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Binomial coefficients where (:) is the usual combinatorial number. We also provide the
moments in the Catalan triangle whose (n, p) entry is defined by
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and, in particular, new identities involving the well-known Catalan
numbers.
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0. Introduction

Although there exist several triangles known as the “Catalan triangle”, the following one is one of
the most-standing form
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k\m | 0O 1 2 3 4 5 6
0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132

see for example [10]. Each entry Cy n is defined by

. k+m)!k—m+1)

C :
km mi(k+1)!

, o<m«<k.

Notice that Cy  is the well-known Catalan number Cy, given by the formula

1 (2K
Co=— k1.
k k+1(k>’ ‘

1877

The Catalan numbers may be defined recursively by Co =1 and C = ZL_(} CiCx—1—i for k > 1. These
numbers appear in a wide range of problems, see [11]. For instance, the Catalan number Cj counts
the number of ways to triangulate a regular polygon with k + 2 sides; or, let 2k people seat around
a circular table, the Catalan number Cj gives the number of ways that all of them are simultaneously
shaking hands with another person at the table in such a way that none of the arms cross each

other.

In the Catalan triangle, we now consider numbers Ci , in the same diagonal such that k +m is

odd. We write k+m =2n—1 and p =n —m to get Shapiro’s triangle introduced in [8],

n\p 1 2 3 4 5 6
1 1

2 2 1

3 5 4 1

4 14 14 6 1

5 42 48 27 8 1

6 132 165 110 44 10 1

whose entries are given by

_p( 2n
Bn,p~:E n—p) n,peN, p<n.

On the other hand, when k +m =2n and p =n —m + 1, we recover the following triangle

(1)
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n\p 1 2 3 4 5 6
1 1 1
2 2 3 1
1
3 5 9 5 )
4 14 28 20 7 1
5 42 20 75 35 9 1
6 132 297 275 154 54 11 1
whose entries are defined by
2p—1/( 2n+1
=— , n,peN, p<n+1. 3
P 2n+1(n+1—p> b P + 3
Observe that the numbers A, , satisfy the following recurrence relation
Anp=An-1,p-1+2An-1p+ An-1,p+1. DP=2.
In [5] other generalized Catalan numbers are considered.
Recently, Catalan triangle (1) has been studied in detail. The formula
" . 20-1))
> BupBanip-in+2p—i)=@0+1)Cy cq )oisn (4)

p=1

which appears in a problem related with the dynamical behavior of a family of iterative processes has
been proved in [4, Theorem 5]. Using the WZ-theory (see [7,12]), the moments §2;;; defined by

n
Qmn) = meBg’p, neN, me Ny,
p=1

were given for 1 <m < 7 in [6, Theorems 2.1 and 2.2]. New techniques based on the symmetric
functions were used in [1] to give explicit expressions of {&n}m>o defined by

n 2
2
On) = E pm<n—np) , neN, meNp,
p=1

and consequently for {£2}m>0, since 1% 2 (n) = Opya(n), for n € N, m e No. Moreover, in [9] equiv-
alent expressions of £2,; are shown using some recurrence relations. More recently, divisibility prop-
erties of sums of products of binomial coefficients are obtained in [3] using the Newton interpolation
formula.

In the first section of this paper, we improve some results presented in [1] to apply them to some
questions posed in [6]. In the second and third sections, we consider the moments {®p}m>o defined
by

n+1 2
2n+1
®p(n) = 2p — 1™ , neN.
m (1) p§=l(p )(n—l—l—p)
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Using symmetric functions, we obtain explicit results for {®y;};n>0 which are similar to the expres-
sions of {Om}m>0. We apply these results to give explicit formulae of {¥m}m>0, where

n+1
Wn(n):=> 2p—1D"A;,, neN.
p=1
Note that
Yn(n) = ! Dpan), mnelN (5)
m = (2n+1)2 m+2 s P 0-

Finally, we remark that the expressions of {£2;;};m>0 and {¥n}m>0 involve the Catalan numbers and
rational functions on the discrete variable n, see Theorems 2, 6 and 10. However, checking particular
values of m, we conjecture some improvements of these results which are posed in Remarks 3, 7 and
11, respectively.

1. Symmetric functions and combinatorial numbers

In what follows, we denote by n! and (x),; the usual factorial number and the Pochhammer func-
tion given by

(X)o:=1, X)m=x(x—1)---(x—m+1), xR, meN.

We use the usual combinatorial notation (r’,‘?) to represent the polynomial of degree m in the variable
(X)m

x given by () := ¥

m!
Using the theory of symmetric functions, we may write

m
KM= (DM + X0y — XiOkm—k(¥). %y €R, me N, (6)
k=0

where the polynomial oy, is defined by

Ok (y) == > -1y —0)? - (y—lnw)? YeR,
0<h KL <Kl <k
with I; e Ng for i € {1, ..., m —k}. Observe that the degree of oy m_k is 2(m —k) and
k
2(=1)k <2y> <2k — Zy) o
Okm—k(Y) = 5~ ) )y =7, yeR (7)
o (2¥)2+1 ; i)\ k—i

We denote by Ax(m, y) the polynomial in the variable y given by

k

29\ 2k —2
xk(m,y)::Z(iy)(< y)(y—i)2m+1, yeR. 8)

4 k—1i
i=0

The first polynomials A,(m, y) for k=0, 1, 2 are the following



1880 PJ. Miana, N. Romero / Journal of Number Theory 130 (2010) 1876-1887

Ao(m, y) = y!T2m,

r(m,y)=2y(1—y)(y*™ - (y — 1)),
ra(m,y) =y —2)(Qy —3)y*™ —4(y — D™ + 2y — D(y — 2)°™),

for m > 2 and y € R, see more details in [1,2]. In the following lemma we give interesting properties
of these polynomials A,(m, y).

Lemma 1. Let m € Ny be and 0 < k < m. The polynomial A, (m, y) defined in (8) satisfies the following prop-
erties.

(i) The degree of A, (m, y) is at most 2m + 1 and 2* divides to Ax(m, y).
(ii) The equality A (m, ’5‘ —¥) = —Ar(m, ’7‘ + y) holds forall y € R.
(iii) The values of% with 0 < j < 2k are roots of Ay (m, y).

Proof. To show (i), note that 2(—1)KAx(m, y) = Ok.m—k(¥)(2Y)2k+1. On the other hand, oy ;i is a
polynomial of degree 2(m — k) and (2y)yk+1 = 2k+1p(y) where P is a polynomial with integer coef-
ficients.

We take y € R and change the index i by k — j in (8) to get

k 2m+1
k k—=2y\(k+2y\ [k .
A = — =— E = -
k<m’2 y) (k—j)( J ><2+y ]>

i=0

_ _i (2(§ T{—y)) <2k - 2(§.+ y)) <’£ .y j>2m+1
j k—j 2

j=0

—kml<+
= k ,2}’-

The proof of item (ii) is concluded. From the equality 2(—1)¥A,(m, y) = Ok.m—k(¥)(2Y)2k+1, we deduce
that the values of % with 0 < j < 2k are roots of Ax(m, y) and the proof of the lemma is finished. O

Next result answers the first and the second questions posed in [6, Section 3]. The main aim of
these problems is to write §£2,(n) in terms of the Catalan numbers and rational functions on the
variable n.

Theorem 2. There exist P3pm+1, Qam+2, R3m—1 polynomials of integer coefficients and degree at most 3m + 1,
2m + 2 and 3m — 1 respectively, such that

P3mi1()
[T, (4n — 2I+ 1))
2ome1() = Qamy2(n+ 1)CyCpz, 3>m>=0,

R3m—1(n)
M3 @n - @1+ 3))

§$2om(n) = Con—1, m2=0,

$2om1(n) = n+1)ChChpy, m=4,

forneN.
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Proof. It is direct to check that Co, = 2(;1";11)C2n,1 and

2n)---2n—k+2)

_1, k=2,
2k=1(4n —3)(4n —5)--- (4n — (2k — 1)) Con-t

Conk=
Applying [1, Proposition 5], we obtain

22m(n) = Con—1(4n — HIP™ 4 2Con_1 (0 — D™ —n?™+2)

m+1
M +mmn—1)---Qn—k+1)
+ Con—1 Z ok

~In(n —k)(4n — 3)(4n — 5)--- (4n — 2k — 1))

From items (i) and (iii) of Lemma 1, 2¥~'n(n — k) divides to Ax(1 +m,n) and

P3py1(n)
e, @n—@+1) "

§2om(n) =

where P31 is a polynomial of integer coefficients and degree at most 3m + 1.
Now we write C, = WCH_Z, Cho1= @Cn_z and
m—1)n—-2)---n+2—k)

C7 =
kT k—20on_5)...Cn+1—2k) "2

And from [1, Proposition 5], it follows

; _ _ 2m _ (2n —3) 2m+2 gy _ 1\2m+2
M 0GPt M =@ =D@n = 420 —m Z = (n (n—1)2m+2)
M(1+m,n) m—1n-2)

T nn—3)an_5 2 M
M=Dn=3) , q+mn

24n(2n—-5)2n —7)

+n§(n—l)(n—2)~-(n+2—k)(n+l—k)

—~ 2k-1n2n —k)2n —5)---2n+1—2k)

M(14+m,n).

From Lemma 1, we conclude that there exists a polynomial Q2mn4 of integer coefficients and degree
at most 2m + 2 such that

29m+1(M) = Qami2(M)(n+1)CrCr2, neN,

for m < 3. For m > 4, there exist polynomials Q2m42 and (Rk,m)s<kgm+1 of integer coefficients and
degree at most 2m + 2 and 2m + 3 respectively, such that

m+1

1
2om11(1) = Qamya(m) + Z

n+1)CpCr—z

Ry, m(n)

Thus, there exists a polynomial R3p,_1 of integer coefficients and degree at most 3m — 1 such that
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R3m_1(n)
m32n—(1+4)

2om1(n) = (n+1)CyCh_z, neN,

form>4. 0O

Remark 3. The following values of 2,

£2o(n) = Cap—1,
2,n) = (3n — 2)nC
2 == 4n —3 2n—1,
(15n3 — 30n2 + 16n — 2)n
24(n) = Con—1,

(4n —3)(4n - 5)

(105n° — 420n* + 588n3 — 356n2 + 96n — 10)n
£6(n) = -1,
(4n — 3)(4n — 5)(4n — 7)

are obtained in [6, Theorem 2.1] using the WZ-theory. Note that the degree of polynomial P3p4q in
all these cases is 2m. It is a open problem to show that in general P3p41 has degree 2m.
In a similar way, the first values of 2,41 are given in [6, Theorem 2.2] and [1, Section 5],

£21(n) = (2n—=3)(n+ HCCn2,

§23(m) =n2n —3)(n + D CnCn2,

25(n) =n(3n® = 5n + 1) (N + 1)CaCn—2,
27(n) =n(6n(n — 1) = 1)(n + 1)CaCp_2,

n(30n° — 150n* + 252n3 — 185n2 + 65n — 9)

§29(n) = T

n+1)CCya.

Observe that, in these cases the degrees of polynomials Q2n42 and R3p—1 are m+ 1 and 2m — 2,
respectively.

2. Even moments of squares of combinatorial numbers

In this section we calculate the even moments {®m}m>0 and {¥om}m>o defined in the Introduc-
tion. In Theorem 6 we express {¥m}m>o0 in terms of the Catalan numbers. The following result is
inspired in [1, Theorem 1].

Theorem 4. The following equalities hold

m

(0 Do) =22 M(m.n+ 3) <4n+2 —21<)
" B n+1— 2k )
k=0

2n+1-2k \ 2n+1—k

2m+2 M+l 1 .
(i) W (1) = 2 Ak(m+l,n+2)<4n+2 2k>7

@+12 & 2m+1-2k \2n+1—k

formeNgandneN.



PJ. Miana, N. Romero / Journal of Number Theory 130 (2010) 1876-1887 1883
Proof. From formula (6), we have
(p - 1)2m = i(—l)’%n + )il — p + 10k (n + 1), 9)
2 P ’ 2
for p € N. Hence, it follows

n+1 2
2n+1
By (n) = Z @p - 1>2m< )
p_in n+1—-p

m n+1 2
_ 1 2n+1
—o2m 12(_1)’<gk,m,k<n+§ Z n+p)kin—p+1), <n+l _p)

)

m n+1
1 2n+1—k 2n+1—k
=22"IN N ko i n+ 5 ) @n+1)2
g( ) Okm—k *3 + n+p—k)\n—-p—k—1

m
1 4n+2 -2k
__92m—1 k 2
=22"1% (1) ak,m_k<n+5)<2n+1>k(2n+1 _Zk)

k=0

where we have applied the Chu-Vandermonde convolution formula (see for example [11]) in the
latter equality. From formulae (7) and (8), we have

2(=1)k
Okm—k(¥y) = ———A(m, y), yeR.
(2¥)2k+1

Therefore

M(m,n+3) (4n+2 — 2k
o 92m e 27
2m () = 22n+1_21<<2n+1—k>

and the proof of item (i) is concluded. Now the proof of item (ii) follows from formula (5) and the
above. O

Remark 5. In fact, we may write ¥, in terms of the Catalan numbers in this way,

22m+2 Mt 2n+2—k
Yom(n) = ——— rAlm+1,n —C k> 10
2m () = T2 Z k( + +2)2n~|—1 —op o1k (10)

for meNg and n e N.

Theorem 6. Given m € Ny, there exists a polynomial of integer coefficients and degree at most 3m+ 1, R3pm+1,
such that

R3m+1(1) c
m—1 — 2n
nl:o 4n—Q2l+1))

om(n) =
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Proof. It is direct to check that Cypqq = 1c,, and

n+1

n+1)(2n)---2n—k+3)

Con, k>2.
2k=1(4n —1)(4n —3)---(4n +3 — 2k)

Conp1-k =
We use formula (10) to obtain

1
Wom(n) = (2n + 1)*™(4n + 1)Cop — S(@n+ 1?2 — (20 — 1)2™2)Cyp

m1 m+1n+dh  TlZ5@n—j)

+ CZ zm 2m+37k .
" l; 2n+1)QR2n+1—2k) H§;§(4n—(21+1))

From Lemma 1, 2n + 1)(2n + 1 — 2k) divides Ap(m + 1,n + %). Thus, there exists a polynomial of
integer coefficients and degree at most 3m + 1, R34, such that

R n
Yom(n) = 3m+1(1) Con, neN,

m—1 2
o (4n— (214 1))

and we conclude the proof. O

Remark 7. Particular values of ¥5,, are obtained using item (ii) of Theorem 4,

Yo(n) = Can,
—1+4n + 12n?
(n)= ——— Cop,
4n —1
3 — 16n — 104n? + 240n*
Wy(n) = Con,

(4n—1)(4n -3)

Py = 1292+ 1116n” + 20800’ — 4368n" — 6720n° + 6720n° .
o (4n — 1)(4n — 3)(4n — 5 o

It is natural to conjecture this equality

P
Yom(n) = 2m (1) Con, meNp, neN,

MryTdn— @i+ 1)

where Py, is a polynomial of integer coefficients and degree 2m.

3. 0dd moments of squares of combinatorial numbers

In a similar way to the previous section, we now calculate the odd moments {@yn41}m>0 and
{Y2m+1}m>0. We express the value of {¥5m1}m>0 in terms of the Catalan numbers in Theorem 10.

Theorem 8. The following equalities hold

(i) Pom1(n) =22 (n 4 1)(2” + 1) yoMmnt ) M(m,n + 3) <2n - 21<)7

P 2n+1—k n—k
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22m+2(n+ 1) /2n+1 m+1 M(m+1,n+ %) 2n — 2k
.. !1/ [ _— )
(ii) 2m+1(1) 2n+1)2 ( n >k§ 2n+1-—2k ( n—k )

formeNgandn eN.

Proof. We apply formula (9), and we have

n+1 2m 2
1 1 2n+1
& — 22m+1 _ - _
2m+1(1) X:: P=5)\P=5 n+1—p

n+1 m 2
1 1 2n+1
_ 92m+1 k
=2 Z(p—5><2(—1) (n+P>k(n_p+1>kUk,mk<n+5>><n+1 _p)
p=1 k=0
m n+1 2
1 1 2n+1
__92m+1 k
=21y (1) ok,m_k(n+5> Z(p— 5)<n+p>k<n—p+1>k<n+1 _p)

k=0 p=1
n+1
I\/2n+1—-k\/2n+1—k
= et Jan iy (o-3) (35 5) (0, )
kZ( Yok m—t < >,<;p 7GR | Qi

where we have used the following equality,

2n+1\? p(2n+1-k)(2n+1-k
(n+phn—p+ >k<n+1—P> @an + >"<n+1—P)< n+p )

Now, we write p — 3 = 2((n+p) — (n — p + 1)) to conclude that

i n+1—k\(2n+1-k\ 2n+1—k(2n—k\?
= n+1-p n+p ) 2 n ’
Thus,

22n+1-— k<2n—k>2

1
‘p2m+l(n)_22m+l Z( ]) Ok,m— k<n+ ><2n+1> 2 n

k=

2n+ 1)p2n+1 1\ /2n —k\?
22m+12 + + D a(mon+ '
(2n 4+ 1) 2k+1 2 n

From the equality

2n+1)p2n+ 1) (2n—k 2—(n+l) 2n+1 1 2n — 2k
(2n+1)2p41 n N 2n—k+1\ n—k )’

we conclude that

2+ 1\ o A(m,n+ 1) /2n — 2k
1) :22m+l 1 2 .
amr1(n) (n+ )( . )gZH_Hl ok

We use formula (5) to prove item (ii) from (i). O



1886 PJ. Miana, N. Romero / Journal of Number Theory 130 (2010) 1876-1887

Remark 9. From item (i) of Theorem 8, we write for m € Np,

W Aem+ 1,0+ Hn—k+1)

Womp1(n) =22+ 1)Cy Y
— @n+1DEn+1-2k

Chk, neN.

Theorem 10. There exists a polynomial of integer coefficients and degree at most 3m + 2, P3p7, such that

P3my2(n)
o1 (M) = (1 + 1)CnCp1 —— ma , neN,
[T[5 @n—@2j-1)
form>1.
Proof. From C,; = %Cn,l, and
nn—1)---n+2—k
Cot ( ) (n+ ) k> 2.

= Cn_ s
2%T2on—3)2n—5)-.-@n+1—2k) "

we have

Wom1 (M) = (M + 1)CaCro1 0+ 1™ 20 — 1)
_ (n+1)ChCr—q

(N + 1)CnCnt on 22" 30 m+ 1,0+ DHnn—1) - (1 —k+ 1)
21+1 = @n-3)2n-5---@n+1-2k@n+1-20)

Now, from Lemma 1, there exists a polynomial of integer coefficients Qg ym+3 and degree at most
2m + 3 such that

22 m+1n+ Hnn—1) - —k+1) 22243 Q omy3(n)
Cn+1)2n—-3)2n—=5)---2n+1-2k)2n+1 — 2k) - 2n+1-—2k

for 2 <k <m+ 1. Then, we conclude that

P3my2()
2n—=3)---2n—-2m—1)’

Yomt1(n) = (n+1)CrCrq neN,

where P3pyo is a polynomial of degree at most 3m+2. O

Remark 11. Particular values of ¥,p,41 are obtained,

Y1(n) =+ 1D CpCr_1(4n — 2),
w3(n) = (n + 1)CCn_1 (16n* — 2),
Ws(n) = (n+1)CyCn_1(96n> + 320> — 4n — 2),

1536n° — 1536n* — 960n3 — 160n2 + 20n + 6

¥7(n) = (n+1)CpCrq n_3




PJ. Miana, N. Romero / Journal of Number Theory 130 (2010) 1876-1887 1887

Therefore, we conjecture that

Rom—1(n)

, neN, m>3,
]_[,”;3(211—(21—3))

Yom+1(M) = M+ 1)CnCn

where Ryp—1 is a polynomial of integer coefficients and degree 2m — 1.
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