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Abstract 

We establish a convergence theorem for the Midpoint method using a new system of rectu'rence relations. The purpose 
of this note is to relax its convergence conditions. We also give an example where our convergence theorem can be 
applied but other ones cannot. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The purpose of  this paper is the study of  the Midpoint method for solving nonlinear operator 
equations. Chen and Argyros studied in [1] the convergence of this iterative process of order three, 
and defined, for all n ~> O, by 

y,----X, -- [F'(xn)]-IF(x, ) ,  

Z.=Xn+½(Y.--X.), 
x,+l = x ~  - F ' ( z , ) - I F ( x , ) ,  (1) 

where F is a nonlinear operator defined on an open convex domain f2 of  a Banach space X with 
values in another Banach space Y. Assume that F has a first-order continuous Frfchet derivative 
on f2. 
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Chen and Argyros give in [1] a Kantorovich-like convergence theorem, where the convergence 
conditions 

I IF ' (x ) I I~L, ,  ] I F " ( x ) - - F ' ( y ) I I ~ L 2 [ I x - Y [ [ ,  x, y E O  (2) 

are required. 
In this note, we give another convergence theorem for nonlinear operator equations using a new 

type of  recurrence relations for this method. In order to provide the convergence of (1), it is assumed 

I[F'(x) - F ' ( y ) [ I  <~Kllx - YlI, x, y E  O, (3) 

instead of  assumption (2). Observe that we can apply method (1) under the same condition (3) as 
for Newton's method (see [4]). Finally, we provide an example where condition (2) fails but (3) 
does not. 

We denote B(x,r)= {y EX; [[y -- xll ~ r }  and B(x,r) = {y EX; Ily - xll <r} .  

2. A convergence theorem 

Let x0 E f2 and suppose that F0 =F ' (x0)  -1 E ~Lf(Y,X) exists, where &a(Y,X) is the set of  bounded 
linear operators from Y into X. 

Let us assume that 

(c , )  IIF011 ~<#, 
( c ~ )  l lyo - ~oll = IfroF(xo)li <~, 
(c~) IIF'(x)-F'(Y)II<~KiIx-ylJ, ~,y~O, K>~O. 

We denote a0 = Kflrl and define the sequence 

an+l = anf(a,)Zg(a,), 

where 

2 - x x(4 - x) 
f ( x ) = 2 _ 3 x  and g ( x ) - ( 2 _ x )  ~ "  

We study the convergence of  the sequence {x,} given by (1) to a solution x* of  an equation 
F(x) --- 0. Assuming Xo, Y0 E f2, a0 < s  ----- 0.310102... (s is the smallest positive root of  polynomial 
q(x)=5X 2 -  8X + 2) and initial hypotheses (cl)-(c3) ,  as z0 El2, we have 

-< K ao 
I I I -  FoF'(zo)Jl ~ Ilroll IlF'(xo) - F'(zo)ll -~ 2 Ifoll [Jyo - xoll ~< ~ < 1 

and, by the Banach lemma, FoFo 1 =F'(zo)-tF'(xo) exists and [IFoFo I l[ ~<2/(2-a0). Then, xl is well 
defined and 

IIx, - xoll ~ IIFoF(xo)ll ~ IIFoF'(xo)ll IIFoF(xo)ll ~ - -  
2q 

2 - ao" 
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Under the hypotheses mentioned above, {an} is a decreasing sequence. Applying mathematical in- 
duction on n and assuming xn, y. E I2 we can prove the following statements for all n ~> 1: 

tin] ll/ 'nr2J, N = I lF'(x,)- 'F'(x ,- , ) l l  <<,f(a,_~), 
[IIn] []Yn - x.II = IlrnF(x.)ll <~f(a.- ,  )g(an-,)llY.-~ - x . - i  II, 
[IIIn] g l l r n l l  IlY. - xnll <~an, 
[IVn] IIF./'21 [I = ] lF ' ( z . ) - 'F ' (x . ) l [  <~ 2 

2 - - a n  ' 

[v.]  I Ix.--,-  x . l l~  < ~]--5~.lly.- x,,ll. 
The existence of  F~Fo ~ and item [I~] follows from the Banach lemma. Taking into account the 
Taylor's formula and (1), we have 

Xxol FoF(xl ) = FoF(xo ) + (xl - Xo ) + Fo[F'(x ) - F'(x0)] dx 

/o' = Fo[F'(zo) - F'(xo)]FoF(xo) + Fo[F'(xo + t(xl - Xo)) - F'(Xo)](xl - xo) dt. 

In consequence [IIi]-[VI] hold. 

Now assuming that [In]-[V.] are true for a fixed n~> 1 we can easily prove [I.+I]-[V~+I] and the 
induction is complete. 

Then the next convergence theorem is established. 

Theorem 2.1. Let  X, Y be Banach spaces and F" f2 C_X ~ Y be a nonlinear once Frbchet differen- 
tiable operator in an open convex domain I2. Let  us assume that Fo =F ' (x0)  -1 E ~ ( Y , X )  exists at 
some Xo E f2 and (c l ) - (c3)  are satisfied Let  us denote ao =K[hl. Suppose that ao E (0,s). Then, i f  
B(xo, q/ao ) C_ f2, sequence {x,} defined in (1) and starting at Xo converoes at least R-quadratically 
to a solution x* o f  F(x)=O.  In that case, the solution x* and the iterates xn, y,  and z, belon9 to 
B(xo, rl/ao). Moreover, the solution x* is unique in B(xo, 2/(K/~) - q/ao) N f2. 

Proof.  We prove that {xn} is a Cauchy sequence. For that we denote 

a.(4 - a . )  
M. = = f(an)9(a.) .  

( 2  - an)(2 - 3an) 

It is easy to prove that 

a .  ~< ~12'~ i 
a . - l ~ < ' " ~ < y 2 - 1 a 0  where y=at /aoE(O,  1). 

We now obtain mn<~yZ"-lmo=72"A with A = 1/ f (ao)< 1. and consequently 

HX.+m --Xnll ~< LIX"+m --X.+m-'ll + ' ' "  + IIX.+'--X.N 

(n--fi- n-I I 2r lA"(1-Am)  2" 
~< ~ 2  \ j=o :Mj ÷ . . .  + s=ol-I~/ Ilyo - xoll ~< (2 - ao)y(1 --~1) y ' 
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Therefore, {x,} given by (1), is a Cauchy sequence. Moreover, from a similar reasoning, it 
immediately follows that x,,y,,zn E B(xo, rl/ao)C_ f2. As a result, the sequence {x,} converges to 
x* EB(xo, ll/ao). We now deduce that F ( x * ) = 0  from the continuity o f  F and the fact that ]IY, - 
Xnl[ <~M~rIYo-x0ll---,0 when n ~ oo. 

On the other hand, we have 

2q 2" 
]Ix* -x" l ]  ~< (2 - a0)7(1 - A) 7 ' 

so this method converges at least R-quadratically [3] to x*. 
Finally, to show the uniqueness, let us assume that y* E B(xo, 2/(Kfl)-rl/ao)N f2 is another solution 

o f  F(x) = 0. From the approximation 

0 = F ( y * )  - F(x*) = F'(x* + t(y* - x*)) d t ( y *  - x*),  

in a similar way than in [2], we prove that the operator [f2F'(x*+ t(y* - x* ) )d t ]  -1 exists and 
therefore y * - - x * .  [] 

3. Example 

We provide an example where the assumptions given in (2) fail but the conditions of  Theorem 2.1 
are fulfilled. 

Let us consider the system of  equations F(x, y ) = 0  where F "  ( -½,  23-) × ( -½,  3)___~ ~2 such that 

F(x, y)  = (x 3 lnx 2 + 4y  - 1/8, x(y - 4)). 

I f  we choose x0 = (0, 0), then F does not satisfy the Lipschitz condition for F "  given in (2). 
On the other hand, we have 

F,(x, y )=  ( 3x21n x2 + 2x2 2 )  
y - 2  x " 

Taking into account the max-norm in ~2 and the norm [[C[ = max{[cll[ + 1c,21, [c211 + [c22[} for 

c= c,2) 
\ C21 C22 ' 

we can apply Theorem 2.1, since 

/~ = [[F0l[ = 1/4, q = [[y0 -Xo[[ = 1/32, 

[[F'(x, y) - F'(u, v)[ I < 22.301[(x, y )  - (u, v)[I 

and, consequently, a0 = K/~q = 0.1742187 ~<s = 0.310102 . . . .  As a result, we can study the conver- 
gence o f  this system of  equations by Theorem 2.1. 
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