=0 \tag{12}
\end{equation*}
$$

by iterative process, there exist methods, as the Whittaker and Newton methods, in which the velocity of convergence depends on the convexity or concavity of the function $f[11,8]$. Besides in Ref. [6], it is proved that all iterative processes with cubical convergence have an expression of the form

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)} G(x), \quad \text { with } \quad G(x)=H\left(L_{f}(x)\right)+f(x)^{2} b(x)
$$

where $b(x)$ is a bounded function. In particular, for the Halley method $H\left(L_{f}(x)\right)=2 /\left(2-L_{f}(x)\right)$ and $b(x)=0$.

Now, we are going to give conditions for the convergence of the Halley method for the solution of nonlinear scalar and complex equations by means of the degree of logarithmic convexity of $f$ and $f^{\prime}$.

Moreover we make a practical study of the Halley method where it is proved that we can always apply this method to solve a nonlinear equation according to the convexity of $f$ and $f^{\prime}$. Next, we derive a type of Kantorovich conditions [9] for the convergence of the Halley method for a nonlinear complex equation by using majorizing sequences [11]. To finish we realize a study of this method in Banach spaces.

From now on, we consider a real function $f \in C^{(m)}([a, b]), m \geqslant 2$, satisfying the Fourier conditions, i.e., $f(a) f(b)<0, f^{\prime} \neq 0$ and the sign of $f$ is constant in $[a, b]$. Under these conditions there is only one root $t^{*}$ of Eq. (12) in $[a, b]$. We can assume, without loss of generality, that $f$ is a convex and strictly increasing function in $[a, b]$, with $f(a) f(b)<0$, because otherwise it is sufficient to change $f(t)$ by $f(-t),-f(t)$ or $-f(-t)$.

Besides, for each function $h$, denote

$$
M(h)=\max \{h(x) \mid x \in[a, b]\} \quad \text { and } \quad m(h)=\min \{h(x) \mid x \in[a, b]\}
$$

Next, we will study the convergence of the sequence $\left\{t_{n}\right\}$ obtained by the Halley method which, starting at $t_{0}$, is given by the expression

$$
\begin{equation*}
t_{n}=P\left(t_{n-1}\right)=t_{n-1}-\frac{f\left(t_{n-1}\right)}{f^{\prime}\left(t_{n-1}\right)} \frac{2}{2-L_{f}\left(t_{n-1}\right)} \tag{13}
\end{equation*}
$$

Theorem 3.1. Suppose that $L_{f^{\prime}}(t) \leqslant \frac{3}{2}, L_{f}(t)<2$ in $[a, b]$ and $t_{0} \in[a, b]$.
(i) If $f\left(t_{0}\right)>0$, then the sequence $\left\{t_{n}\right\}$ is decreasing to $t^{*}$.
(ii) If $f\left(t_{0}\right)<0$, then the sequence $\left\{t_{n}\right\}$ is increasing to $t^{*}$.

Proof. The result follows by induction, taking into account the mean value theorem and the expression of the derivative of the function $P$

$$
\begin{equation*}
P^{\prime}(t)=\frac{L_{f}(t)^{2}}{\left[2-L_{f}(t)\right]^{2}}\left[3-2 L_{f^{\prime}}(t)\right] \tag{14}
\end{equation*}
$$

In both cases the sequence $\left\{t_{n}\right\}$ obtained converges to a limit $u$, and making $n \rightarrow \infty$ in Eq. (13), we deduce $f(u)=0$, then $u=t^{*}$.

Notice that the condition $L_{f}(t)<2$ in $[a, b]$ is not very restrictive because $L_{f}\left(t^{*}\right)=0$, see Eq. (11), and $L_{f}(t) \geqslant 0$ in $\left[t^{*}, b\right]$.

Definition 3.2. Let $\left\{t_{n}\right\}$ be a sequence that converges to $t^{*}$. We say that $\left\{t_{n}\right\}$ oscillates about $t^{*}$, if $t_{2(j-1)} \geqslant t_{2 j} \geqslant t^{*} \geqslant t_{2 j+1} \geqslant t_{2 j-1}$ or $t_{2 j-1} \geqslant t_{2 j+1} \geqslant t^{*} \geqslant$ $t_{2 j} \geqslant t_{2(j-1)}$, for $j \geqslant 0$.

In the following theorems the sequence $\left\{t_{n}\right\}$ oscillates about $t^{*}$. Then we need a condition to assure $\left\{t_{n}\right\} \subseteq[a, b]$.

Lemma 3.3. Assume that $\left|P^{\prime}(t)\right|<1$ and $\left|L_{f}(t)\right|<1$ in $[a, b]$.
(i) Let $t_{0}, \alpha \in(a, b)$ be such that $f(\alpha)<0$ and $f\left(t_{0}\right)>0$. If $2 f\left(t_{0}\right) / f^{\prime}\left(t_{0}\right) \leqslant$ $\alpha-a$, then $\left\{t_{n}\right\} \subseteq[a, b]$.
(ii) Let $t_{0}, \beta \in(a, b)$ be such that $f(\beta)>0$ and $f\left(t_{0}\right)<0$. If $2 f\left(t_{0}\right) / f^{\prime}\left(t_{0}\right) \geqslant$ $b-\beta$, then $\left\{t_{n}\right\} \subseteq[a, b]$.

Proof. (i) As $t_{1}=P\left(t_{0}\right) \geqslant t_{0}-2 f\left(t_{0}\right) / f^{\prime}\left(t_{0}\right) \geqslant t_{0}-\alpha+a>a$, it is clear that $t_{1} \in\left(a, t_{0}\right) \subseteq[a, b]$. Now we distinguish two situations, $t_{1}<t^{*}$ or $t_{1}>t^{*}$.
(a) $t_{1}<t^{*}$ implies $f\left(t_{1}\right)<0$, then $-1<L_{f}\left(t_{1}\right)<0$, so $t_{1}<t_{2}$. Moreover, we have $\left|t_{2}-t^{*}\right|<\left|t_{1}-t^{*}\right|<\left|t_{0}-t^{*}\right|$ since $\left|P^{\prime}(t)\right|<1$. Therefore, $t_{2} \in\left(t_{1}, t_{0}\right) \subseteq$ $[a, b]$.
(b) If $t_{1}>t^{*}$ then $t^{*}<t_{1}<t_{0}$, then $t_{1} \in[a, b]$ and

$$
t_{2}=P\left(t_{1}\right) \geqslant t_{1}-\frac{2 f\left(t_{1}\right)}{f^{\prime}\left(t_{1}\right)} \geqslant t_{1}-\frac{2 f\left(t_{0}\right)}{f^{\prime}\left(t_{0}\right)} \geqslant t_{0}-\alpha+a>a
$$

since $f / f^{\prime}$ is an increasing function in $\left(t^{*}, b\right)$. Thus we have, $t_{2} \in\left(a, t_{1}\right) \subseteq$ $\left(a, t_{0}\right) \subseteq[a, b]$. At this moment there are two cases:
(b.1) $t_{k} \in\left(t^{*}, b\right)$ for all $k=1, \ldots, n-1$. By means of an analogous procedure it is proved that $t_{n} \in\left(a, t_{0}\right)$ and $\left\{t_{n}\right\} \subseteq[a, b]$.
(b.2) If there exists $t_{k}<t^{*}$ with $t_{1}, \ldots, t_{k-1} \in\left(t^{*}, b\right)$, a similar reasoning to (a) proves that $t_{k+1} \in\left(t_{k}, t_{0}\right) \subseteq[a, b]$.
(ii) follows in the same way.

From now on, we choose $t_{0}, \alpha, \beta \in(a, b)$ as in the Lemma 3.3.

Theorem 3.4. With the above notation, we have
(i) If $L_{f^{\prime}}(t) \in(3 / 2,2]$ and $\left|L_{f}(t)\right|<1$ in $[a, b]$, then the sequence $\left\{t_{n}\right\}$ converges to $t^{*}$. Besides this sequence oscillates about $t^{*}$.
(ii) If $L_{f^{\prime}}(t)>2$ and $\left|L_{f}(t)\right|<w$ in $[a, b]$, where

$$
w=\frac{-1+\sqrt{2 M\left(L_{f^{\prime}}\right)-3}}{M\left(L_{f^{\prime}}\right)-2},
$$

then $\left\{t_{n}\right\}$ converges to $t^{*}$. Moreover, this sequence oscillates about $t^{*}$.

Proof. From Eq. (14) as $L_{f^{\prime}}(t)>3 / 2$, it follows that $P^{\prime}(t)<0$. So, under the previous hypothesis, we have $\left|P^{\prime}(t)\right|<\left|3-2 L_{f^{\prime}}(t)\right|<1$ in $[a, b]$. From Lemma 3.3 we obtain that $\left\{t_{n}\right\} \subseteq[a, b]$.

Now we prove that $\left\{t_{n}\right\}$ is bounded by $t^{*}$ and oscillates about it. For that, if we consider $t_{0}>t^{*}$, then $t_{1}-t^{*}=P^{\prime}\left(\theta_{0}\right)\left(t_{0}-t^{*}\right)$ with $\theta_{0} \in\left(t^{*}, t_{0}\right)$, so $t_{1} \leqslant t^{*}$ and $\left|t_{1}-t^{*}\right|<M\left(\left|P^{\prime}\right|\right)\left|t_{0}-t^{*}\right|$. Then, by induction, it is easy to prove that $t_{2 j} \geqslant t^{*}, t_{2 j+1} \leqslant t^{*}$ and $\left|t_{j+1}-t^{*}\right|<M\left(\left|P^{\prime}\right|\right)^{j+1}\left|t_{0}-t^{*}\right|$ for all $j \geqslant 0$. Therefore, as $M\left(\left|P^{\prime}\right|\right)<1$, we obtain that $\left\{\left|t_{n}-t^{*}\right|\right\}$ is a decreasing sequence and converges to zero. So, the result holds.

We can repeat the above proof when $f\left(t_{0}\right)<0$.
To show (ii), we know that $P^{\prime}(t)<0$ and $\left|P^{\prime}(t)\right|<1$ in $[a, b]$. Besides $\left|L_{f}(t)\right|<w<1$ in $[a, b]$. Then, by Lemma 3.3, we obtain that $\left\{t_{n}\right\} \subseteq[a, b]$. And by a similar way as in Theorem 3.1 the result holds.

In practice, we can always apply the Halley method to solve Eq. (12) from the previous theorem. Depending on the values of $M\left(L_{f^{\prime}}\right)$ and $m\left(L_{f^{\prime}}\right)$, we have the situations of Fig. 4.
(A) $M\left(L_{f^{\prime}}\right) \leqslant \frac{3}{2}$.
(B) $M\left(L_{f^{\prime}}\right) \leqslant 2$ and $m\left(L_{f^{\prime}}\right)>\frac{3}{2}$.


Fig. 4. Convergence results.
(C) $\frac{3}{2}<M\left(L_{f^{\prime}}\right) \leqslant 2$ and $m\left(L_{f^{\prime}}\right) \leqslant \frac{3}{2}$.
(D) $M\left(L_{f^{\prime}}\right)>2$ and $m\left(L_{f^{\prime}}\right) \leqslant 2$.
(E) $m\left(L_{f^{\prime}}\right)>2$.

Notice that, in the situations (A), (B), and (E), the convergence of $\left\{t_{n}\right\}$ follows from Theorems 3.1 and 3.3. The cases (C) and (D) are studied in the next result with some conditions for $L_{f}$.

Theorem 3.5. Consider $\alpha, t_{0} \in[a, b]$ as in the Lemma 3.3, $K=\max \{\mid 3-$ $2 M\left(L_{f^{\prime}}\right)\left|,\left|3-2 m\left(L_{f^{\prime}}\right)\right|\right\}$, and assume that $\left.M\left(\mid L_{f}\right) \mid\right)<2 /(1+\sqrt{K})$.
(i) If $\frac{3}{2}<M\left(L_{f^{\prime}}\right) \leqslant 2, m\left(L_{f^{\prime}}\right) \leqslant \frac{3}{2}$ and $\left|L_{f}(t)\right|<1$ in $[a, b]$, then $\left\{t_{n}\right\}$ converges to $t^{*}$.
(ii) If $M\left(L_{f^{\prime}}\right)>2$ and $m\left(L_{f^{\prime}}\right) \leqslant 2$, then $\left\{t_{n}\right\}$ converges to $t^{*}$.

Proof. In the case (i), from Eq. (14) and $\left|L_{f}(t)\right|<1$ we derive

$$
\left|P^{\prime}(t)\right|<\frac{\left.M\left(\mid L_{f}\right) \mid\right)^{2} K}{\left.\left[2-M\left(\mid L_{f}\right) \mid\right)\right]^{2}},
$$

so, $\left|P^{\prime}(t)\right|<1$ in $[a, b]$ and, by Lemma 3.3, $\left\{t_{n}\right\} \subseteq[a, b]$.
In order to prove (ii), in that situation we have $K>1$, therefore $M\left(\left|L_{f}\right|\right)<1$. Thus $\left|L_{f}(t)\right|<1$ in $[a, b]$. Now we have to prove that $\left|P^{\prime}(t)\right|<1$ in $[a, b]$ i.e. $(K-1) M\left(\left|L_{f}\right|\right)^{2}+4 M\left(\left|L_{f}\right|\right)-4<0$. That follows by the hypothesis that $0<M\left(\left|L_{f}\right|\right)<2 /(1+\sqrt{K})$.

In both cases, (i) and (ii), we can finish the proof in a way similar to Theorem 3.4.

Notice that if $f\left(t_{0}\right)<0$, the previous result is also true, with analogous conditions.

So, we can always apply the Halley method to solve Eq. (12), with some restrictions according to the values of $L_{f}(t)$ in $[a, b]$. But, since $L_{f}\left(t^{*}\right)=0$, see Eq. (11), these results can always be applied in a neighbourhood of the root $t^{*}$.

Numerical example: To illustrate this convergence study for the Halley method, we consider the equation $f(t)=-8+\mathrm{e}^{t^{2}-4}=0$ with $[a, b]=[1,5]$. We have

$$
L_{f}(t)=\frac{\left(1+2 t^{2}\right)\left(-8+\mathrm{e}^{t^{2}-4}\right)}{2 t^{2} \mathrm{e}^{t^{2}-4}} \quad \text { and } \quad L_{f^{\prime}}(t)=\frac{2 t^{2}\left(3+2 t^{2}\right)}{\left(1+2 t^{2}\right)^{2}}
$$

As we can show $L_{f^{\prime}}(t) \leqslant \frac{3}{2}$ and $L_{f}(t)<2$ in $[0,+\infty)$. So, we can take as $t_{0}$ any point in $[1,5]$ such that $f\left(t_{0}\right)>0$. Taking $t_{0}=4$, by Theorem 3.1 we obtain that the sequence $\left\{t_{n}\right\}$ given by Eq. (13) is decreasing and converges to the root $t^{*}=$ 2.465652356209171 of $f(t)=0$ (see Table 1).

Table 1
Halley method

| Iteration | $t_{n}$ |
| :--- | :--- |
| 0 | 4.000000000000000 |
| 1 | 3.741961670527600 |
| 2 | 3.465034280857143 |
| 3 | 3.165567038560662 |
| 4 | 2.846385484142443 |
| 5 | 2.563813967367478 |
| 6 | 2.467671172927391 |
| 7 | 2.465652373241162 |
| 8 | 2.465652356209171 |
| 9 | 2.465652356209171 |

## 4. Kantorovich type conditions for the Halley method in the complex plane

Denote by $D$ a non-empty convex open subset of $\mathbb{C}$ and $f$ an holomorphic complex function in $D$. We will solve

$$
\begin{equation*}
f(z)=0 \tag{15}
\end{equation*}
$$

In this section we give a result on convergence and uniqueness of the solution for Eq. (15). To do that, we use the Halley method in the complex plane. We assume that $f$ satisfies some Kantorovich type conditions [2], we use the majorizing theory [11] and the results obtained in Section 3 for scalar equations.

Starting from $z_{0} \in D$, the Halley iteration $\left\{z_{n}\right\}$ is given by

$$
\begin{equation*}
z_{n}=F\left(z_{n-1}\right)=z_{n-1}-\frac{f\left(z_{n-1}\right)}{f^{\prime}\left(z_{n-1}\right)} \frac{2}{2-L_{f}\left(z_{n-1}\right)} \tag{16}
\end{equation*}
$$

We try to prove the convergence of the sequence $\left\{z_{n}\right\}$ to a root $z^{*}$ of Eq. (15). First, assume that $\left|f\left(z_{0}\right) / f^{\prime}\left(z_{0}\right)\right| \leqslant \eta$, with $\eta \leqslant \frac{1}{2}$, and denote by $t^{*}=1-$ $\sqrt{1-2 \eta}$ the smallest root of $p(t)=0$, for $p(t)=t^{2}-2 t+2 \eta$.

Lemma 4.1. If $t_{0}=0$, the sequence $\left\{t_{n}\right\}$ given by

$$
\begin{equation*}
t_{n}=P\left(t_{n-1}\right)=t_{n-1}-\frac{p\left(t_{n-1}\right)}{p^{\prime}\left(t_{n-1}\right)} \frac{2}{2-L_{p}\left(t_{n-1}\right)} \tag{17}
\end{equation*}
$$

is increasing and converges to $t^{*}$.
Proof. Consider $q(t)=p(-t)=t^{2}+2 t+2 \eta$. This is an increasing convex function in $[-1,0]$. Then if $s_{0}=0$, the sequence

$$
s_{n}=s_{n-1}-\frac{q\left(s_{n-1}\right)}{q^{\prime}\left(s_{n-1}\right)} \frac{2}{2-L_{q}\left(s_{n-1}\right)}
$$

is decreasing to $1-\sqrt{1-2 \eta}$ from Theorem 3.1, since $L_{q^{\prime}}(t)=0 \leqslant \frac{3}{2}$ and $L_{q}(t)<$ 2 in $[-1,0]$.

On the other hand, as $t_{n}=-s_{n}$ for each $n \in \mathbb{N}$, the result holds.
Denote $B(a, r)=\{z \in \mathbb{C}:|z-a|<r\}$ and $\overline{B(a, r)}=\{z \in \mathbb{C}:|z-a| \leqslant r\}$ for $a \in \mathbb{C}$ and $r \in(0,+\infty)$.

Theorem 4.2. Under the above conditions assume that there exists $\alpha \geqslant 1$ such that
(i) $\left|L_{f}(z)\right| \leqslant L_{p}(t) / \alpha$ when $\left|z-z_{0}\right| \leqslant t-t_{0}$,
(ii) $\left|L_{f^{\prime}}(z)\right| \in \overline{B\left(3 / 2,3 \alpha^{2} / 2\right)}$ for all $z \in \overline{B\left(z_{0}, t^{*}\right)}$.

Then, the sequence $\left\{z_{n}\right\}$ given by Eq. (16) is well defined, lies in $\overline{B\left(z_{0}, t^{*}\right)}$ and converges to the only root $z^{*}$ of Eq. (15) in $B\left(z_{0}, t^{*}\right)$. Besides $\left|z^{*}-z_{n}\right| \leqslant t^{*}-t_{n}$.

Proof. Let $\left\{t_{n}\right\}$ be the real sequence defined in Lemma 4.1. Following Ref. [9] the sequence $\left\{t_{n}\right\}$ majorizes $\left\{z_{n}\right\}$ provided that
(a) $\left|F\left(z_{0}\right)-z_{0}\right| \leqslant P\left(t_{0}\right)-t_{0}$,
(b) $\left|F^{\prime}(z)\right| \leqslant P^{\prime}(t)$ when $\left|z-z_{0}\right| \leqslant t-t_{0}$.

Taking into account (i),

$$
\left|F\left(z_{0}\right)-z_{0}\right|=\left|\frac{f\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\left[1+\frac{L_{f}\left(z_{0}\right)}{2}\right]\right|
$$

and $P(0)-0=2 \eta / 2-\eta$, then (a) holds.
On the other hand, by Eq. (14), (i) and (ii), we can derive (b). The uniqueness is clear since $P\left(t^{*}\right)=t^{*}$ and $t^{*}$ is the only root of $p(t)=0$ in $\left[0, t^{*}\right]$.

Notice that the convergence of this iterative process does not depend on the initial point $z_{0} \in D$. Indeed, if $\eta>\frac{1}{2}$, we can consider $p(t)=t^{2}-2 \eta t+\eta^{2}-\frac{1}{4}$, and obtain, like in Lemma 4.1, that the sequence given by Eq. (17) is increasing to $\eta-\frac{1}{2}$, for $t_{0}=0$. So we can apply Theorem 4.2, and thus the Halley method converges for all $z_{0} \in D$.

To finish, notice that we can obtain a convergence result for the Halley method in the complex plane from Theorem 3.3. Results on uniqueness are not given in this case.

## 5. Halley method in Banach spaces

Let $X, Y$ be Banach spaces and $F: \Omega \subseteq X \rightarrow Y$ be a nonlinear twice Fréchet differentiable operator in an open convex domain $\Omega_{0} \subseteq \Omega$. We denote by $I$ the identity operator on $X$ and $L_{F}(x)$ the linear operator defined by

$$
L_{F}(x)=F^{\prime}(x)^{-1} F^{\prime \prime}(x) F^{\prime}(x)^{-1} F(x)=\Gamma(x) F^{\prime \prime}(x) \Gamma(x) F(x), \quad x \in X,
$$

provided that $\Gamma(x)=F^{\prime}(x)^{-1}$ exists. This operator and its connection with Newton's method were studied in Ref. [5].

The Halley method for solving the equation

$$
\begin{equation*}
F(x)=0 \tag{18}
\end{equation*}
$$

is defined, starting from $x_{0}$, by

$$
\begin{equation*}
x_{n+1}=x_{n}-\left[I-\frac{1}{2} L_{F}\left(x_{n}\right)\right]^{-1} \Gamma_{n} F\left(x_{n}\right) . \tag{19}
\end{equation*}
$$

Using majorizing sequences a convergence result for the Halley method is given by Yamamoto in Ref. [14]. To prove this result he assumes that
(I) There exists $\Gamma_{0}=\left[F^{\prime}\left(x_{0}\right)\right]^{-1}, x_{0} \in \Omega_{0}$.
(II) $\left\|\Gamma_{0} F\left(x_{0}\right)\right\| \leqslant a$ and $\left\|\Gamma_{0} F^{\prime \prime}\left(x_{0}\right)\right\| \leqslant b$.
(III*) $\left\|\Gamma_{0}\left(F^{\prime \prime}(x)-F^{\prime \prime}(y)\right)\right\| \leqslant k\|x-y\|$ for $x, y \in \Omega_{0}$ and $k \geqslant 0$.
The condition (III*) reduces the Kantorovich-Altman condition [1] because he relaxes the requirement that there exist $F^{\prime \prime \prime}$ and $\sup \left\{\left\|F^{\prime \prime \prime}(x)\right\| ; x \in \Omega_{0}\right\} \leqslant M$.

In this paper we extend the condition (III*) and we assume that
(III) $\left\|\Gamma_{0}\left(F^{\prime \prime}(x)-F^{\prime \prime}(y)\right)\right\| \leqslant k\|x-y\|^{p} \quad$ for $\quad x, y \in \Omega_{0}, k \geqslant 0$ and $p>0$,
and the equation

$$
\begin{equation*}
f(t)=a-t+\frac{b}{2} t^{2}+\frac{k}{(p+1)(p+2)} t^{p+2}=0 . \tag{20}
\end{equation*}
$$

has two positive roots $r_{1}$ and $r_{2}\left(r_{1} \leqslant r_{2}\right)$.
Newton's method under this kind of conditions for $F^{\prime}$ and $p \in[0,1]$ has been studied by different authors [13-15].
(IV) Besides, if $p \in[0,1)$, we assume that there exist $F^{\prime \prime \prime}$ and

$$
\left\|\Gamma_{0} F^{\prime \prime \prime}(x)\right\| \leqslant-\frac{f^{\prime \prime \prime}(t)}{f^{\prime}\left(t_{0}\right)} \quad \text { when } \quad\left\|x-x_{0}\right\| \leqslant t-t_{0}
$$

With the previous notation, we have the following result.
Theorem 5.1. Let $x_{0} \in \Omega_{0}$ satisfy (I), (II), (III), and (IV). And let $m>0$ be the minimum of the function $f$ given by Eq. (20). We denote by $r_{1}$ the smallest positive root of Eq. (20) and assume that $f(m) \leqslant 0$ and $B\left(x_{0}, m\right) \subseteq \Omega_{0}$. Then, the Halley sequence $\left\{x_{n}\right\}$ given by Eq. (19) is well defined and converges to a solution $x^{*}$ of Eq. (18) in $B\left(x_{0}, r_{1}\right)$. Moreover we also have

$$
\left\|x^{*}-x_{n}\right\| \leqslant r_{1}-t_{n}, \quad \text { for } n \geqslant 0
$$

Notice that the equation $f^{\prime}(t)=0$ has only one positive solution $m$ which is a minimum of $f$. Therefore $f(m) \leqslant 0$ is a necessary and sufficient condition for the existence of positive solutions of $f(t)=0$. So

$$
f(t)=\left(r_{1}-t\right)\left(r_{2}-t\right) q(t)
$$

with $q\left(r_{1}\right) \neq 0 \neq q\left(r_{2}\right)$. Note that $f$, given by Eq. (20), is a decreasing convex function in $[0, m], f(0)>0 \geqslant f(m), L_{f^{\prime}}(t) \leqslant 0$ in $[0, m]$ and $L_{f}(t) \leqslant 1 / 2$ in $\left[0, r_{1}\right]$
as it is well known [1]. These conditions are sufficient to show the convergence to $r_{1}$ of the sequence

$$
\begin{equation*}
t_{0}=0, \quad t_{n+1}=t_{n}-\left[1+\frac{L_{f}\left(t_{n}\right)}{2-L_{f}\left(t_{n}\right)}\right] \frac{f\left(t_{n}\right)}{f^{\prime}\left(t_{n}\right)}, n \geqslant 0 \tag{21}
\end{equation*}
$$

by Theorem 3.1. To prove the Theorem 5.1, we need the following previous result.

Lemma 5.2. The sequence $\left\{t_{n}\right\}$ defined by Eq. (21) is a majorizing sequence of $\left\{x_{n}\right\}$ given by Eq. (19), i.e. $\left\|x_{n+1}-x_{n}\right\| \leqslant t_{n+1}-t_{n}$ for $n \geqslant 0$.

Proof. By using induction in $n$, it is enough to show that the following statements are true for all $n \geqslant 0$.

$$
\begin{aligned}
& {\left[\mathrm{I}_{n}\right] \text { There exists } \Gamma_{n}=F^{\prime}\left(x_{n}\right)^{-1},} \\
& {\left[\mathrm{II}_{n}\right]\left\|\Gamma_{0} F^{\prime \prime}\left(x_{n}\right)\right\| \leqslant-\frac{f^{\prime \prime}\left(t_{n}\right)}{f^{\prime}\left(t_{0}\right)},} \\
& {\left[\mathrm{III}_{n}\right]\left\|\Gamma_{n} F^{\prime}\left(x_{0}\right)\right\| \leqslant \frac{f^{\prime}\left(t_{0}\right)}{f^{\prime}\left(t_{n}\right)},} \\
& {\left[\mathrm{IV}_{n}\right]\left\|\Gamma_{0} F\left(x_{n}\right)\right\| \leqslant-\frac{f\left(t_{n}\right)}{f^{\prime}\left(t_{0}\right)},} \\
& {\left[\mathrm{V}_{n}\right]\left\|x_{n+1}-x_{n}\right\| \leqslant t_{n+1}-t_{n} .}
\end{aligned}
$$

All the above statements $\left[\mathrm{I}_{0}\right]-\left[\mathrm{IV}_{0}\right]$ are true for $n=0$ by initial conditions (I)-(IV). [ $\mathrm{V}_{0}$ ] follows taking into account that under the previous assumptions for $f$ we have

$$
\left\|L_{F}\left(x_{0}\right)\right\| \leqslant L_{f}\left(t_{0}\right)<\frac{1}{2}, \quad \text { for } t \in\left[0, r_{1}\right]
$$

Therefore

$$
\left\|x_{1}-x_{0}\right\| \leqslant t_{1}-t_{0}=t_{1} \leqslant r_{1}<m
$$

Now, assuming $\left[\mathrm{I}_{n}\right]-\left[\mathrm{V}_{n}\right]$ prove $\left[\mathrm{I}_{n+1}\right]-\left[\mathrm{V}_{n+1}\right]$. As

$$
\int_{x_{0}}^{x_{n+1}} \Gamma_{0}\left[F^{\prime \prime}(x)-F^{\prime \prime}\left(x_{0}\right)\right] \mathrm{d} x=\Gamma_{0} F^{\prime}\left(x_{n+1}\right)-I-\Gamma_{0} F^{\prime \prime}\left(x_{0}\right)\left(x_{n+1}-x_{0}\right)
$$

then

$$
\begin{aligned}
\left\|\Gamma_{0} F^{\prime}\left(x_{n+1}\right)-I-\Gamma_{0} F^{\prime \prime}\left(x_{0}\right)\left(x_{n+1}-x_{0}\right)\right\| & \leqslant \int_{0}^{1} k t^{p}\left\|x_{n+1}-x_{0}\right\|^{p+1} \mathrm{~d} t \\
& =\frac{k}{p+1}\left\|x_{n+1}-x_{0}\right\|^{p+1}
\end{aligned}
$$

Therefore

$$
\left\|I-\Gamma_{0} F^{\prime}\left(x_{n+1}\right)\right\| \leqslant \frac{k}{p+1}\left\|x_{n+1}-x_{0}\right\|^{p+1}+b\left\|x_{n+1}-x_{0}\right\| \leqslant 1+f^{\prime}\left(t_{n+1}\right)<1
$$

Applying the Banach lemma, $\left(\Gamma_{0} F^{\prime}\left(x_{n+1}\right)\right)^{-1}$ exists. Hence $\left[\mathrm{I}_{n+1}\right]$ and $\left[\mathrm{III}_{n+1}\right]$ are true. Since

$$
\left\|\Gamma_{0} F^{\prime \prime}\left(x_{n+1}\right)\right\| \leqslant k\left\|x_{n+1}-x_{0}\right\|^{p}+b \leqslant f^{\prime \prime}\left(t_{n+1}\right)
$$

[ $\mathrm{I}_{n+1}$ ] is also true.
Firstly, if $p \geqslant 1$, using the Altman technique [1,14], and taking into account Eq. (19), we deduce by Taylor's formula that

$$
\begin{aligned}
F\left(x_{n+1}\right)= & \frac{1}{2} F^{\prime \prime}\left(x_{n}\right) \frac{1}{2} \Gamma_{n} F^{\prime}\left(x_{n}\right) L_{F}\left(x_{n}\right)\left[\left[I-\frac{1}{2} L_{F}\left(x_{n}\right)\right]^{-1} \Gamma_{n} F\left(x_{n}\right)\right]^{2} \\
& +\int_{0}^{1}\left[F^{\prime \prime}\left(x_{n}+t\left(x_{n+1}-x_{n}\right)\right)-F^{\prime \prime}\left(x_{n}\right)\right]\left(x_{n+1}-x_{n}\right)^{2}(1-t) \mathrm{d} t,
\end{aligned}
$$

and taking norms we obtain

$$
\left\|\Gamma_{0} F\left(x_{n+1}\right)\right\| \leqslant f\left(t_{n}\right) \frac{L_{f}\left(t_{n}\right)^{2}}{\left(2-L_{f}\left(t_{n}\right)\right)^{2}}+k\left(t_{n+1}-t_{n}\right)^{p+2} \int_{0}^{1} t^{p}(1-t) \mathrm{d} t
$$

Repeating the same process for the function $f$, we get

$$
f\left(t_{n+1}\right)=f\left(t_{n}\right) \frac{L_{f}\left(t_{n}\right)^{2}}{\left(2-L_{f}\left(t_{n}\right)\right)^{2}}+k \int_{t_{n}}^{t_{n+1}}\left(z^{p}-t_{n}^{p}\right)\left(t_{n+1}-z\right) \mathrm{d} z .
$$

Moreover it follows immediately if $p \geqslant 1$ that

$$
\begin{aligned}
\left(t_{n+1}-t_{n}\right)^{p+2} \int_{0}^{1} t^{p}(1-t) \mathrm{d} t & =\int_{t_{n}}^{t_{n+1}}\left(z-t_{n}\right)^{p}\left(t_{n+1}-z\right) \mathrm{d} z \\
& \leqslant \int_{t_{n}}^{t_{n+1}}\left(z^{p}-t_{n}^{p}\right)\left(t_{n+1}-z\right) \mathrm{d} z
\end{aligned}
$$

and consequently, for $p \geqslant 1$, we have

$$
\left\|\Gamma_{0} F\left(x_{n+1}\right)\right\| \leqslant f\left(t_{n+1}\right)=-\frac{f\left(t_{n+1}\right)}{f^{\prime}\left(t_{0}\right)}
$$

Secondly, if $p \in[0,1)$, we use the same process but taking as remainder of Taylor's formula

$$
\frac{1}{2} \int_{r_{n}}^{r_{n+1}} F^{\prime \prime \prime}(x)\left(x_{n+1}-x_{n}\right)^{2} \mathrm{~d} x .
$$

Therefore $\left[\mathrm{IV}_{n+1}\right]$ is true.

Finally, we have

$$
\begin{aligned}
\left\|x_{n+2}-x_{n+1}\right\| & =\left\|-\left[I-\frac{1}{2} L_{F}\left(x_{n+1}\right)\right]^{-1} \Gamma_{n+1} F\left(x_{n+1}\right)\right\| \\
& \leqslant-\left[I-\frac{1}{2} L_{f}\left(t_{n+1}\right)\right]^{-1} \frac{f\left(t_{n+1}\right)}{f^{\prime}\left(t_{n+1}\right)}=t_{n+2}-t_{n+1}
\end{aligned}
$$

That completes the proof of Lemma 5.2.
Proof of Theorem 5.1. The convergence of $\left\{t_{n}\right\}$ implies the convergence of $\left\{x_{n}\right\}$ to $x^{*}$, and making $n \rightarrow \infty$ in $\left[\mathrm{IV}_{n}\right]$ we obtain $F\left(x^{*}\right)=0$.

Besides, from $\left[\mathrm{V}_{n}\right.$ ] we have

$$
\left\|x_{n+s}-x_{n}\right\| \leqslant t_{n+s}-t_{n}, \quad \text { for } s \geqslant 0
$$

and making $s \rightarrow \infty$, we obtain $\left\|x^{*}-x_{n}\right\| \leqslant r_{1}-t_{n}$. Therefore, it follows that

$$
\left\|x^{*}-x_{0}\right\| \leqslant r_{1}-t_{0}=r_{1} .
$$

Numerical example: To illustrate Theorem 5.1, we consider the following differential equation:

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+y^{3}=12, \quad y(0)=0=y(1) . \tag{22}
\end{equation*}
$$

We divide the interval $[0,1]$ into $n$ subintervals and we set $h=1 / n$. Let $\left\{z_{k}\right\}$ be the points of the subdivisions with

$$
0=z_{0}<z_{1}<\cdots<z_{n}=1
$$

and the corresponding values of the function

$$
y_{0}=y\left(z_{0}\right), y_{1}=y\left(z_{1}\right), \ldots, y_{n}=y\left(z_{n}\right) .
$$

Standard approximations for the first and second derivatives are given respectively by

$$
y_{i}^{\prime} \sim \frac{y_{i+1}-y_{i}}{2 h}, \quad y_{i}^{\prime \prime} \sim \frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}, \quad i=1,2, \ldots, n-1 .
$$

Noting that $y_{0}=0=y_{n}$. Define the operator $F: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ by

$$
F(y)=G(y)+h J(y)+h^{2} g(y)-12 h^{2} M,
$$

where

$$
G=\left(\begin{array}{ccccccc}
-2 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & -1 & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & -2 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \vdots & \ldots & 1 & -2
\end{array}\right)
$$

$$
\begin{aligned}
& J=\left(\begin{array}{ccccccc}
0 & 2 & 0 & 0 & \ldots & 0 & 0 \\
-2 & 0 & 2 & 0 & \ldots & 0 & 0 \\
0 & -2 & 0 & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \vdots & \ldots & -2 & 0
\end{array}\right), \\
& g(y)=\left(\begin{array}{c}
y_{1}^{3} \\
y_{2}^{3} \\
\vdots \\
y_{n-1}^{3}
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n-1}
\end{array}\right) \text { and } M=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) .
\end{aligned}
$$

Then

$$
F^{\prime}(y)=G+h J+3 h^{2}\left(\begin{array}{cccc}
y_{1}^{2} & 0 & \ldots & 0 \\
0 & y_{2}^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & y_{n-1}^{2}
\end{array}\right)
$$

and

$$
F^{\prime \prime}(y)=6 h^{2}\left(\begin{array}{c}
A_{1} \\
\vdots \\
A_{n-1}
\end{array}\right) \quad \text { with } A_{j}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & y_{j} & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0
\end{array}\right), j=1,2, \ldots, n-1 .
$$

Let $x \in \mathbb{R}^{n-1}, A \in \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$ and define the norms of $x$ and $A$ by

$$
\|x\|=\max _{1 \leqslant i \leqslant n-1}\left|x_{i}\right|, \quad\|A\|=\max _{1 \leqslant i \leqslant n-1} \sum_{k=1}^{n-1}\left|a_{i k}\right| .
$$

Note that for each $x, y \in \mathbb{R}^{n-1}$ we get

$$
\begin{aligned}
\left\|F^{\prime \prime}(x)-F^{\prime \prime}(y)\right\| & =\left\|\operatorname{diag} 6 h^{2}\left(x_{i}-y_{i}\right)\right\|=6 h^{2} \max _{1 \leqslant i \leqslant n-1}\left|x_{i}-y_{i}\right| \\
& \leqslant 6 h^{2}\|x-y\| .
\end{aligned}
$$

We choose $n=10$. As a solution would vanish at the endpoints and be positive in the interior, a reasonable choice of initial approximation seems to be $\sin \pi x / 10$. This gives us the following vector,

$$
x_{0}=\left(\begin{array}{c}
0.0309017 \\
0.0587785 \\
0.0809017 \\
0.0951057 \\
0.1 \\
0.0951057 \\
0.0809017 \\
0.0587785 \\
0.0309017
\end{array}\right)
$$

We get the following results for $p=1$ in Theorem 5.1,

$$
\begin{aligned}
& a=\left\|\Gamma_{0} F\left(x_{0}\right)\right\|=0.806994, \quad b=\left\|\Gamma_{0} F^{\prime \prime}\left(x_{0}\right)\right\|=0.0288905 \\
& k=6 h^{2}\left\|\Gamma_{0}\right\|=0.355981 .
\end{aligned}
$$

Therefore, Eq. (22) becomes

$$
0.806994-t+0.0144452 t^{2}+0.0593302 t^{3}=0
$$

This equation has two positive real solutions: $r_{1}=0.854571$ and $r_{2}=3.47812$. Hence by Theorem 5.1 the sequence (21) converges to a solution $y^{*}=$ $\left(y_{1}^{*}, y_{1}^{*}, \ldots, y_{9}^{*}\right)$ of equation $f(y)=0$ in $B\left(x_{0}, r_{1}\right)$.

Finally note that so as to solve differential equation (22), the following interpolation problem is considered,

$$
\left(\begin{array}{cccccc}
0 & \frac{1}{10} & \frac{2}{10} & \ldots & \frac{9}{10} & 1 \\
0 & y_{1}^{*} & y_{2}^{*} & \ldots & y_{9}^{*} & 0
\end{array}\right)
$$

and its solution is an approximation to the solution of Eq. (22).

## Acknowledgements

This work was supported in part by a grant of the University of La Rioja (grants: API-98/A2S and API-98/B12) and DGES (grant: PB96-0120-C03-02).

## References

[1] D. Altman, Concerning the method of tangent hyperbolas for operator equations, Bull. Polish Acad. Sci., Ser. Sci., Math., Astronom. Phys. 9 (1961) 633-637.
[2] I.K. Argyros, D. Chen, Results on the Chebyshev Method in Banach Spaces, Proyecciones 12 (2) (1993) 119-128.
[3] R. Campbell, Les Intégrales Euleriennes et Leurs Aplications, Dunod, 1966.
[4] Z. Ciesielski, Some properties of convex functions on higher orders, Ann. Polon. Math. 7 (1959) 1-7.
[5] J.M. Gutiérrez, M.A. Hernández, M.A. Salanova, Accessibility of solutions by Newton's method, Int. J. Comput. Math. 57 (1995) 239-247.
[6] M.A. Hernández, A note on Halley's method, Numer. Math. 59 (3) (1991) 273-276.
[7] M.A. Hernández, Newton-Raphson's method and convexity, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22-1 (1992) 159-166.
[8] A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, 1970.
[9] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
[10] B. O'Neill, Elementary Differential Geometry, Academic Press, New York, 1966.
[11] W.C. Rheinboldt, A unified convergence theory for a class of iterative process, SIAM J. Numer. Anal. 5 (1968) 42-63.
[12] A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York, 1973.
[13] J. Rokne, Newton's method under mild differentiability conditions with error analysis, Numer. Math. 18 (1972) 401-412.
[14] T. Yamamoto, On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl. Math. 21 (1988) 75-86.
[15] H. Zhengda, A note on the Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211-217.


[^0]:    *Corresponding author. E-mail: mahernan@dmc.unirioja.es.

