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On a Convex Acceleration of Newton's Method1

J. A. EZQUERRO2 AND M. A. HERNANDEZ2

Communicated by F. A. Potra

Abstract. In this study, we use a convex acceleration of Newton's
method (or super-Halley method) to approximate solutions of nonlinear
equations. We provide sufficient convergence conditions for this method
in three space settings: real line, complex plane, and Banach space.
Several applications of our results are also provided.
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1. Introduction

We consider the well-known convex acceleration of Newton's method
(or super-Halley method), which is cubically convergent (see Refs. 1 and
2), to solve the nonlinear scalar equation

1The research reported herein was sponsored in part by University of La Rioja Grant
96PYA17JEF. The authors are indebted to the referees for their careful reading of this paper.
Their comments uncovered several weaknesses in the presentation and helped us to clarify it.

2Professor, Department of Mathematics and Computation, University of La Rioja, Logrono,
Spain.

Using the degree of logarithmic convexity of the function f (Ref. 3),

the convex acceleration of Newton's method is defined for some t0 and n>0
by
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The convergence of this method is analyzed by means of the convexity
of the functions f and f '. We prove that we can always consider it to solve
any scalar equation. Next, the convergence analysis is established in the
complex plane under standard Newton-Kantorovich assumptions (see
Ref. 4).

We also study this method in Banach spaces. We relax the usual Lipsch-
itz continuity of the second derivative in F", and we need only the Holder
(k,p)-continuity, with k>0, p>0 (Refs. 5 and 6), in some ball around the
initial iterate. The results presented here extend earlier ones (Refs. 1 and 7).
In particular, the local convergence theorem appearing in Ref. 1 is shown for
quadratic operators. Finally, we provide an example of two-point boundary-
value problem to which our results are applied.

On the other hand, the method of tangent parabolas (Euler-Chebyshev)
and the method of tangent hyperbolas (Halley) are probably the best known
cubically convergent methods for solving nonlinear equations. With the
exception of some special cases, these methods have little practical value
because they require an evaluation of the second Frechet derivative, which
requires a number of function evaluations proportional to the cube of the
dimension of the space. Discretized versions of these methods were consid-
ered by U1'm, who used divided differences of order two, which are unattrac-
tive from a numerical point of view (Ref. 8), and by Argyros and Potra,
who used divided differences of order one (Refs. 9-11).

2. Convex Acceleration Method for Scalar Nonlinear Equations

Let f : [a, b] s R -»R be a function sufficiently differentiable and satisfy-
ing f '(t)> 0, f"(t)>0 in [a, b] and f(a)<0<f(b). Therefore, there is a
unique root s of Eq. (1) in [a, b].

We give first a global convergence result depending on the degree of
logarithmic convexity of f ' in [a, b].

Theorem 2.1. Assuming that t0e[a, b] and Lf (t) < 1, Lf-(0 <0 in [a, b],
the following results hold:

(i) If f (t0)>0, the sequence {tn} defined by (2) is decreasing and
converges to s.

(ii) If f (t0)<0, the sequence {tn} defined by (2) is increasing and
converges to s.

Proof. If f (t0)>0, we deduce that t0-s>0. By using the mean-value
theorem, we have
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for some z0e(s, t0) and G defined in (2). Taking into account the assumptions
mentioned above and

we deduce that G'(t) >0 for te[s, b] and, consequently, s < t1. Following an
inductive process, it is easy to check that s<tn for n>0.

On the other hand, we have

where

For n>0, we derive from the hypothesis that H(Lf(tn))>0, and, conse-
quently, the sequence (2) is decreasing. Then, {tn} converges to ye[a, b]. By
letting n -» oo in (2) and taking into account that H(Lf(tn)) > 0 for n > 0, we
get f (y) = 0. As there is only one root of Eq. (1) in [a, b], part (i) holds.

Following analogous arguments, part (ii) also holds. D

Next, we extend the previous result. The following results reduce to
those obtained when Lf (t)>0 in [a, b]. We denote

We need first a lemma.

Lemma 2.1. Suppose that |Lf(t)| < 1 /k , with k> 1.754877 for te[a, b].
Then, the following conditions are satisfied:

(i) 1l/k,2(1-l)211/k)=0,
(ii) Lf (t)2 /2(1 -Lf(t))2<11/2(k-11)2.

We can state a second result.

Theorem 2.2. Let k> 1.754877, let the interval [a, b] satisfy
a + [(2k-1)/2(*-l1]/(&)//'(A)sJ6, and let t0e[a,b], with f(t0)>0 and
t0>a + ((2k-\1/2(k-l)1f(b)/f'(b). If \Lf(t)\^1/k and L f ( t ) 1 [1 / k ,
2(k-1)2-1/k) in [a, b], then the sequence defined by (2) converges to s
and satisfies t2n>s, t2n+1<s for all n>0.

Proof. It is easy to show that t 1e[a, b]. From the assumptions on Lf

and Lf in [a, b] and (3), we derive that |G'(t)| ^Q< 1 for te[a, b] and G
defined in (2). Consequently, as /(t0)>0, we have t1<s and
\t1-s\<Q\t0-s\. Now, it suffices to show that t2j>s and t2/+\<,s are true
for all j>0 and \tn-s\ < Qn\t0-s\ by mathematical induction. Therefore, the
sequence (2) lie in [a, b] and converges to s. D
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Notice that, for t0e[a,b] with/(<0)<0 and t0<b+f(a)/f'(a), if the
interval satisfies a<b+f(a)/f'(a), the last result follows.

In practice, we can always apply the convex acceleration of Newton's
method to solve (1). Taking into account the values of m(Lf) and M(Lf),
we have the following cases (see Fig. 1):

(I) M(Lf ) < 0 ;
(II) M(Lf . )<2(k-1)2-1 /k and m(Lf)>1/k;
(III) 1 /k<M(L f , )<2(k-1 ) 2 - 1/k and m ( L f ) < 1 / k ;
(III1) 1 / k<M(L f )<2(k-1) 2 -1 /k and 1 /k-2(k-1)2<m(Lf )<

1/k;
(III2) 1 Ik<,M(Lf)<2(k- 1 )2- 1/k and m(Lf)<,1/k-2(k-1)2.

Remark 2.1. Cases (I) and (II) follow from Theorems 2.1 and 2.2,
respectively. Case (III) completes all the regions of the semiplane
M ( L f ) > m ( L f ) . For that, it suffices to take k going over R+.

We need a lemma to assure that the sequence (2) lies in [a, b].

Lemma 2.2. Assuming that |G'(t) < 1» where G is defined in (2), and
that \Lf(t)\ <1 \/k in [a, b] for k> 1.754877, the following results hold:

(i) Let t0, ae[a,b] satisfy f(«)<0 and /(f0)>0. If [(2&-1)/
2(k-l1]f(b)/f'(b)^a-a, then the sequence (2) lies in [a, b].

(ii) Let to, ft e [a, b] satisfy /(/?) > 0 and/(f0) < 0. Iff(a)/f'(a) >p-b,
then the sequence (2) lies in [a, b].
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Fig. 1. Regions where k > 1.754877.
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Theorem 2.3. Let t0, a, fte[a, b], and let the assumptions of Lemma
2.2 be satisfied. Let k> 1.754877 and suppose that \Lf(t)\ <1\/k for te[a, b].

(i) If 1/k<M(Lf.)<2(k-1)2-1/k an1 \/k-2(1-\)2<m(Lr)<
1/k in [a, b], then the sequence (2) converges to s.

(ii) If M(|Lf|)< 2(k-1)2- |m(Lf)|, 1/k<M(Lf)<2(k-1)2 - 1/k
and m(Lf)<1/k-2(k- 1)2 in [a,b], then the sequence (2) con-
verges to s.

Proof. First, from the hypothesis it follows that \G'(t)\<Q<1 for
te[a, b] and G defined in (2). Consequently, the sequence (2) lies in [a, b].
Now, it suffices to show that |tn — s\ < Q"\to-s\ is true for all«ef^l by mathe-
matical induction and that both cases hold. D

Therefore, we can apply always the convex acceleration of Newton's
method to solve Eq. (1) [under certain restrictions for L/in [a, b], but Lf(s) =
0], and these results are applicable in a neighborhood of s.

Remark 2.2. Observe that, in practical situations, it suffices that
m(Lf) satisfies the hypotheses of Theorem 2.3 in case (i), since we can
always find a finite and high enough value of k in order to take the region
of plane which is necessary.

Note also that k is the least value satisfying the assumptions of Theorem
2.3 that concern us, as the interval for L/will be bigger and then the assump-
tion for Lf will be milder in [a, b].

3. Sufficient Conditions for Convergence in the Complex Plane

In this section, under the Newton-Kantorovich conditions (Ref. 4), we
establish a Kantorovich-type convergence theorem for the convex accelera-
tion of Newton's method in the complex plane.

Here, we are concerned with the problem of approximating a locally
unique solution z* of the equation

in the complex plane, where f is an holomorphic function defined on some
open convex subset D of C with values in C. Let z0eD, and define the convex
acceleration of Newton's method for all n> 0 by
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Let us denote

The following Kantorovich-type conditions are satisfied:

Define the scalar sequence {tn} given for all n>0 by

where p is the polynomial (6). In light of Section 2, it is easy to prove that
this sequence is increasing and converges to r1.

We need first the following result for studying the convergence of (5)
and the uniqueness of the solution.

Lemma 3.1. Under Conditions (C1)-(C5), \ L f ( z ) \ ^ L p ( t ) , provided
that \z-z0\<:t-t0<1/b.

Proof. Let Lf be defined by

Then, we get

This completes the proof of the lemma. D

(C3) The equation

has a negative root and two positive roots r1 and r2, with r1 < r2.
Equivalently,



Theorem 3.1. Let us assume that Conditions (C1)-(C5) hold. Then,
sequence (5) is well defined for n>0 and is convergent in B(z0, r1) n D. If
r1 < r2, the limit z* is a unique solution of Eq. (4) in B(z0, m) n D. If r1 =
r2, z* is unique in B(z0 ,m)r*D. Furthermore, | z* - zn \ < 1, - /„ for all n > 0.

Proof. Following Kantorovich (Ref. 4), the sequence (7) majorizes
the sequence defined by (5) provided that

4. Convergence in Banach Spaces

Let X, Y be Banach spaces, and consider a nonlinear operator
F: fi^X-f Y which is twice Frechet-differentiable on an open convex set
Q0 £ fi- Let us assume that F'(x0)~1e^(Y, X) exists at some x0eQ0, where
J?"( Y, X) is the set of bounded linear operators from Y into X. The convex
acceleration of Newton's method for approximating a solution ;c*efl0 of
the equation
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Let us denote by

the minimum of polynomial (6).

On the one hand, it is known that 0<Lp( t ) < 1/2; then,

and \Lf(z)\ < — Lp(r\1 in [0, r1}. Hence, condition (ii) holds.
To prove the uniqueness of solutions, it suffices to show that P(t')<,t'

for f 'e[r, ,m]; see Ref. 4. D

is in the form

317

since |L/(z0)| <Lp(t0). On the other hand, we have
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We denote by / the identity operator on X and by LF(x) the linear operator
(Ref. 12) defined by

provided that F '(x) -1 exists.
Following Yamamoto in Ref. 13 for the Halley method, the main

assumption is that the Frechet derivative F "(x) of F satisfies a Lipschitz
condition. Here, we extend this condition to operators that are Holder (k, p)-
continuous, with k>0, p>0; see Ref. 7.

From now on, we assume the following:

(i) there exists a continuous linear operator T0 = F'(x0)~l1 x0eQo;
(ii) \\r0(F"(x)-F''(y))\\£k\\x-y\\f,x,yeQ0,kzO,p*0;
(iii) \\r0F(x0)\\Za,\\r0F"(x0)\\<b;
(iv) the equation

for t>0, has two positive roots 11 and r2, with 1\ <r2;
(v) Hr0F"'(;c)||<-s"'(0/£'('o), provided that \\x-x0\\£t-t0 and

pe[0,1).
Notice that the equation g'(t) = 0 has only one positive solution u which

is the minimum of g. Therefore, g(u) <;0 is a necessary and sufficient condi-
tion for the existence of positive solutions of g(t) = 0. Let us denote these
solutions by r1 and r2, with 11<r2. So, we have

with q(1 1)^Q^q(r2) . Note that g is a decreasing convex function in [0, u]
and that g(0)>0^g(w). These conditions are sufficient to show the conver-
gence of the sequence

to r\. Moreover, {?„} is an increasing sequence.
We will need the following result.

Lemma 4.1. The sequence {;„} given by (11) is a majorizing sequence
of {xn} defined in (9), i.e.,

Proof. It is enough to show that the following statements are true,
using induction on «, for all n>0:



[II] \\r0F"(xn)\\^-g"(ttt)/g'(t0);
[Hi] iirnF'(*o)ll<g'(<o)/s'(O;
[IV] \\TQF(xn)\\<-g(tn)/g'(t0).

All the above statements are true for n = 0 by the initial conditions (i)-
(v). Then, we assume that they are true for fixed « and all smaller integer
values. From
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and (i)-(iv), we obtain

Applying the Banach lemma, it follows that (r0F'(xn+i)) 1 exists. Hence,
[I] and [III] are true for n + 1. Since we have

it follows that [II] is also true for « +1.

Case 1. If p> 1, we use the Altman technique (Refs. 13 and 14) and,
taking into account (9), we deduce by the Taylor formula that

by taking norms, we obtain

Repeating the same process for the function g, we get



Moreover, if p> 1, it follows immediately that

Case 2. If pe[Q, 1), we use the same process but taking as the
remainder of the Taylor formula the approximation
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and, consequently,

Therefore, [IV] is true for n+ 1.
Finally, we have

This completes the proof of Lemma 4.1.

Theorem 4.1. Let us assume that conditions (i)-(v) hold. Let u>0 be
the minimum of the function g defined in (10), and suppose that g(u) <, 0.
Assume that r1 is the smallest positive root of Eq. (10) and B(x0, u)c:£V
Then, the iteration {xn},n>0, generated by (9) is well defined and converges
to the solution x* of the equation F(x) = 0 in B(x0, r1). Moreover, we also
have that \\x* -x» \\ <,1\ - tn, for all n>0.

Proof. It follows from Lemma 4.1 that the sequence {tn} defined by
(11) majorizes the sequence {*„} given by (9). Hence, the convergence of
{?„} implies the convergence of {xn} to a limit x*; see Refs. 4 and 15. Letting
« -> oo in (12), we infer that F(x*) = 0.

Finally, for v>0, it follows from (13) that



5. Numerical Results

In the first three examples that follow, we illustrate our results by solving
scalar equations. The digits shown in each example are significative.

Example 5.1. Consider the function/(f) = t — cos t defined on [0, n/2].
This function is nondecreasing and convex in [0, n/2] with
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and by letting v -»oo, we obtain

Furthermore, we also have

As Lf(t) < 1 and £/•(/) <0 for te[0, n/2], we obtain a sequence {tn} decreas-
ing and convergent to

a root of/(;) = 0 in [0, n/2] by Theorem 2.1. See Table 1.

Example 5.2. To illustrate Theorem 2.2, we consider the real equation

So, we get

If k > 1.78339, we have

We choose fc=1.79, to obtain \Lf(i)\<\/k in [0.731355, 1.18644] for
r> 0.499839. Then, we take [a, b] = [0.731355, 1.18644] that checks

Table 1.

n

0
1
2
3

Results for Example 5.1.

tn

1.0000000000000000000
0.7404989832636941698
0.7390851334050131377
0.7390851332151606428



JOTA: VOL. 100, NO. 2, FEBRUARY 1999

and r = 0.5. Then, we take t0= 1.18 to obtain approximations of the solution
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Table 2.

n

0
1
2
3
4

Results for Example 5.2.

tn
1.1800000000000000000
0.8236846056354870351
0.8409040229165229872
0.8408964152537139204
0.8408964152537145430

given in Table 2.

Example 5.3. Let us consider the nonlinear scalar equation

Then, we get

As the function Lf is nondecreasing in [-0.9, -0.01], we have

If k > 8.14572, from Theorem 2.5, we have

Hence, we can choose k = 8.15 to obtain |Lf(t)l < 1/k = 0.122699 in the inter-
val [-0.214634, -0.123979]. Moreover, we have

for some 0e[-0.214634, -0.183847] with/(/3)>0. Therefore, we can take
[a, b] = [-0.214634, -0.183847] and choose x0= -0.21 to get the approxima-
tions to the solution

given in Table 3.



An interesting application of Theorem 4.1 is given by the following
example.

Example 5.4. Consider the differential equation

We divide the interval [0,1] into « subintervals and we set h= 1/n. Let {zk}
be the points of the subdivisions with
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Table 3. Results for Example 5.3.

n

0
1
2
3

tn

-0.2100000000000000
-0.1581347287092053
-0.1585290154830309
-0.1585290151921035

and corresponding values of the function

Standard approximations for the first and second derivatives are given
respectively by

Noting that y0 = 0=yn, define the operator F: R""1 -»01" 'by

where
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Then, we get

Let xeU" 1, AeU"1' x R" 1, and define the norms of x and A by

We get, for all x, jelR"""1,

We choose n = 10 and as the solution should vanish at the endpoints and be
positive in the interior, a reasonable choice of initial approximation seems
to be exp(^x)/100. This gives us the following vector:

We get the following results for Theorem 4.1:
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Therefore, Eq. (10) becomes

This equation has two positive real solutions,

Hence, by Theorem 4.1, the sequence (9) converges to a solution
y* = (y1,y*,---, y*) of the equation F(y) = 0 in B(x0, r1).

Finally, note that, to solve the differential equation (14), the following
interpolation problem can be considered

and its solution is an approximation to the solution of Eq. (14).
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