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Abstract 

We introduce a new two-step method to approximate a solution of a nonlinear operator equation in a Banach space. 
An existence-uniqueness theorem and error estimates are provided for this iteration using Newton-Kantorovich-type as- 
sumptions and a technique based on a new system of recurrence relations. For a special choice of the parameter involved 
we use, our method is of fourth order. @ 1998 Elsevier Science B.V. All fights reserved. 
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1. Introduction 

Many scientific and engineering problems can be brought in the form of a nonlinear equation 

r(x) = 0, ( 1 )  

where F is a nonlinear operator defined on an open convex subset f2 of  a Banach space X with 
values in another Banach space Y. In the last years, several papers dealing with one-point iterations 
of order three have appeared [2, 3, 5, 7, 14]. The study of  those methods are based on the well-known 
Newton-Kantorovich-type assumptions [9]. 

On the other hand, multipoint methods are defined as iterations which use new information at a 
number of  points. In [13] it is imposed the restriction on one-point iteration of  order N is that they 
must depend explicitely on the first N -  1 derivatives of  F. This implies that their informational 
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efficiency is less than or equal to unity. Those restrictions are relieved in only small measure by 
turning to one-point iterations with memory. 

Neither of  these restrictions need hold for multipoint methods, that is, for iterations which sample 
F and its derivatives at a number of  values of the independent variable. We shall show that there 
exists a two-point method of R-order three which necessitates no evaluations of  the second derivative. 
Moreover, for a special choice of  the parameter involved we use, our method is of  order four. 

Traub [13] has shown how to construct useful multipoint iterations which are very efficient when 
equation (1) is such that the derivative F '  can be rapidly evaluated compared with F itself. An 
example of  this occurs when F is defined by an integral. 

Next, we derive a new family of  two-step methods from one of  the most famous one-point 
iteration of  order three called the Convex Acceleration of  Newton's method or super-Halley method 
[3, 6]: 

G ( x )  = F ' ( x ) - I F " ( x ) F ' ( x ) - I F ( x ) ,  

x.+l = x .  - [I + ½G(x . ) ( I  - G ( x . ) ) - l ] F ' ( x . ) - l F ( x . ) ,  n >10. 

From Taylor's formula, we have 

fx~ ~n F ' ( z . )  = F ' ( x . )  + F " ( x . ) ( z .  - Xn) "t- F ' " ( x ) ( z .  - x ) d x  

where Zn = X. + p ( y .  -- X.) and p E (0, 1]. We can now approximate 

1 
F"(Xn)(Yn -- Xn) "~ --" [F'(z.) - F '(x.)]  

P 

and derive the following two-point iteration function of R-order three: 

y .  = Xn -- F ' ( x . ) - I F ( x . ) ,  

H ( x . ,  y . )  = 1 F ' ( x . ) - I  [F'(x .  + p ( y .  - x . ) )  - F ' (x . ) ] ,  
P 

(2) 

X.+l = y .  - ½H(x . , yn ) [ I  + H ( x . , y . ) ] - l ( y n  - x . ) ,  n >~ O, 

where p E (0, 1], to approximate a zero x* of (1). 
For the special choice of  p = 2, we obtain the known Jarratt method whose order of  convergence 

is four (see [1]). 
We analyse, under certain assumptions of  the pair (F,  xo), the convergence of (2) to a unique zero 

x* of  (1), by using a technique consisting of  a new system of  real sequences which simplifies those 
given by other authors [2, 8, 12]. We also provide some error estimates on the distances ][x* -x.II 
for all n/> 0. From this analysis it follows a semilocal convergence result for the Jarratt method 
under mild differentiability conditions. 

Denote B ( x , r )  = { y E X ;  IIY - x l l  ~< r} and B ( x , r )  = { y E X ;  Ily -xll < r}. 
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2. Preliminaries 

Let F be a nonlinear twice Fr6chet-differentiable operator defined on some open convex subset 
f2 o f  a Banach space X with values in another Banach space Y. Let Xo E f2 and suppose that 
Fo -- F ' (xo) - I  E ~ ( Y , X )  exists, where Ze(Y,X)  is the set o f  bounded linear operators from Y 
into X. 

Let us assume that 

(Cl) IIroII ~< fl, 
(cz) Ilyo-xol[ = IlroF(xo)ll ~ ,7, 
(c3) IIF"(x)ll ~< M, x E f2, 
(c4) IIf"(x) - V"(Y)ll ~ g l l x  - YlI, x, y E (2, K/>  0. 

Denote ao -- Mf l r /and  bo = Kflr/: and define the sequences 

a,+l = anf(a,)29p(a,, b,) 

and 

b,+l = b,f(a,)39p(a, ,  b,)2, 

where 

f ( x )  - 

and 

9p( x, Y) = 

2(1 - x)  

x 2 - 4 x + 2  

3x 3 + 2y(1 -- x)[(1 -- 6 p ) x  + (2 + 3p)]  

24( 1 -- x)2 

Firstly, it is provided a technical lemma whose proof  is trivial. 

(3) 

(4) 

(5) 

(6) 

L e m m a  2.1. Let f and Op the two real functions 9iven in (5) and (6), respectively. Then 
(i) f is increasin9 and f ( x )  > 1 in (0, ½), 

(ii) 9p is increasin9 in its first and second arguments for x E (0, ½) and y > O, 
(iii) f ( T x )  < f ( x )  and 9p(Tx, 72y) < 720p(x, y) for 7 E (0, 1 ) and x E (0, 1 ). 

Some properties for the sequences {a,} and {b.} given, respectively, by (3) and (4) are now 
provided. 

L e m m a  2.2. Let f and 9p the two real functions 9iven by (5) and (6), respectively. Let 

3(2x - 1)(x - 2)(x - 3 + v '~)(x - 3 - v ~ )  
hp(x) = 2(1 - x)((1 - 6p )x  + 2 + 3 p )  

I f  a0 E (0, 1/2) and bo < hp(ao), then 
(i) f(ao)29p(ao, bo) < 1, 

(ii) the sequences {a,} and {b,} are decreasin9, 

(7) 
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( a n )  
(iii) an l + 2 ( 1 - - a n )  < l f o r a l l n > > , 0 .  

Proof. From the hypotheses, (i) follows immediately. We show (ii) by mathematical induction on 
n. The facts that 0 < al < a0 and 0 < bl < b0 follow by previous (i) and Lemma 2.1(i). Next, it 
is supposed that 0 < aj < aj_l and 0 < bj < bj_l for j = 1,2, . . . ,n .  Then 

an+l = anf(an)2gp(an, bn) < anf(ao)2gp(ao, bo) < an, 

since f is increasing and 9p is also increasing in its first and second arguments. We have 

bn+l = bnf(an)39p(an, bn) 2 < bnf(an)49p(an, bn) 2 < bn 

by the same reasoning as before and the fact that f ( x )  > 1 in (0, 1). 
Finally, for all n >_- 0, we have 

( an ) ( ao ) 
an 1 + 2(1 - an) < ao 1 + 2(1 -- ao) < 1, 

since {an} is a decreasing sequence and ao E (0, ½). [] 

Lemma 2.3. Let us suppose the hypotheses o f  Lemma 2.2 and define y = al/ao. Then 
(in) an < 73"-'an-l < 7(3"-1)/2a0 and bn < (7 3"-' )2bn-I < 73"-1bo, for all n >~ 2, 

(iin) f(an)gp(an, bn) < 73"-l f(ao)gp(ao, bo) = 73"/f(ao), for all n >>. 1. 

Proof. We prove (in) following an inductive procedure. So, al = 7ao and bl = bof(ao)39p(ao, bo) 2 
< y2bo if and only if f (ao)  > 1, and by Lemma 2.1 the result holds. If  we suppose that (in) is true, 
then 

an+z = anf(an)Zgp(an, bn ) < 73"-' an - 1 f(73"-~ an-1 )2gp(73"-'an-1, (73"- '  )2bn-1 ) 

< 73"-'an-lf(an-1 )2(73"- '  )2gp(an-l, bn-I ) -~ 73"an • 

On the other hand, we have 

bn+, =bnf(an)3gp(an, bn) 2 < (an+'~2bn 
\ a n  / 

if and only if 

2 = a2f(an)49p(an, bn)2, a2f(a,,)39p(an, bn)2 < an+l 

and it is true since f (an)  > 1. Now, bn+l < (y3")2bn since an+l/an < 73". Moreover, 

an+l < 73"an < 73"73"- 'an-1  < " ' "  < 7(3"+t-l)/Zao 

and 

bn+l < (73")2b. < (7Y ' )2 (73"- ' )2bn-1  < " ' "  < Y3"+'-lbo. 
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Then we observe that 

3"--1 f (an)op(an,  bn) < f(~(a"-W2ao)Op(y(3"-l)/2ao, y3"-lbo) < 7 f(ao)@p(ao, bo) = ~)3 / f ( ao ) .  

The proof  is complete. [] 

After that, taking into account initial hypotheses (c~)--(c4) and assuming that Yo E f2, we have 

IIH(xo, Yo)l[ <~ MIIrollllYo - x o l l  <~ ao and gllrollllYo -Xoi[  2 ~< bo. 

Hence xt is well defined and 

-xo l l  _< I [ I - ½ H ( x o ,  yo)[I + H(xo, yo)]-'[I I l y o -  xo[I _< (1 + IIx, 

Next, we prove the following items are true for all n >/ 1: 

[i.] Ilr.II = I IF ' (x . ) - ' l l  ~ f(a=-,)llr.-~ll, 
[xI.1 Ily. - x=ll -- [Ir.F(x.)ll < f(a._,)g.(a._~, b._,)llY._~ - x~_, II, 

[nI.1 IIH(x.,y.)ll <~ glIF~lllly= - x ~ l l  -< a. ,  
[IV.] xllr~lllly. -x~l l  2 ~ b.,  

[V.] Ilx.+~ - x . [ [  _< 1 + 2 ( 1 - a . )  

We use mathematical induction on n. 
[I1]: Observe that if  xl 6 t2, 

III - roF'(x,)l[ ~< Ilroll IlF'(xo) - F'(x, )ll ~< MIIroll IIx~ - xoll ~< ao (1 + 

and, by the Banach lemma, F~ exists and 

IIr, II _< Ilroll <. f(ao)llroll. 
1 - I I I  - roF'(x~)ll 

[111]: Using Taylor 's  formula and (2), we have if  Yo C f2 

f x, f ( x l  ) = f ( y o )  ÷ F'(yo) (x l  -- Yo) + F" (x ) ( x l  - x )  dx. 
o 

As 

lEt F ( y o )  + F ' (yo) (x l  - Yo) = F ( y o )  - ~ (yo)H(xo,  Yo)[I + H(xo, yo)]- l (yo Xo) 

:k ½F'(xo)H(xo, Yo)[I + H(xo, Yo)]- 1 (yo - Xo) 

= F(yo )  - ½ [F ' (yo)  - F'(xo)]H(xo, Yo)[I + H(xo, yo)]- l (yo - Xo) 

1 F,  - ~  (xo)H(xo, yo)[I + H(xo, yo)] - l (yo  - Xo) /1 
= F"(xo + t(yo - Xo))(1 - t )d t ( yo  - Xo) 2 

fO 1 _ !  F"(xo + t(yo - Xo)) dt(yo - xo)H(xo, Yo)[l + H(xo, yo) l - l (yo  - Xo) 2 

ao 
\ 
) Ilyo - xoll. 2(1 ao) / 

ao) 
2(1 ao) < 1 
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'(Jo' 2 F"(Xo + p t ( y o  - X o ) ) d t ( y o  --Xo) 2 

) - F"(Xo + p t ( y o  - Xo)) dt(yo - xo)H(xo ,  yo)[I + H(xo ,  yo)] - l (yo  - Xo) , 

Taking norms we infer that 

[ 2 + 3 p .  2 - ao 
IIF(xl)ll-< [ - i T - ~ n  + }-~--~gr/2 1 - a o  

So 

I ao llyo-xolt 
- -  + _-TYoo / j 

]ly, - x ,  II = IlF1F(x~)ll ~ IlFl II IIF(x,)ll < f(ao)lIFoll [[F(xl)ll 

<~ f ( a o ) g p ( a o ,  bo)llYo - xoll. 

[III1]: I f  Yz E f2, 

[[H(x~, y, )l] ~< 1 Ilr, II IlF'(x~ + p f y ,  - x~ ))  - F f x l ) l l  

<. MIIr~ II IlYt - x~ II ~< MIIroll IlYo - xollf(ao)2gp(ao, bo) <~ a~. 

[ I V 1 ] :  

KIIF~ II Ilyl - xl I[ 2 ~< KIIFo]I Ilyo - xol l2f (ao)3gr(ao,  bo) 2 <<. bl. 

it follows that 

F ( x l  ) = [F"(xo + t (yo - xo))(1 - t )  - I,-,,,, 5 r  txo + p t ( y o  - xo) ) ]d t (yo  - Xo) 2 

l f o l  - t - lF" ( xo ) ( yo  - xo) 2 + ~ [F"(xo + p t ( y o  - xo) )  

- F " ( X o  + t (yo - Xo))] dt(yo - xo)H(xo ,  Yo)[I + g ( x o ,  yo)]- l (yo - Xo) 

/o' + F" (yo  + t (xl  - yo))(1 - t ) d t ( x l  - yo) 2 

fo' ---- [F"(xo + t (yo - xo) )  - F ' ( x o ) ] (  1 - t ) d t ( y o  - Xo) 2 

lfo' +-~ [F"(xo)  - F"(Xo + p t ( y o  - xo))] dt(yo - xo) 2 

l f o l  + ~  [F"(Xo + p t ( y o  - Xo)) - F"(Xo + t (yo - Xo))] dt(yo - xo)H(xo ,  Yo) 

×[I  + H(xo ,  Y o ) ] - t ( y o  - Xo) 

+ F " ( y o  + t(xl  - yo))(1 - t ) d t (X l  - yo) 2. 
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[Vl]:  

[[xz- x, II <~ 11I- ½H(x,,yl)[I + H(x,,Yl)l-lll [[Yl -Xl][ 

( al ) Ily, -gill. ~< 1 + 2 ( 1 _ a ~ )  

Assuming now [I.]-[V.] are true for a fixed n/> 1, we can prove [I.+1]-[V.+1]. Then the induction 
is complete. 

3. Convergence theorem 

We can already show the next convergence theorem. 

Theorem 3.1. Let  X, Y be Banach spaces and F : f2 C_X ~ Y be a nonlinear twice FrOchet 
differentiable operator in an open convex domain 12. Let  us assume that Fo = F'(xo) -1 E £P(Y,X) 
exists at some Xo C f2 and (c1)-(c4) are satisfied. Let  us denote ao = M[hl and bo = Kflq 2. Suppose 
that ao E (0, ½) and bo < h p( ao ) where h p is defined in (7). Then, i f  B( xo, q /ao ) C_ f2, the sequence 
{x,} defined in (2) and starting at Xo converges R-cubically at least to a solution x* o f  (1). In 
that case, the solution x* and the iterates x, and y.  belong to B(xo, q/ao). Moreover, the solution 
x* is unique in B(xo, q/ao). 

Furthermore, we can give the following error estimates: 

IIx*-x.II ~< (1 +a°v(3"----1)/z) 3,,-, A" 
2 ( 1 _ a o ) ] 7  2 1 - - ~ q ,  n ) O .  (8) 

Proof. Firstly, we prove that {x,} is a Cauchy sequence. Observe that for i ~> 0: 

a,+i ] [[y,+~_ x,+/]l 
1 + 2(1 - a.+i)/  

~< (1 + 2(1 - a .+~) / f (a .+ ,_ l  )gp(a.+i_l,b.+,_, )llY.+i-I - x.+~_l II 
an+i ~ n+i--1 

~< ..-~< 1 + 2(1 -a ,+~)J  [[y0-x011 1-I f (aj)gp(aj ,  bj) 
j=0 

as a consequence of estimate [II~]. We now have. from Lemma 2.3, 

n+i--1 n+i--I 
1-[ f (aj)gp(aj ,  bj ) <- 1-~ (~'3JA) ~-~ 7(3"+'-1)/2An+i, 
j=o j=o 

where 7 = al/ao < 1 and A = 1/f(ao) < 1. So 

IIx.+m -x.II ~< IIx.+m -x.+m-,ll + I[x.+.-, -x.+m-211 + . . .  + IIx.+, -x.II 
n+m--2 

an+m-1 ~[[yo-xoll 1"-[ f(aj)Op(aj, bJ ) 1 + 
2( 1 - a.+m- 1 ) ] j=O 



8 £.4. Ezquerro, M..4. Hermindez/Journal of  Computational and .4pplied Mathematics 96 (1998) 1-12 

n--1 ( a.) 
+ . - - +  1 + 2 ( 1 _ a . )  IlY°-X°llI-If(ai)gp(aj'bj) 

j=O 

~< (1 + 2(1 an_ an,)(Y(3 . . . .  ' - l ) /23n+,-l+.. .+y~?:A,)l iyo_xo[[ 

ao 1 - Amy~?: A. rl, (9) 
< l+2( l_ - -~oo) j  1 - A  

since a, < a0y (3"-1)/2 ~< ao and 
3 n -  I 

an ao y < 
2(1 - an) 2(1 - ao)" 

For n -- 0, we obtain 

( ao ) l - A "  ( ao ) q _rl/ao" 
Ilxm-x011< 1+2( a a0) - ' ~ ' A - q <  l + 2 ( 1 - a 0 )  1 - A  

By letting m ~ c~z in (9), we get (8). Similarly, we have y, EB(xo, q/ao) for all n ~> 0. 
To see that x* is a solution of (1), we have IIFnF(x,)II -~ 0 as n ~ oo. Taking into account that 

IIg(xn)ll <. IIg'(xn)llllr.g(x )ll and the sequence (llF'(x,)ll} is bounded, we infer that IIg(x )ll 0 
as n ~ oc. Consequently, we obtain F(x*) : 0 by the continuity of F. 

To prove the uniqueness, assume some other solution y* of (1) in B(xo, q/ao). From the approxi- 
mation 

0 = F ( y * ) - E ( x * )  = F'(x* +t(y* - x* ) )d t ( y*  - x * ) ,  

we have to prove that the operator fo ~ F'(x* + fly* - x* ) )d t  is invertible and then y* ---x*. Indeed, 
from 

/o 1 /o IIr01[ liE'(x* +t(y* - x * ) ) - f ' ( x o ) l l d t  <<.Mfl IIx* +t(y* - x * ) - X o l l d t  

<.Mfl ((1 - t ) l l x *  -x011 + tlly* - X o l [ )  dt < (q/ao+q/ao) = 1, 

If01F'(x* + t(y* - x*))d/] -l  exists. it follows that 
Finally, we deduce that the R-order of convergence [10] of sequence (2) is at least three. Indeed, 

J 

from (8) it follows that 

IIx*-x~ll~< (1 + 2(1 a_o a0))  (,1/z)3" 

The proof is complete. [] 

Remark 1. From the initial conditions on the pair (ao, b0), we have that if the point (ao, b0) lies in 
region I (see Fig. 1) for /3 = 1, we can apply iteration (2) for all p E (0, 1]. Observe that if  p -- 0, 
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bo 

p = 0  

ao 1/2 
ao 

Fig. 1. 

we obtain the Newton method whose order of  convergence is two and, consequently, the speed of  
convergence is slower. 

If  the point (ao, bo) lies in region II, we locate the curve h~ such that h~(ao) :- bo. In this case, 
we can apply iteration (2) for all p E (0,/3). 

Note that the domain for initial conditions a0 and b0 is similar to the one obtained for the Newton 
method ( p  -- 0), but for third-order iterations without the computation of  the second Fr6chet- 
derivative of  F.  

Observe that for the choice of  p = 2, the Jarratt method is obtained (see [1]) whose order of  
2 whenever convergence is four. In addition, the iteration considered for solving ( I )  is one with/3 >/ 

it is possible. 

4. Applications 

We apply our new technique of  convergence analysis to the following three examples. The two 
first appear also in [2, 4]. We compare some results with those obtained before. 

Example 1. Firstly, we apply iteration (2) to the cubic function F : [ -4 ,4 ]  ~ R where F(t)  - -  t 3 - 1 0  

introduced by DSring [4]. The initial value to = 2.5 is chosen. Then all the parameters appearing in 
Theorem 3.1 are easily found: 

fl---0.053334, t / = 0 . 3 ,  M = 2 4  and K : 6 .  

In addition, a0 = Mflrl ---- 0.384 E (0, 2) and b0 -- Kflrl 2 -- 0.0288. Therefore, 

1.68296 
0.0288 ---- b0 < hp(ao) = 2.384 + 0.696p 

and, consequently, we can apply (2), for all p E (0, 1], in order to approximate the solution t* : 
2.154434690031884 of  F(t)  = O. 

On the other hand, from the asymptotic error constant Cp = 0.035907213 p - 21, we observe that 
sequence (2) converges the fastest to x* for p = 2, since a fourth-order iterative method (Jarratt's 
method) is obtained. See Table 1. 
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Table 1 
2 3 Error estimates when p ---- ~ and p = 

n t* - & ( p  = 2 /3)  t* -- t, ( p  = 3/4)  

0 0.345565309968116 0.345565309968116 

1 0.000658865061671 0.000962300108230 

2 1.199040866595169 × 10 -14 8.052225553001340 × 10 -12 

In the next example, by this new technique, it is shown that we can improve the error bounds 
obtained by  the classical one-point methods of  order three. 

Example  2. Consider the next integral equation also quoted in [4]: 

1/01 F(x ) ( s )  = x(s)  - s + ~ s cos (x ( t ) )d t  

in the space X = C([0, 1]) o f  all continuous functions on the interval [0, 1] with the norm 

Ilxll = m a x  [ x ( s ) l .  
sE[0,1] 

I f  we choose x0 = Xo(S)= s, then all the parameters appearing in Theorem 3.1 are 

f l =  1.2705952, q = 0 . 4 9 5 3 2 2 8  and M = 0 . 5 = K .  

So, a0 -- Mfl~l = 0.3146773 C (0, ½) and b0 = Kflrl 2 = 0.1558668. We now obtain p < 15.3598 from 
the inequality b0 < hp(ao) where hp is defined in (7). In consequence we can take any p C (0, 1]. 
For p = 2, the value o f  the parameter p which provides the fastest iteration, we have that (2) 
converges to a unique solution x* o f  F ( x )  = 0 in B(xo, 1.57407). 

On the other hand, we get better error estimates than those obtained by other authors. For 10'111 x * -  
x2[[, where x2 is the second iterate o f  (2), we have the upper bounds L = 5825764 when p = ] and 
L = 9756584 when p = 1. Instead o f  that, Candela and Marquina got L = 14987029 for the Halley 
method in [2]. 

Example 3. Finally, let us consider the system of  equations F(u,  v) --- 0 where F • [4, 6] × [5, 7] ~ ~2 
and 

F( u , v )  = (u 2 - v -  19, v 3 / 6 -  u 2 + v -  17).  

Then we have 

F' (u , v )  -1 = -~ l+v2j22u 1;) 
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Table 2 
Error estimates by Newton's method 

?'l U*  - -  Un 1)* - -  On 

0.500000000000000 
0.026134122287968 
0.000091036676663 
1.726783414298796 x 10 -9 
1.642326062324995 × 10 -18 
3.280946417712476 x 10 -36 
1.618890014525233 x 10 -7I 

0.500000000000000 
0.037475345167652 
0.000232132746151 
8.980472046340010 x 10 -9 
1.344147966902442 × 10 -17 
3.011222928213283 × 10 -35 
1.511243920566230 × 10 -70 

if (u, v) does not belong to the lines u = 0 or v = 0. The second derivative is a bilinear operator 
on R e given by 

0 0 
F"(u ,v )=  ~ . 

0 v 

We take the max-norm in ~2 and the norm I[AII--max{)a111 + la~2[,la211 + [a221} for 

A ~ ( a l l  a 1 2 ) .  
021 a22 

As in [ 11 ] we define the norm of  a bilinear operator B on ~2 by 

2 2 

Ilnll = sup max ~ ~ ff/'kuk . 
Null=l j=l  k=l 

where u = (ul,u2) and 

2 

B = 

1 6212 

b21 622 

If  we choose xo = (u0,v0) --- (5.5,6.5), then 

f l=0.0995159,  r/=0.473866, M = 9  and K = I .  

Thus, a0 = 0.424415, b0 = 0.0223462 and p < 94.713. Therefore, any p E (0, 1] can be considered 
in (2) to approximate the solution (u*,v*)= (5,6) o f F ( u , v ) =  O. 

In Tables 2-4, we see that, under a similar operational cost to the one of Newton's method, the 
speed of  convergence is quite increased by iteration (2), obtaining the fastest one for the Jarratt 
method. 
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Table 3 
Error estimates by iteration (2) and p = 3/4 

n u *  - -  Un I)* - -  Vn 

0 0.500000000000000 0.500000000000000 
1 0.000096860900968 0.000290679411182 
2 2.845303226225787 x 10 -15 2.844752710967945 x 10 -14 
3 2.664525110659125 x 10 -45 2.664525110659105 x 10 -44 

Table 4 
Error estimates by the Jarratt method 

n u *  - -  Un  I)* - -  [~n 

0 0.500000000000000 0.500000000000000 
1 0.000083774425044 0.000159130644820 
2 3.241970341093828 × 10 -19 1.978989109938055 x 10 -18 
3 5.308320318383308 × 10 -75 4.734003854818204 X 10 -74 

Remark 4. As we can see in the three examples mentioned above, by a suitable choice of  the 
starting point x0 for iteration (2), we can usually consider (2) for any p C (0, 1]. Therefore, we shall 

2 take p = ~ as a consequence of  the fact that (2) is of  order four (see [1]). 

References 

[1] I.K. Argyros, D. Chen, Q. Qian, The Jarratt method in Banach space setting, J. Comput. Appl. Math. 51 (1994) 
103-106. 

[2] V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: The Halley Method, Computing 44 
(1990) 169-184. 

[3] D. Chert, I.K. Argyros, Q. Qian, A local convergence theorem for the super-Halley method in a Banach space, Appl. 
Math. Lett. 7 (5) (1994) 49-52. 

[4] B. D6ring, Einige S/itze fiber das Verfahren der tangierenden Hyperbeln in Banach-Rfiumen, Aplikace Mat. 15 (1975) 
418-464. 

[5] J.M. Guti6rrez, M.A. Hern~ndez, A Family of Chebyshev-Halley type Methods in Banach spaces, Bull. Austral. 
Math. Soc. 55 (1997) 113-130. 

[6] M.A. Hernfindez, Newton-Raphson's method and convexity, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22 (1) (1992) 
159-166. 

[7] M.A. Hernfindez, M.A. Salanova, A family of Chebyshev-Halley type methods, Internat. J. Comput. Math. 47 (1993) 
59~3.  

[8] L.V. Kantorovich, The Majorant Principle for Newton's method, Dokl. Akad. Nauk SSSR 76 (1951) 17-20. 
[9] L.V. Kantorovieh, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. 

[10] F.A. Potra, V. Pthk, Nondiscrete Induction and Iterative Processes Pitman, New York, 1984. 
[11] L.B. Rall, Quadratic equations in Banach spaces, Rend. Circ. Mat., Palermo 10 (2) (1961) 314-332. 
[12] R.A. Safiev, On some iterative processes, 7.. Vy~cisl. Mat. Fiz. 4 (1964) 139-143 (Translated into English by L.B. 

Rall as MRC Technical Summary Report, No. 649) Univ. Wisconsin-Madison, 1966. 
[13] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964. 
[14] T. Yamamoto, On the method of tangent hyperbolas in Banaeh spaces, J. Comput. Appl. Math. 21 (1988) 75-86. 


