Avoiding the computation of the second Fréchet-derivative in the convex acceleration of Newton's method

J.A. Ezquerro *, M.A. Hernández
Department of Mathematics and Computation, University of La Rioja, C/Luis de Ulloa s/n. 26004 Logroño, Spain

Received 10 April 1997; received in revised form 6 April 1998

Abstract

We introduce a new two-step method to approximate a solution of a nonlinear operator equation in a Banach space. An existence-uniqueness theorem and error estimates are provided for this iteration using Newton-Kantorovich-type assumptions and a technique based on a new system of recurrence relations. For a special choice of the parameter involved we use, our method is of fourth order. (c) 1998 Elsevier Science B.V. All rights reserved.

AMS classification: $47 \mathrm{H} 17 ; 65 \mathrm{~J} 15$
Keywords: Nonlinear equations in Banach spaces; Two-point iteration; Third-order process; Convergence theorem; Recurrence relations; A priori error bounds

1. Introduction

Many scientific and engineering problems can be brought in the form of a nonlinear equation

$$
\begin{equation*}
F(x)=0, \tag{1}
\end{equation*}
$$

where F is a nonlinear operator defined on an open convex subset Ω of a Banach space X with values in another Banach space Y. In the last years, several papers dealing with one-point iterations of order three have appeared [$2,3,5,7,14]$. The study of those methods are based on the well-known Newton-Kantorovich-type assumptions [9].

On the other hand, multipoint methods are defined as iterations which use new information at a number of points. In [13] it is imposed the restriction on one-point iteration of order N is that they must depend explicitely on the first $N-1$ derivatives of F. This implies that their informational

[^0]efficiency is less than or equal to unity. Those restrictions are relieved in only small measure by turning to one-point iterations with memory.

Neither of these restrictions need hold for multipoint methods, that is, for iterations which sample F and its derivatives at a number of values of the independent variable. We shall show that there exists a two-point method of R-order three which necessitates no evaluations of the second derivative. Moreover, for a special choice of the parameter involved we use, our method is of order four.

Traub [13] has shown how to construct useful multipoint iterations which are very efficient when equation (1) is such that the derivative F^{\prime} can be rapidly evaluated compared with F itself. An example of this occurs when F is defined by an integral.

Next, we derive a new family of two-step methods from one of the most famous one-point iteration of order three called the Convex Acceleration of Newton's method or super-Halley method $[3,6]:$

$$
\begin{aligned}
& G(x)=F^{\prime}(x)^{-1} F^{\prime \prime}(x) F^{\prime}(x)^{-1} F(x), \\
& x_{n+1}=x_{n}-\left[I+\frac{1}{2} G\left(x_{n}\right)\left(I-G\left(x_{n}\right)\right)^{-1}\right] F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right), \quad n \geqslant 0 .
\end{aligned}
$$

From Taylor's formula, we have

$$
F^{\prime}\left(z_{n}\right)=F^{\prime}\left(x_{n}\right)+F^{\prime \prime}\left(x_{n}\right)\left(z_{n}-x_{n}\right)+\int_{x_{n}}^{z_{n}} F^{\prime \prime \prime}(x)\left(z_{n}-x\right) \mathrm{d} x
$$

where $z_{n}=x_{n}+p\left(y_{n}-x_{n}\right)$ and $p \in(0,1]$. We can now approximate

$$
F^{\prime \prime}\left(x_{n}\right)\left(y_{n}-x_{n}\right) \approx \frac{1}{p}\left[F^{\prime}\left(z_{n}\right)-F^{\prime}\left(x_{n}\right)\right]
$$

and derive the following two-point iteration function of R-order three:

$$
\begin{align*}
& y_{n}=x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right) \\
& H\left(x_{n}, y_{n}\right)=\frac{1}{p} F^{\prime}\left(x_{n}\right)^{-1}\left[F^{\prime}\left(x_{n}+p\left(y_{n}-x_{n}\right)\right)-F^{\prime}\left(x_{n}\right)\right] \tag{2}\\
& x_{n+1}=y_{n}-\frac{1}{2} H\left(x_{n}, y_{n}\right)\left[I+H\left(x_{n}, y_{n}\right)\right]^{-1}\left(y_{n}-x_{n}\right), \quad n \geqslant 0
\end{align*}
$$

where $p \in(0,1]$, to approximate a zero x^{*} of (1).
For the special choice of $p=\frac{2}{3}$, we obtain the known Jarratt method whose order of convergence is four (see [1]).

We analyse, under certain assumptions of the pair (F, x_{0}), the convergence of (2) to a unique zero x^{*} of (1), by using a technique consisting of a new system of real sequences which simplifies those given by other authors [$2,8,12$]. We also provide some error estimates on the distances $\left\|x^{*}-x_{n}\right\|$ for all $n \geqslant 0$. From this analysis it follows a semilocal convergence result for the Jarratt method under mild differentiability conditions.

Denote $\overline{B(x, r)}=\{y \in X ;\|y-x\| \leqslant r\}$ and $B(x, r)=\{y \in X ;\|y-x\|<r\}$.

2. Preliminaries

Let F be a nonlinear twice Fréchet-differentiable operator defined on some open convex subset Ω of a Banach space X with values in another Banach space Y. Let $x_{0} \in \Omega$ and suppose that $\Gamma_{0}=F^{\prime}\left(x_{0}\right)^{-1} \in \mathscr{L}(Y, X)$ exists, where $\mathscr{L}(Y, X)$ is the set of bounded linear operators from Y into X.

Let us assume that
($\left.\mathrm{c}_{1}\right)\left\|\Gamma_{0}\right\| \leqslant \beta$,
(c $\left.\mathrm{c}_{2}\right)\left\|y_{0}-x_{0}\right\|=\left\|\Gamma_{0} F\left(x_{0}\right)\right\| \leqslant \eta$,
(c $\left.\mathrm{c}_{3}\right)\left\|F^{\prime \prime}(x)\right\| \leqslant M, \quad x \in \Omega$,
(c $\left.\mathrm{c}_{4}\right)\left\|F^{\prime \prime}(x)-F^{\prime \prime}(y)\right\| \leqslant K\|x-y\|, \quad x, y \in \Omega, \quad K \geqslant 0$.
Denote $a_{0}=M \beta \eta$ and $b_{0}=K \beta \eta^{2}$ and define the sequences

$$
\begin{equation*}
a_{n+1}=a_{n} f\left(a_{n}\right)^{2} g_{p}\left(a_{n}, b_{n}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n+1}=b_{n} f\left(a_{n}\right)^{3} g_{p}\left(a_{n}, b_{n}\right)^{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=\frac{2(1-x)}{x^{2}-4 x+2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{p}(x, y)=\frac{3 x^{3}+2 y(1-x)[(1-6 p) x+(2+3 p)]}{24(1-x)^{2}} \tag{6}
\end{equation*}
$$

Firstly, it is provided a technical lemma whose proof is trivial.
Lemma 2.1. Let f and g_{p} the two real functions given in (5) and (6), respectively. Then
(i) f is increasing and $f(x)>1$ in $\left(0, \frac{1}{2}\right)$,
(ii) g_{p} is increasing in its first and second arguments for $x \in\left(0, \frac{1}{2}\right)$ and $y>0$,
(iii) $f(\gamma x)<f(x)$ and $g_{p}\left(\gamma x, \gamma^{2} y\right)<\gamma^{2} g_{p}(x, y)$ for $\gamma \in(0,1)$ and $x \in(0,1)$.

Some properties for the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ given, respectively, by (3) and (4) are now provided.

Lemma 2.2. Let f and g_{p} the two real functions given by (5) and (6), respectively. Let

$$
\begin{equation*}
h_{p}(x)=\frac{3(2 x-1)(x-2)(x-3+\sqrt{5})(x-3-\sqrt{5})}{2(1-x)((1-6 p) x+2+3 p)} . \tag{7}
\end{equation*}
$$

If $a_{0} \in(0,1 / 2)$ and $b_{0}<h_{p}\left(a_{0}\right)$, then
(i) $f\left(a_{0}\right)^{2} g_{p}\left(a_{0}, b_{0}\right)<1$,
(ii) the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are decreasing,
(iii) $a_{n}\left(1+\frac{a_{n}}{2\left(1-a_{n}\right)}\right)<1$ for all $n \geqslant 0$.

Proof. From the hypotheses, (i) follows immediately. We show (ii) by mathematical induction on n. The facts that $0<a_{1}<a_{0}$ and $0<b_{1}<b_{0}$ follow by previous (i) and Lemma 2.1(i). Next, it is supposed that $0<a_{j}<a_{j-1}$ and $0<b_{j}<b_{j-1}$ for $j=1,2, \ldots, n$. Then

$$
a_{n+1}=a_{n} f\left(a_{n}\right)^{2} g_{p}\left(a_{n}, b_{n}\right)<a_{n} f\left(a_{0}\right)^{2} g_{p}\left(a_{0}, b_{0}\right)<a_{n}
$$

since f is increasing and g_{p} is also increasing in its first and second arguments. We have

$$
b_{n+1}=b_{n} f\left(a_{n}\right)^{3} g_{p}\left(a_{n}, b_{n}\right)^{2}<b_{n} f\left(a_{n}\right)^{4} g_{p}\left(a_{n}, b_{n}\right)^{2}<b_{n}
$$

by the same reasoning as before and the fact that $f(x)>1$ in $\left(0, \frac{1}{2}\right)$.
Finally, for all $n \geqslant 0$, we have

$$
a_{n}\left(1+\frac{a_{n}}{2\left(1-a_{n}\right)}\right)<a_{0}\left(1+\frac{a_{0}}{2\left(1-a_{0}\right)}\right)<1
$$

since $\left\{a_{n}\right\}$ is a decreasing sequence and $a_{0} \in\left(0, \frac{1}{2}\right)$.

Lemma 2.3. Let us suppose the hypotheses of Lemma 2.2 and define $\gamma=a_{1} / a_{0}$. Then (in) $a_{n}<\gamma^{3^{n-1}} a_{n-1}<\gamma^{\left(3^{n}-1\right) / 2} a_{0}$ and $b_{n}<\left(\gamma^{3^{n-1}}\right)^{2} b_{n-1}<\gamma^{3^{n}-1} b_{0}$, for all $n \geqslant 2$,
(iiin) $f\left(a_{n}\right) g_{p}\left(a_{n}, b_{n}\right)<\gamma^{3^{n}-1} f\left(a_{0}\right) g_{p}\left(a_{0}, b_{0}\right)=\gamma^{3^{n}} / f\left(a_{0}\right)$, for all $n \geqslant 1$.
Proof. We prove (i_{n}) following an inductive procedure. So, $a_{1}=\gamma a_{0}$ and $b_{1}=b_{0} f\left(a_{0}\right)^{3} g_{p}\left(a_{0}, b_{0}\right)^{2}$ $<\gamma^{2} b_{0}$ if and only if $f\left(a_{0}\right)>1$, and by Lemma 2.1 the result holds. If we suppose that $\left(\mathrm{i}_{n}\right)$ is true, then

$$
\begin{aligned}
a_{n+1}= & a_{n} f\left(a_{n}\right)^{2} g_{p}\left(a_{n}, b_{n}\right)<\gamma^{3^{n-1}} a_{n-1} f\left(\gamma^{3^{n-1}} a_{n-1}\right)^{2} g_{p}\left(\gamma^{3^{n-1}} a_{n-1},\left(\gamma^{3^{n-1}}\right)^{2} b_{n-1}\right) \\
& <\gamma^{3^{n-1}} a_{n-1} f\left(a_{n-1}\right)^{2}\left(\gamma^{3^{n-1}}\right)^{2} g_{p}\left(a_{n-1}, b_{n-1}\right)=\gamma^{3^{n}} a_{n}
\end{aligned}
$$

On the other hand, we have

$$
b_{n+1}=b_{n} f\left(a_{n}\right)^{3} g_{p}\left(a_{n}, b_{n}\right)^{2}<\left(\frac{a_{n+1}}{a_{n}}\right)^{2} b_{n}
$$

if and only if

$$
a_{n}^{2} f\left(a_{n}\right)^{3} g_{p}\left(a_{n}, b_{n}\right)^{2}<a_{n+1}^{2}=a_{n}^{2} f\left(a_{n}\right)^{4} g_{p}\left(a_{n}, b_{n}\right)^{2}
$$

and it is true since $f\left(a_{n}\right)>1$. Now, $b_{n+1}<\left(\gamma^{3^{n}}\right)^{2} b_{n}$ since $a_{n+1} / a_{n}<\gamma^{3^{n}}$. Moreover,

$$
a_{n+1}<\gamma^{3^{n}} a_{n}<\gamma^{3^{n}} \gamma^{3^{n-1}} a_{n-1}<\cdots<\gamma^{\left(3^{n+1}-1\right) / 2} a_{0}
$$

and

$$
b_{n+1}<\left(\gamma^{3^{n}}\right)^{2} b_{n}<\left(\gamma^{3^{n}}\right)^{2}\left(\gamma^{3^{n-1}}\right)^{2} b_{n-1}<\cdots<\gamma^{3^{n+1}-1} b_{0}
$$

Then we observe that

$$
f\left(a_{n}\right) g_{p}\left(a_{n}, b_{n}\right)<f\left(\gamma^{\left(3^{n}-1\right) / 2} a_{0}\right) g_{p}\left(\gamma^{\left(3^{n}-1\right) / 2} a_{0}, \gamma^{3^{n}-1} b_{0}\right)<\gamma^{3^{n}-1} f\left(a_{0}\right) g_{p}\left(a_{0}, b_{0}\right)=\gamma^{3^{n}} / f\left(a_{0}\right)
$$

The proof is complete.
After that, taking into account initial hypotheses $\left(\mathrm{c}_{1}\right)-\left(\mathrm{c}_{4}\right)$ and assuming that $y_{0} \in \Omega$, we have

$$
\left\|H\left(x_{0}, y_{0}\right)\right\| \leqslant M\left\|\Gamma_{0}\right\|\left\|y_{0}-x_{0}\right\| \leqslant a_{0} \quad \text { and } \quad K\left\|\Gamma_{0}\right\|\left\|y_{0}-x_{0}\right\|^{2} \leqslant b_{0}
$$

Hence x_{1} is well defined and

$$
\left\|x_{1}-x_{0}\right\| \leq\left\|I-\frac{1}{2} H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\right\|\left\|y_{0}-x_{0}\right\| \leq\left(1+\frac{a_{0}}{2\left(1-a_{0}\right)}\right)\left\|y_{0}-x_{0}\right\|
$$

Next, we prove the following items are true for all $n \geqslant 1$:
$\left[I_{n}\right]\left\|\Gamma_{n}\right\|=\left\|F^{\prime}\left(x_{n}\right)^{-1}\right\| \leqslant f\left(a_{n-1}\right)\left\|\Gamma_{n-1}\right\|$,
$\left[\mathrm{II}_{n}\right]\left\|y_{n}-x_{n}\right\|=\left\|\Gamma_{n} F\left(x_{n}\right)\right\| \leqslant f\left(a_{n-1}\right) g_{p}\left(a_{n-1}, b_{n-1}\right)\left\|y_{n-1}-x_{n-1}\right\|$,
$\left[\mathrm{III}_{n}\right]\left\|H\left(x_{n}, y_{n}\right)\right\| \leqslant M\left\|\Gamma_{n}\right\|\left\|y_{n}-x_{n}\right\| \leqslant a_{n}$,
$\left[\mathrm{IV}_{n}\right] K\left\|\Gamma_{n}\right\|\left\|y_{n}-x_{n}\right\|^{2} \leqslant b_{n}$,
$\left[\mathrm{V}_{n}\right]\left\|x_{n+1}-x_{n}\right\| \leq\left(1+\frac{a_{n}}{2\left(1-a_{n}\right)}\right)\left\|y_{n}-x_{n}\right\|$.
We use mathematical induction on n.
[I_{1}]: Observe that if $x_{1} \in \Omega$,

$$
\left\|I-\Gamma_{0} F^{\prime}\left(x_{1}\right)\right\| \leqslant\left\|\Gamma_{0}\right\|\left\|F^{\prime}\left(x_{0}\right)-F^{\prime}\left(x_{1}\right)\right\| \leqslant M\left\|\Gamma_{0}\right\|\left\|x_{1}-x_{0}\right\| \leqslant a_{0}\left(1+\frac{a_{0}}{2\left(1-a_{0}\right)}\right)<1
$$

and, by the Banach lemma, Γ_{1} exists and

$$
\left\|\Gamma_{1}\right\| \leq \frac{\left\|\Gamma_{0}\right\|}{1-\left\|I-\Gamma_{0} F^{\prime}\left(x_{1}\right)\right\|} \leqslant f\left(a_{0}\right)\left\|\Gamma_{0}\right\| .
$$

[II_{1}]: Using Taylor's formula and (2), we have if $y_{0} \in \Omega$

$$
F\left(x_{1}\right)=F\left(y_{0}\right)+F^{\prime}\left(y_{0}\right)\left(x_{1}-y_{0}\right)+\int_{y_{0}}^{x_{1}} F^{\prime \prime}(x)\left(x_{1}-x\right) \mathrm{d} x
$$

As

$$
\begin{aligned}
F\left(y_{0}\right)+ & F^{\prime}\left(y_{0}\right)\left(x_{1}-y_{0}\right)=F\left(y_{0}\right)-\frac{1}{2} F^{\prime}\left(y_{0}\right) H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right) \\
& \quad \pm \frac{1}{2} F^{\prime}\left(x_{0}\right) H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right) \\
= & F\left(y_{0}\right)-\frac{1}{2}\left[F^{\prime}\left(y_{0}\right)-F^{\prime}\left(x_{0}\right)\right] H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right) \\
& \quad-\frac{1}{2} F^{\prime}\left(x_{0}\right) H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right) \\
= & \int_{0}^{1} F^{\prime \prime}\left(x_{0}+t\left(y_{0}-x_{0}\right)\right)(1-t) \mathrm{d} t\left(y_{0}-x_{0}\right)^{2} \\
& -\frac{1}{2} \int_{0}^{1} F^{\prime \prime}\left(x_{0}+t\left(y_{0}-x_{0}\right)\right) \mathrm{d} t\left(y_{0}-x_{0}\right) H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2}\left(\int_{0}^{1} F^{\prime \prime}\left(x_{0}+p t\left(y_{0}-x_{0}\right)\right) \mathrm{d} t\left(y_{0}-x_{0}\right)^{2}\right. \\
& \left.-\int_{0}^{1} F^{\prime \prime}\left(x_{0}+p t\left(y_{0}-x_{0}\right)\right) \mathrm{d} t\left(y_{0}-x_{0}\right) H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right)\right)
\end{aligned}
$$

it follows that

$$
\begin{aligned}
F\left(x_{1}\right)= & \int_{0}^{1}\left[F^{\prime \prime}\left(x_{0}+t\left(y_{0}-x_{0}\right)\right)(1-t)-\frac{1}{2} F^{\prime \prime}\left(x_{0}+p t\left(y_{0}-x_{0}\right)\right)\right] \mathrm{d} t\left(y_{0}-x_{0}\right)^{2} \\
& \pm \frac{1}{2} F^{\prime \prime}\left(x_{0}\right)\left(y_{0}-x_{0}\right)^{2}+\frac{1}{2} \int_{0}^{1}\left[F^{\prime \prime}\left(x_{0}+p t\left(y_{0}-x_{0}\right)\right)\right. \\
& \left.-F^{\prime \prime}\left(x_{0}+t\left(y_{0}-x_{0}\right)\right)\right] \mathrm{d} t\left(y_{0}-x_{0}\right) H\left(x_{0}, y_{0}\right)\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right) \\
& +\int_{0}^{1} F^{\prime \prime}\left(y_{0}+t\left(x_{1}-y_{0}\right)\right)(1-t) \mathrm{d} t\left(x_{1}-y_{0}\right)^{2} \\
= & \int_{0}^{1}\left[F^{\prime \prime}\left(x_{0}+t\left(y_{0}-x_{0}\right)\right)-F^{\prime \prime}\left(x_{0}\right)\right](1-t) \mathrm{d} t\left(y_{0}-x_{0}\right)^{2} \\
& +\frac{1}{2} \int_{0}^{1}\left[F^{\prime \prime}\left(x_{0}\right)-F^{\prime \prime}\left(x_{0}+p t\left(y_{0}-x_{0}\right)\right)\right] \mathrm{d} t\left(y_{0}-x_{0}\right)^{2} \\
& +\frac{1}{2} \int_{0}^{1}\left[F^{\prime \prime}\left(x_{0}+p t\left(y_{0}-x_{0}\right)\right)-F^{\prime \prime}\left(x_{0}+t\left(y_{0}-x_{0}\right)\right)\right] \mathrm{d} t\left(y_{0}-x_{0}\right) H\left(x_{0}, y_{0}\right) \\
& \times\left[I+H\left(x_{0}, y_{0}\right)\right]^{-1}\left(y_{0}-x_{0}\right) \\
& +\int_{0}^{1} F^{\prime \prime}\left(y_{0}+t\left(x_{1}-y_{0}\right)\right)(1-t) \mathrm{d} t\left(x_{1}-y_{0}\right)^{2} .
\end{aligned}
$$

Taking norms we infer that

$$
\left\|F\left(x_{1}\right)\right\| \leqslant\left[\frac{2+3 p}{12} K \eta^{2}+\frac{1-p}{4} K \eta^{2} \frac{a_{0}}{1-a_{0}}+\frac{M \eta}{8}\left(\frac{a_{0}}{1-a_{0}}\right)^{2}\right]\left\|y_{0}-x_{0}\right\|
$$

So

$$
\begin{aligned}
& \left\|y_{1}-x_{1}\right\|=\left\|\Gamma_{1} F\left(x_{1}\right)\right\| \leqslant\left\|\Gamma_{1}\right\|\left\|F\left(x_{1}\right)\right\| \leqslant f\left(a_{0}\right)\left\|\Gamma_{0}\right\|\left\|F\left(x_{1}\right)\right\| \\
& \quad \leqslant f\left(a_{0}\right) g_{p}\left(a_{0}, b_{0}\right)\left\|y_{0}-x_{0}\right\| .
\end{aligned}
$$

$\left[\mathrm{III}_{1}\right]$: If $y_{1} \in \Omega$,

$$
\begin{aligned}
\left\|H\left(x_{1}, y_{1}\right)\right\| & \leqslant \frac{1}{p}\left\|\Gamma_{1}\right\|\left\|F^{\prime}\left(x_{1}+p\left(y_{1}-x_{1}\right)\right)-F\left(x_{1}\right)\right\| \\
& \leqslant M\left\|\Gamma_{1}\right\|\left\|y_{1}-x_{1}\right\| \leqslant M\left\|\Gamma_{0}\right\|\left\|y_{0}-x_{0}\right\| f\left(a_{0}\right)^{2} g_{p}\left(a_{0}, b_{0}\right) \leqslant a_{1}
\end{aligned}
$$

[$\left.\mathrm{IV}_{1}\right]$:

$$
K\left\|\Gamma_{1}\right\|\left\|y_{1}-x_{1}\right\|^{2} \leqslant K\left\|\Gamma_{0}\right\|\left\|y_{0}-x_{0}\right\|^{2} f\left(a_{0}\right)^{3} g_{p}\left(a_{0}, b_{0}\right)^{2} \leqslant b_{1}
$$

[$\left.\mathrm{V}_{1}\right]$:

$$
\begin{aligned}
\left\|x_{2}-x_{1}\right\| & \leqslant\left\|I-\frac{1}{2} H\left(x_{1}, y_{1}\right)\left[I+H\left(x_{1}, y_{1}\right)\right]^{-1}\right\|\left\|y_{1}-x_{1}\right\| \\
& \leqslant\left(1+\frac{a_{1}}{2\left(1-a_{1}\right)}\right)\left\|y_{1}-x_{1}\right\| .
\end{aligned}
$$

Assuming now $\left[\mathrm{I}_{n}\right]-\left[\mathrm{V}_{n}\right]$ are true for a fixed $n \geqslant 1$, we can prove $\left[\mathrm{I}_{n+1}\right]-\left[\mathrm{V}_{n+1}\right]$. Then the induction is complete.

3. Convergence theorem

We can already show the next convergence theorem.
Theorem 3.1. Let X, Y be Banach spaces and $F: \Omega \subseteq X \rightarrow Y$ be a nonlinear twice Fréchet differentiable operator in an open convex domain Ω. Let us assume that $\Gamma_{0}=F^{\prime}\left(x_{0}\right)^{-1} \in \mathscr{L}(Y, X)$ exists at some $x_{0} \in \Omega$ and $\left(\mathrm{c}_{1}\right)-\left(\mathrm{c}_{4}\right)$ are satisfied. Let us denote $a_{0}=M \beta \eta$ and $b_{0}=K \beta \eta^{2}$. Suppose that $a_{0} \in\left(0, \frac{1}{2}\right)$ and $b_{0}<h_{p}\left(a_{0}\right)$ where h_{p} is defined in (7). Then, if $\overline{B\left(x_{0}, \eta / a_{0}\right)} \subseteq \Omega$, the sequence $\left\{x_{n}\right\}$ defined in (2) and starting at x_{0} converges R-cubically at least to a solution x^{*} of (1). In that case, the solution x^{*} and the iterates x_{n} and y_{n} belong to $\overline{B\left(x_{0}, \eta / a_{0}\right)}$. Moreover, the solution x^{*} is unique in $B\left(x_{0}, \eta / a_{0}\right)$.
Furthermore, we can give the following error estimates:

$$
\begin{equation*}
\left\|x^{*}-x_{n}\right\| \leqslant\left(1+\frac{a_{0} \gamma^{\left(3^{n}-1\right) / 2}}{2\left(1-a_{0}\right)}\right) \gamma^{\frac{3^{n}-1}{2}} \frac{\Delta^{n}}{1-\Delta} \eta, \quad n \geqslant 0 . \tag{8}
\end{equation*}
$$

Proof. Firstly, we prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. Observe that for $i \geqslant 0$:

$$
\begin{aligned}
& \left(1+\frac{a_{n+i}}{2\left(1-a_{n+i}\right)}\right)\left\|y_{n+i}-x_{n+i}\right\| \\
& \quad \leqslant\left(1+\frac{a_{n+i}}{2\left(1-a_{n+i}\right)}\right) f\left(a_{n+i-1}\right) g_{p}\left(a_{n+i-1}, b_{n+i-1}\right)\left\|y_{n+i-1}-x_{n+i-1}\right\| \\
& \quad \leqslant \cdots \leqslant\left(1+\frac{a_{n+i}}{2\left(1-a_{n+i}\right)}\right)\left\|y_{0}-x_{0}\right\| \prod_{j=0}^{n+i-1} f\left(a_{j}\right) g_{p}\left(a_{j}, b_{j}\right)
\end{aligned}
$$

as a consequence of estimate $\left[\mathrm{II}_{n}\right]$. We now have, from Lemma 2.3,

$$
\prod_{j=0}^{n+i-1} f\left(a_{j}\right) g_{p}\left(a_{j}, b_{j}\right) \leq \prod_{j=0}^{n+i-1}\left(\gamma^{3} \Delta\right)=\gamma^{\left(3^{n+i}-1\right) / 2} \Delta^{n+i},
$$

where $\gamma=a_{1} / a_{0}<1$ and $\Delta=1 / f\left(a_{0}\right)<1$. So

$$
\begin{aligned}
\left\|x_{n+m}-x_{n}\right\| & \leqslant\left\|x_{n+m}-x_{n+m-1}\right\|+\left\|x_{n+m-1}-x_{n+m-2}\right\|+\cdots+\left\|x_{n+1}-x_{n}\right\| \\
& \leqslant\left(1+\frac{a_{n+m-1}}{2\left(1-a_{n+m-1}\right)}\right)\left\|y_{0}-x_{0}\right\| \prod_{j=0}^{n+m-2} f\left(a_{j}\right) g_{p}\left(a_{j}, b_{j}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\cdots+\left(1+\frac{a_{n}}{2\left(1-a_{n}\right)}\right)\left\|y_{0}-x_{0}\right\| \prod_{j=0}^{n-1} f\left(a_{j}\right) g_{p}\left(a_{j}, b_{j}\right) \\
\leqslant & \left(1+\frac{a_{n}}{2\left(1-a_{n}\right)}\right)\left(\gamma^{\left(3^{n+m-1}-1\right) / 2} \Delta^{n+m-1}+\cdots+\gamma^{\frac{3^{n}-1}{2}} \Delta^{n}\right)\left\|y_{0}-x_{0}\right\| \\
\leqslant & \left(1+\frac{a_{0} \gamma^{\frac{3^{n}-1}{2}}}{2\left(1-a_{0}\right)}\right) \frac{1-\Delta^{m}}{1-\Delta} \gamma^{\frac{3^{n}-1}{2}} \Delta^{n} \eta \tag{9}
\end{align*}
$$

since $a_{n}<a_{0} \gamma^{\left(3^{n}-1\right) / 2} \leqslant a_{0}$ and

$$
\frac{a_{n}}{2\left(1-a_{n}\right)}<\frac{a_{0}{\frac{3^{\frac{3^{n}-1}{2}}}{2}}_{2\left(1-a_{0}\right)} . . . ~}{\text {. }}
$$

For $n=0$, we obtain

$$
\left\|x_{m}-x_{0}\right\|<\left(1+\frac{a_{0}}{2\left(1-a_{0}\right)}\right) \frac{1-\Delta^{m}}{1-\Delta} \eta<\left(1+\frac{a_{0}}{2\left(1-a_{0}\right)}\right) \frac{\eta}{1-\Delta}=\eta / a_{0}
$$

By letting $m \rightarrow \infty$ in (9), we get (8). Similarly, we have $y_{n} \in B\left(x_{0}, \eta / a_{0}\right)$ for all $n \geqslant 0$.
To see that x^{*} is a solution of (1), we have $\left\|\Gamma_{n} F\left(x_{n}\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$. Taking into account that $\left\|F\left(x_{n}\right)\right\| \leqslant\left\|F^{\prime}\left(x_{n}\right)\right\|\left\|\Gamma_{n} F\left(x_{n}\right)\right\|$ and the sequence $\left\{\left\|F^{\prime}\left(x_{n}\right)\right\|\right\}$ is bounded, we infer that $\left\|F\left(x_{n}\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$. Consequently, we obtain $F\left(x^{*}\right)=0$ by the continuity of F.

To prove the uniqueness, assume some other solution y^{*} of (1) in $B\left(x_{0}, \eta / a_{0}\right)$. From the approximation

$$
0=F\left(y^{*}\right)-F\left(x^{*}\right)=\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(y^{*}-x^{*}\right)\right) \mathrm{d} t\left(y^{*}-x^{*}\right)
$$

we have to prove that the operator $\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(y^{*}-x^{*}\right)\right) \mathrm{d} t$ is invertible and then $y^{*}=x^{*}$. Indeed, from

$$
\begin{aligned}
& \left\|\Gamma_{0}\right\| \int_{0}^{1}\left\|F^{\prime}\left(x^{*}+t\left(y^{*}-x^{*}\right)\right)-F^{\prime}\left(x_{0}\right)\right\| \mathrm{d} t \leqslant M \beta \int_{0}^{1}\left\|x^{*}+t\left(y^{*}-x^{*}\right)-x_{0}\right\| \mathrm{d} t \\
& \quad \leqslant M \beta \int_{0}^{1}\left((1-t)\left\|x^{*}-x_{0}\right\|+t\left\|y^{*}-x_{0}\right\|\right) \mathrm{d} t<\frac{M \beta}{2}\left(\eta / a_{0}+\eta / a_{0}\right)=1
\end{aligned}
$$

it follows that $\left[\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(y^{*}-x^{*}\right)\right) \mathrm{d} t\right]^{-1}$ exists.
Finally, we deduce that the R-order of convergence [10] of sequence (2) is at least three. Indeed, from (8) it follows that

$$
\left\|x^{*}-x_{n}\right\| \leqslant\left(1+\frac{a_{0}}{2\left(1-a_{0}\right)}\right) \frac{\left(\gamma^{1 / 2}\right)^{3^{n}}}{\gamma^{1 / 2}(1-\Delta)} \eta
$$

The proof is complete.

Remark 1. From the initial conditions on the pair (a_{0}, b_{0}), we have that if the point $\left(a_{0}, b_{0}\right)$ lies in region I (see Fig. 1) for $\tilde{p}=1$, we can apply iteration (2) for all $p \in(0,1]$. Observe that if $p=0$,

Fig. 1.
we obtain the Newton method whose order of convergence is two and, consequently, the speed of convergence is slower.

If the point $\left(a_{0}, b_{0}\right)$ lies in region II, we locate the curve $h_{\tilde{p}}$ such that $h_{\tilde{p}}\left(a_{0}\right)=b_{0}$. In this case, we can apply iteration (2) for all $p \in(0, \tilde{p})$.

Note that the domain for initial conditions a_{0} and b_{0} is similar to the one obtained for the Newton method ($p=0$), but for third-order iterations without the computation of the second Fréchetderivative of F.

Observe that for the choice of $p=\frac{2}{3}$, the Jarratt method is obtained (see [1]) whose order of convergence is four. In addition, the iteration considered for solving (1) is one with $\tilde{p} \geqslant \frac{2}{3}$ whenever it is possible.

4. Applications

We apply our new technique of convergence analysis to the following three examples. The two first appear also in [2, 4]. We compare some results with those obtained before.

Example 1. Firstly, we apply iteration (2) to the cubic function $F:[-4,4] \rightarrow \mathbb{R}$ where $F(t)=t^{3}-10$ introduced by Döring [4]. The initial value $t_{0}=2.5$ is chosen. Then all the parameters appearing in Theorem 3.1 are easily found:

$$
\beta=0.053334, \quad \eta=0.3, \quad M=24 \quad \text { and } \quad K=6
$$

In addition, $a_{0}=M \beta \eta=0.384 \in\left(0, \frac{1}{2}\right)$ and $b_{0}=K \beta \eta^{2}=0.0288$. Therefore,

$$
0.0288=b_{0}<h_{p}\left(a_{0}\right)=\frac{1.68296}{2.384+0.696 p}
$$

and, consequently, we can apply (2), for all $p \in(0,1]$, in order to approximate the solution $t^{*}=$ 2.154434690031884 of $F(t)=0$.

On the other hand, from the asymptotic error constant $C_{p}=0.0359072|3 p-2|$, we observe that sequence (2) converges the fastest to x^{*} for $p=\frac{2}{3}$, since a fourth-order iterative method (Jarratt's method) is obtained. See Table 1.

Table 1
Error estimates when $p=\frac{2}{3}$ and $p=\frac{3}{4}$

n	$t^{*}-t_{n}(p=2 / 3)$	$t^{*}-t_{n}(p=3 / 4)$
0	0.345565309968116	0.345565309968116
1	0.000658865061671	0.000962300108230
2	$1.199040866595169 \times 10^{-14}$	$8.052225553001340 \times 10^{-12}$

In the next example, by this new technique, it is shown that we can improve the error bounds obtained by the classical one-point methods of order three.

Example 2. Consider the next integral equation also quoted in [4]:

$$
F(x)(s)=x(s)-s+\frac{1}{2} \int_{0}^{1} s \cos (x(t)) \mathrm{d} t
$$

in the space $X=C([0,1])$ of all continuous functions on the interval $[0,1]$ with the norm

$$
\|x\|=\max _{s \in[0,1]}|x(s)| .
$$

If we choose $x_{0}=x_{0}(s)=s$, then all the parameters appearing in Theorem 3.1 are

$$
\beta=1.2705952, \quad \eta=0.4953228 \quad \text { and } \quad M=0.5=K .
$$

So, $a_{0}=M \beta \eta=0.3146773 \in\left(0, \frac{1}{2}\right)$ and $b_{0}=K \beta \eta^{2}=0.1558668$. We now obtain $p<15.3598$ from the inequality $b_{0}<h_{p}\left(a_{0}\right)$ where h_{p} is defined in (7). In consequence we can take any $p \in(0,1]$. For $p=\frac{2}{3}$, the value of the parameter p which provides the fastest iteration, we have that (2) converges to a unique solution x^{*} of $F(x)=0$ in $B\left(x_{0}, 1.57407\right)$.

On the other hand, we get better error estimates than those obtained by other authors. For $10^{11} \| x^{*}-$ $x_{2} \|$, where x_{2} is the second iterate of (2), we have the upper bounds $L=5825764$ when $p=\frac{2}{3}$ and $L=9756584$ when $p=1$. Instead of that, Candela and Marquina got $L=14987029$ for the Halley method in [2].

Example 3. Finally, let us consider the system of equations $F(u, v)=0$ where $F:[4,6] \times[5,7] \rightarrow \mathbb{R}^{2}$ and

$$
F(u, v)=\left(u^{2}-v-19, v^{3} / 6-u^{2}+v-17\right) .
$$

Then we have

$$
F^{\prime}(u, v)^{-1}=\frac{1}{v^{2}}\left(\begin{array}{cc}
\frac{1+v^{2} / 2}{u} & 1 / u \\
2 & 2
\end{array}\right)
$$

Table 2
Error estimates by Newton's method

n	$u^{*}-u_{n}$	$v^{*}-v_{n}$
0	0.500000000000000	0.5000000000000000
1	0.026134122287968	0.037475345167652
2	0.000091036676663	0.000232132746151
3	$1.726783414298796 \times 10^{-9}$	$8.980472046340010 \times 10^{-9}$
4	$1.642326062324995 \times 10^{-18}$	$1.344147966902442 \times 10^{-17}$
5	$3.280946417712476 \times 10^{-36}$	$3.011222928213283 \times 10^{-35}$
6	$1.618890014525233 \times 10^{-71}$	$1.511243920566230 \times 10^{-70}$

if (u, v) does not belong to the lines $u=0$ or $v=0$. The second derivative is a bilinear operator on \mathbb{R}^{2} given by

$$
F^{\prime \prime}(u, v)=\left(\begin{array}{rr}
2 & 0 \\
0 & 0 \\
-2 & 0 \\
0 & v
\end{array}\right) .
$$

We take the max-norm in \mathbb{R}^{2} and the norm $\|A\|=\max \left\{\left|a_{11}\right|+\left|a_{12}\right|,\left|a_{21}\right|+\left|a_{22}\right|\right\}$ for

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) .
$$

As in [11] we define the norm of a bilinear operator B on \mathbb{R}^{2} by

$$
\|B\|=\sup _{\| \| \|=1} \max _{i} \sum_{j=1}^{2}\left|\sum_{k=1}^{2} b_{i}^{j k} u_{k}\right| .
$$

where $u=\left(u_{1}, u_{2}\right)$ and

$$
B=\left(\begin{array}{ll}
b_{1}^{11} & b_{1}^{12} \\
b_{1}^{21} & b_{1}^{22} \\
\hline b_{2}^{11} & b_{2}^{12} \\
b_{2}^{21} & b_{2}^{22}
\end{array}\right)
$$

If we choose $\mathbf{x}_{0}=\left(u_{0}, v_{0}\right)=(5.5,6.5)$, then

$$
\beta=0.0995159, \quad \eta=0.473866, \quad M=9 \quad \text { and } \quad K=1 .
$$

Thus, $a_{0}=0.424415, b_{0}=0.0223462$ and $p<94.713$. Therefore, any $p \in(0,1]$ can be considered in (2) to approximate the solution $\left(u^{*}, v^{*}\right)=(5,6)$ of $F(u, v)=0$.

In Tables 2-4, we see that, under a similar operational cost to the one of Newton's method, the speed of convergence is quite increased by iteration (2), obtaining the fastest one for the Jarratt method.

Table 3
Error estimates by iteration (2) and $p=3 / 4$

n	$u^{*}-u_{n}$	$v^{*}-v_{n}$
0	0.500000000000000	0.5000000000000000
1	0.000096860900968	0.000290679411182
2	$2.845303226225787 \times 10^{-15}$	$2.844752710967945 \times 10^{-14}$
3	$2.664525110659125 \times 10^{-45}$	$2.664525110659105 \times 10^{-44}$

Table 4
Error estimates by the Jarratt method

n	$u^{*}-u_{n}$	$v^{*}-v_{n}$
0	0.500000000000000	0.500000000000000
1	0.000083774425044	0.000159130644820
2	$3.241970341093828 \times 10^{-19}$	$1.978989109938055 \times 10^{-18}$
3	$5.308320318383308 \times 10^{-75}$	$4.734003854818204 \times 10^{-74}$

Remark 4. As we can see in the three examples mentioned above, by a suitable choice of the starting point x_{0} for iteration (2), we can usually consider (2) for any $p \in(0,1]$. Therefore, we shall take $p=\frac{2}{3}$ as a consequence of the fact that (2) is of order four (see [1]).

References

[1] I.K. Argyros, D. Chen, Q. Qian, The Jarratt method in Banach space setting, J. Comput. Appl. Math. 51 (1994) 103-106.
[2] V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: The Halley Method, Computing 44 (1990) 169-184.
[3] D. Chen, I.K. Argyros, Q. Qian, A local convergence theorem for the super-Halley method in a Banach space, Appl. Math. Lett. 7 (5) (1994) 49-52.
[4] B. Döring, Einige Sätze über das Verfahren der tangierenden Hyperbeln in Banach-Räumen, Aplikace Mat. 15 (1975) 418-464.
[5] J.M. Gutiérrez, M.A. Hernández, A Family of Chebyshev-Halley type Methods in Banach spaces, Bull. Austral. Math. Soc. 55 (1997) 113-130.
[6] M.A. Hernández, Newton-Raphson's method and convexity, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22 (1) (1992) 159-166.
[7] M.A. Hernández, M.A. Salanova, A family of Chebyshev-Halley type methods, Internat. J. Comput. Math. 47 (1993) 59-63.
[8] L.V. Kantorovich, The Majorant Principle for Newton's method, Dokl. Akad. Nauk SSSR 76 (1951) 17-20.
[9] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
[10] F.A. Potra, V. Pták, Nondiscrete Induction and Iterative Processes Pitman, New York, 1984.
[11] L.B. Rall, Quadratic equations in Banach spaces, Rend. Circ. Mat., Palermo 10 (2) (1961) 314-332.
[12] R.A. Safiev, On some iterative processes, Z̆. Vyčcisl. Mat. Fiz. 4 (1964) 139-143 (Translated into English by L.B. Rall as MRC Technical Summary Report, No. 649) Univ. Wisconsin-Madison, 1966.
[13] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.
[14] T. Yamamoto, On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl. Math. 21 (1988) 75-86.

[^0]: * Corresponding author. E-mail: jezquer@siur.unirioja.es.

