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Abstract

DNA fingerprinting is a genetic typing technique that allows the analysis of the genomic relatedness between samples, and
the comparison of DNA patterns. The analysis of DNA gel fingerprint images usually consists of five consecutive steps:
image pre-processing, lane segmentation, band detection, normalization and fingerprint comparison. In this article, we
firstly survey the main methods that have been applied in the literature in each of these stages. Secondly, we focus on lane-
segmentation and band-detection algorithms—as they are the steps that usually require user-intervention—and detect the
seven core algorithms used for both tasks. Subsequently, we present a benchmark that includes a data set of images, the
gold standards associated with those images and the tools to measure the performance of lane-segmentation and band-
detection algorithms. Finally, we implement the core algorithms used both for lane segmentation and band detection, and
evaluate their performance using our benchmark. As a conclusion of that study, we obtain that the average profile algo-
rithm is the best starting point for lane segmentation and band detection.
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Introduction

DNA fingerprinting is a technique for comparing DNA patterns
that allow the analysis of the genomic relatedness among dif-
ferent samples, as well as to type and classify them. There are
multiple DNA fingerprinting techniques, and the choice of
which of them we must use depends on their applications
(medical diagnosis, forensic science, parentage testing, food in-
dustry, agriculture and many others) [1].

After capturing DNA gel fingerprint images (also known as
gel images), the process to analyse them can be split into five
steps (Figure 1). First, the image is pre-processed to remove
noise and fix distortions. Subsequently, the lanes of the image
are segmented, and for each of those lanes (lane images) the
bands are detected. Because the band positions of a lane are
influenced by experimental conditions, a normalization step is

carried out to compare banding patterns within the same gel
and also from different gels. Finally, the similarity among lanes
(based on banding patterns) is computed and graphically repre-
sented by means of a dendrogram (a hierarchical tree).

Several software tools implement the workflow to analyse
gel images [2]; hence, the processing of those images is highly
automated. However, there are two steps that usually require
user intervention: lane segmentation and band detection. In the
former, the user might need to manually add lanes, remove
some of the automatically segmented lanes or adjust the thick-
ness and curvature of the detected lanes. In the latter, the user
might need to add or remove bands. These two manual correc-
tions are tedious and time consuming, and, therefore, algo-
rithms that reduce this effort are desirable.

In the literature, several approaches have been studied to
tackle lane segmentation and band detection; however, a
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Figure 1. Workflow to analyse DNA gel fingerprint images. (1) The image is pre-processed. (2) The lanes of the image are segmented. (3) The bands of each lane are de-
tected. (4) The gel is normalized. (5) The similarity across lanes is graphically represented by means of a dendrogram.

comparison of the different methods does not exist. The reason
is 2-fold: the lack of a common benchmark to measure the per-
formance of those methods, and the unavailability of the imple-
mentation of most algorithms. In this article, we deal with
these two problems. The main contributions of this work are:

1. A survey of the fundamental techniques used in each stage
of DNA gel fingerprint analysis (see ‘Survey of methods’ sec-
tion)—special attention is paid to lane-segmentation and
band-detection methods.

2. A benchmark for analysing gel and lane images, including a
data set of images, the gold standards associated with those
images and a set of tools that has been designed to obtain
different quantitative measures from the data set (see
‘Benchmarking: data set, gold standard, and analysis tools’
section).

3. The implementation and comparison of the core algorithms
used in the segmentation of lanes and the detection
of bands (see ‘Implementation and evaluation of lane-
segmentation and band-detection algorithms’ section).

Survey of methods

In this section, we provide a survey of the fundamental tech-
niques used in the five stages of DNA gel fingerprint analysis.
We screened PubMed Central and Google Scholar looking for
corpora publications, and used the Google search engine to cre-
ate a list of papers devoted to analyse gel images—the search
strategy that we have followed is described in Supplementary
Appendix A. This search produced 35 papers explaining differ-
ent approaches.

As we have previously explained, we are mainly focused on
the lane-segmentation and band-detection stages—because
they are the two most time-consuming and tedious tasks.
However, and for the sake of completeness, we also survey the
main techniques used in the other steps of the procedure.

Image pre-processing

DNA gel fingerprint images might suffer from various types of
distortions, including geometric distortion of the whole image,
horizontal lane deformation (smiling), salt-and-pepper noise,
non-uniform background or low/high contrast bands.
Therefore, most approaches perform some safe image trans-
formations before the actual analysis of gel images. Namely, the
most usual techniques are filtering, background subtraction,
smiling correction, morphological closing and deconvolution.

Filtering

The application of different filters to an image might smooth it,
enhance the edges in the image and reduce its noise. Several fil-
ters have been used in the literature of gel-images analysis: the
average filter [3-7] reduces the noise of the images, the notch
filter is applied to smooth gel images [8, 9], the minimum filter
reduces high-frequency noise [5], the Gaussian filter enhances
the edges of the images [10, 11], the least-square filter reduces
noise and smooths the images [12], the low pass homomorphic
filter enhances the images [13], and the match filter also en-
hances the images [14].

Background subtraction
This technique removes local background differences. Several
papers, see [12, 13], apply the rolling ball mechanism [15] to
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remove the background from a gel image. In [16], the back-
ground fog is removed applying a maximum filter and, subse-
quently, a minimum filter. An automatic threshold is applied to
equalize the grey values of the background in [14]. A polynomial
function is used to model the background of images in [17] for
latter subtraction, and a ‘Top-Hat Transform’ is used in [18] to
subtract the background.

Smiling correction

This mechanism is used to correct gel distortion and smiling ef-
fects. In [12], they use a bounding box with distortion nodes to
border the relevant part of the gel and to correct gel distortion
and smiling effects. The method presented in [16] to correct the
smiling effect consists in detecting and straightening a pair of
bands common to most of the lanes. In [9], the smiling effect is
fixed using a grid that captures the shape of distortions.

Morphological closing

This technique is used to remove noise. Different structuring
elements can be used for morphological closing: a circular
structure element of 5 pixel radius is used in [19], a square
structure element is used in [20], a rectangular structure elem-
ent is used in [6, 11] and a one-dimensional structural element
parallel to the lanes is applied in [4].

Deconvolution

This method sharpens images and enhances the contrast of
bands; however, this technique also increases the noise of the
image. This mechanism has been used in [11, 12].

Lane segmentation and band detection

After a gel image has been pre-processed, the lanes of such an
image are segmented, and afterwards, the bands of the seg-
mented lanes are detected. The same intuitive idea is applied
both in the segmentation of lanes and in the detection of bands.
Because lane areas are covered with biological material, they
appear lighter than the empty background areas between lanes;
hence, strong intensity transitions between lanes and back-
ground are expected when moving horizontally across the
image—analogously for bands when moving vertically across a
lane. This idea is captured using a vertical (or horizontal in the
case of bands) projection profile, and subsequently, obtaining
the local peaks of such a profile (Figure 2).

In the literature, several projection profiles have been
studied—we only consider here the definition of vertically pro-
jected profiles, and the definition of horizontally projected pro-
files is analogous. Given an image I with N columns and M rows
of pixels, the vertical projection profile of I is an array of N elem-
ents that can be constructed using different methods—we will
use I;; to denote the intensity of the pixel located at column i
and row j of I.

Average profile [10, 12-14, 16, 20-27] The i-th element of the average

profile—denoted by Pavc (i)—is computed using the formula:

1 M

Pave(l) =37 iy 1i

Derivative profile [3, 7, 9, 17, 28-30] The i-th element of the derivative
profile—denoted by Ppgg (i)—is computed using the formula:

. M
Pper(i) = ijl Ly — L
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Figure 2. Average profile from a lane image. The horizontal lanes indicate the
bands located from the peaks, the dotted square is a local peak coming from
noise and the non-dotted square is a peak that comes from an uncertain band.

Sum profile [4, 5, 8, 19, 28, 31, 32] The i-th element of the sum pro-
file—denoted by Psywm(i)—is computed using the formula:

. M
Psum(i) = Zj:1 Lij
Binary [6, 11, 18, 19, 33, 34] The i-th element of the binary profile—
denoted by Ppin(i)—is computed after binarizing the image
applying a threshold, and subsequently, using the formula:

. M
P = Y0,

where Il?fj is the value of the pixel located at column i and row j
of the binarized version of I. The computation of the threshold
can be carried out using different methods like Otsu [11] or
Kapur [6].

Maximum profile [35, 36] The i-th element of the maximum profile—
denoted by Pyax (i)—is computed using the formula:

PMAx(l) = max}ﬁlli,}-
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Standard derivation profile [37] The i-th element of the standard der-
ivation profile—denoted by Psrp(i)—is computed using the
formula:

. 1 M S\ Y2
Psto (i) = <m i (i — Ii)2>

where ii = %Z;\il I‘)

Derivative of standard derivation profile [37] The i-th element of the
standard derivation derivative profile—denoted by Psrpper(i)—is
computed using the formula:

Pstoper(i) = Psto(i+ 1) — Psto(i)

These seven profiles are the core for the construction of
more complex algorithms that refine the lane-segmentation
and band-detection tasks. The enhancements introduced
in the surveyed papers are summarized in Supplementary
Appendix B.

A common improvement in the band-detection algorithms
is the introduction of a height threshold [12, 16, 35]. As can be
seen in Figure 2, some of the local peaks come from noise, and
they are excluded by using a minimum height criterion: the
value of the local peak must be higher than a fixed minimum to
be considered as the location of a band. However, this criterion
has two disadvantages: it can exclude low-intensity bands (see
the non-dotted square in Figure 2), and the optimum height
value varies from image to image. Therefore, the task of fixing
the height threshold is usually left to the user.

Normalization

Owing to the fact that the band positions of a lane are influ-
enced by experimental conditions, a normalization step is
required to compare banding patterns within the same gel, and
to compare patterns from different gels. Normalization among
gels is achieved by introducing reference lanes that contain
known DNA fingerprint patterns (reference markers). A refer-
ence marker consists of a set of band positions together with a
physical property (mainly, the molecular weight) of each band
of such a set. For example, in pulsed-field gel electrophoresis
(PFGE), these reference lanes can consist in commercial molecu-
lar markers (such as Lambda Ladder PFG Marker, Middle Range
PFG Marker or Low Range PFG Marker) or reference strains (e.g.
Salmonella enterica Braenderup H9812). From the reference
marker, the molecular weight of each band in the gel can be
computed. This computation requires two interpolation stages:
(i) a vertical interpolation within a reference lane serves to

-
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derive a migration model—this interpolation can be linear [38]
or non-linear using cubic spline regression [12], and (ii) a hori-
zontal interpolation is carried out to calculate the shift in each
position of the non-reference lanes that fall between the refer-
ence lanes—in the same way that vertical interpolation, this
horizontal interpolation can be carried out linearly [39] or by
using cubic-spline regression [12].

Fingerprint comparison

The process to compare fingerprints (i.e. lanes) consists of two
steps: the computation of similarity matrices, and the construc-
tion of dendrograms.

Similarity matrices

Given a list of n lanes, L, the similarity matrix of L is an n x n ma-
trix where the element of row i and column j encodes the similar-
ity between the i-th and j-th lanes of L. There are two approaches
to calculate the similarity between lanes: band based and curve
based [12]—a search in PubMed shows that both approaches are
equally used in the literature (Supplementary Appendix A). In the
former approach, the similarity between two lanes is calculated as
a coefficient based on the number of matching and non-matching
bands. In the latter approach, the similarity is determined using a
correlation coefficient computed from the projection profiles (also
known as densitometric curves) of the lanes.

Band-based methods. The comparison of lanes using band-based
methods is a two-step mechanism: (i) matching is performed
between the bands of two lanes, and (ii) the similarity of two
lanes is computed based on the number of matching and/or
non-matching bands.

In the first step, a tolerance value is introduced. This value
indicates the maximum distance allowed between two bands to
be considered as matching. Under this criterion, two (or more)
bands on one lane might be eligible for matching with the same
band on another lane (Figure 3). Two alternatives are considered
to solve this problem: closest band matching or first band matching.
In the former, the two bands that have the shortest distance are
matched; in the latter, the first candidate that is encountered is
matched (Figure 3).

Once the bands of two lanes are matched, the similarity be-
tween them can be computed using different coefficients. The
most common band-based coefficients are provided in Table 1.

Curve-based methods. The curve-based coefficients work with the
densitometric curves associated with the different lanes—as we
have seen in ‘Lane segmentation and band detection’ section,
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Figure 3. Matching bands in two lanes. Left. Example of tolerance, or maximum distance, that is defined to match two bands. Centre. Closest band matching. Right. First

band matching.
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different densitometric curves can be associated with a given
lane. The most common curve-based coefficients used in the lit-
erature are summarized in Table 2.

Band-based versus curve-based methods. These two kinds of meth-
ods have their pros and cons. The advantage of curve-based co-
efficients is that they are less subjective than the band-based
coefficients: band detection and tolerance fixation (two steps
that require user intervention) are not required in curve-based
methods, but they are necessary for band-based coefficients.
However, the curve-based coefficients never show perfect
matches—perfect matches are possible using the band-based
coefficients. The advantage of band-based coefficients is that
they provide a better control of the results (the bands selected
from a lane can be manually modified by the user, but the
densitometric curve cannot be altered).

Band- and curve-based methods are the traditional ap-
proach to compare fingerprints. Recently, a new approach has
been proposed to classify 2D-gel images based on image texture
[45]. Such a method could be extrapolated to classify finger-
prints. The texture-based method can be seen as an improve-
ment of the curve-based approach because it describes images
using not only the information from the densitometric curve
but also other features. Then, as in the case of the curve-based
method, the texture-based approach will be less subjective than
the band-based approach, but it will not show perfect matches.
It remains as further work to compare the results that can be
obtained with the three methods (band, curve and texture
based).

Table 1. Band-based methods, their associated formula and the per-
centage of papers that use them

Method Formula Papers
Dice [40] " 72%
Jaccard [41] b‘u};ﬁ 12%
Different bands [12] 1— (b; + by — 2by) 8%
Ochiai [42] l;]‘bl 7%

Note. The following notation is used: given two lanes L; and L;, b; is the number
of common bands (i.e. matched bands) that appear in the lanes L; and L;, b; is
the number of bands that appear in L; and b; is the number of bands that appear
inL;

g

Table 2. Curve-based methods, their associated formula and the per-
centage of papers that use them

Clustering algorithms

The similarity matrices are fed as input to hierarchical cluster-
ing algorithms [46]. These algorithms are used to visualize the
relations among fingerprints using a dendrogram—a kind of
hierarchical tree. The construction of dendrograms follows an
iterative process: at each step, the nearest two clusters (sets of
fingerprints) are combined into a higher-level cluster. The dif-
ference among the methods relies on how the distance between
the new clusters is recomputed. The main methods used in the
literature are summarized in Table 3. Alternatively to hierarch-
ical clustering, some papers apply the neighbour joining algo-
rithm to construct phylogenetic trees [47].

Benchmarking: data set, gold standard, and
analysis tools

The workflow to analyse gel images could be fully automated—
just picking an algorithm for each stage—however, the results
obtained automatically are unlikely to be precise. In particular,
to obtain accurate results, it is usually necessary to carry
out some adjustments in the lane-segmentation and band-
detection steps. Therefore, it is relevant to know what are the
lane-segmentation and band-detection algorithms that reduce
the user interaction.

In general, the evaluation of segmentation/detection algo-
rithms requires three ingredients: a data set of images (e.g. the
face recognition data set [48], Berkeley segmentation data set
for natural images [49], the data set of macrobiological struc-
tures [50] or the UCSB biosegmentation benchmark [51]), a gold
standard that fixes the optimum segmentation (the gold stand-
ard is manually provided by experts) and a set of metrics to com-
pare the results obtained with the segmentation/detection
algorithms and the gold standards.

In this section, we present a benchmark to test algorithms
for the segmentation of lanes in gel images, and the detection
of bands in lane images. The benchmark can be downloaded
from http://www.unirioja.es/cu/joheras/surveying/. The instru-
mental tool that we have used to create the benchmark is
Image] [52]: a freely available Java platform for image processing
that has been widely used in several contexts, and that
can be easily extended by means of plug-ins. Using Image],
we have defined the gold standards of the data set. In addition,
we have extended Image] with two plug-ins to measure the

Table 3. Linkage methods, their associated formula and the percent-
age of papers that use them

Method Formula Papers
Pearson ;i:l xiy"%zz:izl XD y‘l > 72%
coefficient \/ZL X2 (Z.L "') \/Z:‘:l -y (Z:‘:l y*)
[43]
Euclidean Z?:l (xi = yi)? 18%
distance
[44]
n -
Cosine % 7%
correlation Zizl Xi Zi:1 Yi
[12]

Note. The following notation is used: given two lanes L; and L; with height n, their
densitometric curves are two arrays of n values where x; and y; are the ith values
of the densitometric curves of L; and L;, respectively.

Method Formula Papers
(%)
UPGMA dX,Y) =ty erxzygyd(x, y) 27
Single d(X,Y) =min(d(x,y)) wherexe X,y €Y 24
(minimum)
linkage
Complete d(X,Y) = max(d(x,y)) wherexe X,y e Y 18
(maximum)
linkage
Ward d(X,Y) = 205 [mx — my|? 8

Note. The following notation is used: X and Y are clusters, d(X,Y) is the similarity
between the two clusters, d(x,y) is the similarity between two objects of different
clusters, ny is the number of elements of the cluster X and my is the centre of
cluster X.
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performance, using different metrics, of lane-segmentation and
band-detection algorithms.

Data set

The data set consists of 50 gel images and 121 lane images
saved using the tiff format. The data set of gel images consists
of 24 images of good quality, 17 of intermediate quality and 9 of
bad quality—the quality of the gel images was based on the
straightness of lanes, and the contrast and noise of the images.
In the case of lane images, the data set contains 42 good images,
66 intermediate images and 13 bad images—the quality of the
lane images is based on the opinion of experts, the migration of
the lane and the contrast of the bands.

The images of the data set were taken from agarose PFGE
gels. These gels were prepared with agarosa D-5 (Pronadisa,
Conda) in 0.5X Tris-Boric-EDTA (TBE). In each gel at least two
lanes were placed with molecular weight markers (Lambda
Ladder PFG Marker, Middle Range PFG Marker or Low Range PFG
Marker) and the plugs of the test samples were placed in the re-
maining lanes. Electrophoresis was carried out in CHEF-DR II
Drive Module (BioRad) machine with 2 L of 0.5X TBE with a spat-
ula tip of thiourea. The conditions were different according to
the enzyme and bacteria used. Gels were stained with an aque-
ous ethidium bromide solution (10ml of ethidium bromide in
200 ml of distilled water) by immersion for 20 min under stirring.
Gels were visualized with ultraviolet light and were photo-
graphed with Image Store 5000 UVP, thanks to the software
ChemiGenius (GenSnap from SynGene).

Gold standards

The gold standard of the data set has been created using the ROI
Manager tool (Figure 4) of Image]. The ROI Manager allows the
user to fix a set of regions of interest (ROIs)—such regions might
have different shapes (e.g. rectangle, oval, polygon or free
shape)—and save it as a zip file for latter use. Using this tool,
four biological experts in the processing of PFGE images have
manually segmented, by consensus, the gel and lane images of
the data set; as a result, a set of gold standards have been cre-
ated. In particular, 677 lanes and 1818 bands have been manu-
ally segmented respectively for the gel and lane images.

Analysis tools

We have extended Image] with two plug-ins that allow the
evaluation of lane-segmentation and band-detection algo-
rithms. These plug-ins are called LaneSegPerformance] and
BandSegPerformance].

LaneSegPerformance]

This plug-in serves to measure the performance of lane-seg-
mentation algorithms in terms of two different criteria: (i) the
number of lanes that must be added or removed from the seg-
mentation, and (ii) the adjustment that is necessary for the seg-
mented lanes.

To measure the performance of segmentation algorithms re-
garding the former criteria, the input of LaneSegPerformance]
is 3-fold: a gel image, the associated gold standard and the seg-
mentation of the gel. The output generated by
LaneSegPerformance] is the set of measures provided in the
centre column of Table 4 (for more information about these
measures, please refer to [53, 54]). The measures presented in
such a table are based on the following values.

® True Positive (TP): the number of lanes of the gold standard that
are located by the segmentation.

False Positive (FP): the number of segmented lanes that do not
correspond to any lane of the gold standard, and those seg-
mented lanes that correspond to lanes of the gold standard that
have been previously detected by other lanes of the
segmentation.

False Negative (FN): the number of lanes of the gold standard
that are not located by the segmentation.

True Negative (TN): the number of regions of the gel that do not
contain either lanes of the gold standard or segmented lanes.

Unfortunately, the above values and the metrics presented
in Table 4 are not intuitive for most experimental scientists,
and an alternative formulation is preferred by many investiga-
tors, as shown in a series of recent publications [55-62]. In the
alternative formulation, N* is the total number of lanes of the
gold standard, N7 is the number of true lanes of the gold stand-
ard predicted to be lanes by the segmentation (i.e. the TP value),
N* is the number of true lanes of the gold standard that are not
located by the segmentation (i.e. the FN value), N is the num-
ber of segmented lanes that do not belong to the gold standard
(i.e. the FP value) and N~ is the number of regions of the gel that
do not contain either lanes of the gold standard or segmented
lanes (i.e. the TN value). Using this alternative formulation,
the output generated by LaneSegPerformance] is given by
the set of measures provided in the right column of Table 4.
A crystal clear interpretation of the different metrics is provided
in [55-62].

For the latter criteria, i.e. to measure the adjustment that is
necessary for the segmented lanes, LaneSegPerformance] takes
the same input and produces the same output as explained in
the previous case. However, the measures presented in Table 4
are based on the area correctly segmented for each lane.

® True Positive (TP or NT): the number of pixels that belong both to
the gold standard and the segmentation.

* False Positive (FP or N7): the number of pixels that belong to the

segmentation but not to the gold standard.

False Negative (FN or N*): the number of pixels that belong to the

gold standard but not to the segmentation.

® True Negative (TN or N-): the number of pixels that neither be-
long to the gold standard nor to the segmentation.

BandSegPerformance]

The criteria used by this plug-in to measure the performance of
band-detection algorithms is based on the number of bands
that must be manually added or removed after the automatic
detection.

The input of BandSegPerformance] is 3-fold: a lane image,
the associated gold standard and the position of the detected
bands in the lane (provided by a set of points). The output gen-
erated by BandSegPerformance] is the same set of measures
generated in the LaneSegPerformance] plug-in, but computed
using the following values.

® True Positive (TP or NT): the number of bands of the gold stand-
ard that are located by the estimation.

* False Positive (FP or N7): the number of points of the estimation
that do not correspond to any band of the gold standard, and
those estimated points that correspond to bands that have been
previously detected by other point of the estimation.

® False Negative (FN or N*): the number of bands of the gold stand-
ard that are not located by the estimation.
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Figure 4. The ROI Manager tool and the gold standard for a gel image.

® True Negative (TN or N-): the number of regions of the lane that
do not contain either bands or estimated points.

As we have explained in ‘Lane segmentation and band de-
tection’ section, different height threshold can be fixed to detect
bands; hence, it might be interesting to measure the evolution
of band-detection algorithms when altering such a threshold.
BandSegPerformance] can be used to achieve this goal. To this
aim, the plug-in takes as input a lane image, the associated gold
standard and a batch of successive band detections. The output
produced by the plug-in is the receiver operating characteristic
(ROC) curve [63] (and the area under the ROC curve, also known
as AUROC) associated with the batch, and the above mention
measures for each individual detection of the batch.

Implementation and evaluation of lane-segmentation and
band-detection algorithms

In this section, we present the implementation of the core
algorithms for lane segmentation and band detection presented
in ‘Lane segmentation and band detection’ section.
Additionally, we evaluate them using the benchmark intro-
duced in ‘Benchmarking: data set, gold standard, and analysis
tools’ section.

Implementation

We have implemented two Image] plug-ins called LaneManager]
and BandManagerJ—they can be downloaded from http://www.
unirioja.es/cu/joheras/surveying/.
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Table 4. Measures generated by the LaneSegPerformance] and
BandSegPerformance] plug-ins

Measure Value using Value using
traditional alternative
formulation formulation

Positive TP+FN N*

Negative FP+TN N~
__TPATN _ NN

Accuracy TPTFN+FP1TN 1-%m

- P N
Precision PP N;T+N;
Sensitivity/ TP -

recall
FP N,

Fallout TN R

e . N
Specificity oy 1-5

1 - _TIN N-

Negative pre NN NTiNT

dictive value
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The LaneManager] plug-in takes as input a gel image, and
allows the user to segment the lanes of such an image choosing
one of the seven algorithms based on the seven profiles pre-
sented in ‘Lane segmentation and band detection’ section
(average, binary, derivative, maximum, STD, STD-derivative
and sum). The output produced by this plug-in is a set of regions
(rois) that can be stored as a zip file—this zip file can be fed as
input to the analysis tools presented in ‘Benchmarking: data
set, gold standard, and analysis tools’ section. Likewise, the
BandManager] plug-in takes as input a lane image and gener-
ates as output the position of the bands of such an image using
the profile selected by the user. These two plug-ins could be ex-
tended to incorporate the more refined algorithms that rely on
the different profiles (Supplementary Appendix B).

Both plug-ins also feature batch generation; that is, they can
automatically generate the roi files produced by the seven algo-
rithms and store them into a folder. Additionally, the
BandManager] plug-in supports the batch generation with dif-
ferent height thresholds—the number of thresholds can be
fixed by the user.

Evaluation

The rest of this section will be devoted to show the behaviour of
the seven algorithms implemented in LaneManager] and
BandManager] when applied to the benchmark presented in
‘Benchmarking: data set, gold standard, and analysis tools’ sec-
tion. In particular, we include an evaluation of the lane-seg-
mentation and the band-detection algorithms—the workflow to
evaluate the performance of the algorithms in our benchmark is
depicted in Figure 5. To this aim, we provide the mean (standard

RoiManager LaneManager.J

—

Gold-Standard

Lanes Segmentation

.

LaneSegPerformance] %

Statistics

Figure 5. Workflow to evaluate the performance of a lane-segmentation algo-
rithm using our benchmark and LaneManager]. A gel image is given as input to
the ROIManager tool of Image] where an expert defines the gold standard. In
addition, the same image is the input of LaneManager] where the user can seg-
ment the lanes of the gel image using the available methods. Subsequently, the
gel image, the gold standard and the lane segmentation are provided as input to
LaneSegPerformance] that evaluates how good is the segmentation. The work-
flow for band detection is analogous using BandManager] instead of
LaneManager], and BandSegPerformance] instead of LaneSegPerformance].

derivation) of the FPs and FNs, as explained in ‘Benchmarking:
data set, gold standard, and analysis tools’ section, together
with the accuracy, precision (positive predictive value), sensitiv-
ity, specificity, negative predictive value and F-score with o =1
(additionally, AUROC is also included in the case of band-detec-
tion algorithms) of the different algorithms in the evaluated
images—these values have been obtained using the analysis
tools presented in ‘Benchmarking: data set, gold standard, and
analysis tools’ section.

We include a statistical evaluation in the study. In the litera-
ture, a parametric test is preferred for model comparison when
the necessary requirements are satisfied, but a non-parametric
test is also acceptable when the distribution does not fulfil the
assumptions [64-66]. Therefore, we firstly use analysis of vari-
ance with repeated measures to test whether there are differ-
ences on the evaluated methods. Secondly, we compare each
pair of methods with a paired t-test using Bonferroni correction.
When parametric conditions are not verified, we take into ac-
count the corresponding non-parametric tests (i.e. Friedman or
Wilcoxon tests). These last comparisons allow us to sort (from
best to worst) the methods according to a studied characteristic.
A symbol > between two methods will mean that a significant
difference between two consecutive methods has been found.

Evaluation of lane-segmentation algorithms

As we have explained in ‘Benchmarking: data set, gold stand-
ard, and analysis tools’ section, the performance of lane-seg-
mentation algorithms is evaluated regarding two criteria: the
correct detection and the correct segmentation of lanes—these
two criteria measure respectively how many lanes must be
added or removed, and the adjustment of the thickness and
shape of the lanes. We start by analysing the seven algorithms
implemented in LaneManager] with respect to the lane-detec-
tion criterion.

Table 5 includes the means and standard deviations of the
different algorithms to detect lane positions. There exist signifi-
cant differences among the different methods in all the studied
aspects. The average algorithm is the method with significant
less FPs—i.e. the method that requires less user-intervention
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Table 5. Evaluation of surveyed profiles for lane detection

Metric AVG BIN DER MAX STD STDDER SUM

Accuracy 0.95 (0.08) 0.78 (0.11) 0.85 (0.11) 8(0.11) 0.93 (0.1) 0.88(0.12) 0.82 (0.1)

Precision 0.95 (0.07) 0.68 (0.2) 0.78 (0.18) 7(0.2) 0.89 (0.11) 0.82 (0.13) 0.72 (0.19)

Sensitivity 0.96 (0.09) 0.98 (0.06) 0.98 (0.04) 0. 98 (. 06) 0. 98 (0.06) 0.95 (0.07) 0.99 (0.05)

Specificity 0.95 (0.06) 0.68 (0.2) 0.78 (0.18) 7(0.2 9(0.11) 0.83(0.13) 0.72 (0.18)

NPV 0.97 (0.07) 0.98 (0.05) 0.98 (0.03) 0. 99 (. 04) 0. 98 (0.05) 0.96 (0.06) 0.99 (0.04)

F-score 0.95 (0.06) 0.78 (0.16) 0. 85 (0.12) 0. 80 (0.14) 0.93 (0.08) 0.87 (0.08) 0.81 (0.14)

FP 0.72 (1.16) 7.56 (7.55) 7 (5.57) 5 (6.94) 1.96 (2.89) 3.24(3.52) 5.94 (5.96)

FN 0.46 (0.99) 0.32(0.87) 0. 22 (0.46) 0. 26 (0.88) 0.28 (0.7) 0.6 (0.95) 0.14 (0.45)
For 2 Differences after Bonferroni correction

Accuracy 28.879** AVG,STD>STDDER,DER,MAX,SUM,BIN; STDDER>MAX

Precision 38.328"** AVG>STD>STDDER,DER,MAX,SUM,BIN; STDDER>MAX

Sensitivity 2.590* SUM,MAX,DER,BIN,STD,AVG,STDDER

Specificity 39.322*** AVG>STD,BIN,DER>MAX>SUM>STDDER

NPV 2.955* SUM,MAX,DER,BIN,STD,AVG,STDDER

F-score 26.260** AVG,STD>STDDER,DER>SUM,MAX,BIN

FP 26.628*** AVG>STD>STDDER,DER,SUM,MAX>BIN; STDDER>SUM;DER>MAX

EN 2.845* SUM,DER,MAX,STD,BIN,AVG,STDDER; SUM,DER>STDDER

Note. *P < 0.05; ** P < 0.001.

Top. Means (standard deviations) of different methods to obtain lane positions (N=50). We use the following abbreviations: AVG=average, BIN=binary,
DER = derivative, MAX = maximum and STDDER = STD-derivative. Bottom. Differences among methods and paired differences between two different methods after

Bonferroni correction.

removing lanes. All the methods work relatively well with re-
spect to FNs—that is, usually, the user does not need to add
new lanes with these methods—the sum algorithm being the
best one.

Figure 6 includes the representation of the accuracy, preci-
sion, sensitivity, specificity, negative predictive value and F-
score of the four best lane-segmentation algorithms according
to the data included in Table 5: average, derivative, STD and
STD-derivative. Average is the best method in four of the six
characteristics (accuracy, precision, specificity and F-score), and
it is similar to STD in sensitivity and negative predictive value
(the best in these characteristics). Average has a mean above
0.95 in all these six characteristics, and the second best method
is STD with a mean above 0.89 in these characteristics.

When we study the lane-detection algorithms in the images
grouped by their quality, we obtain a similar classification of the
methods in the three categories (bad, intermediate and good
quality). Average is the best method in the three categories. It
has a mean of <1 FP in all the categories. With good images it ob-
tains a mean of 0.17 FNs, which equals the best methods (sum
and derivative) in that category, and obtains 1.1 FNs in the
bad-quality images. See Supplementary Appendix C for details.

We focus now on the evaluation of lane-segmentation algo-
rithms regarding the segmentation criterion. Table 6 includes
the means and standard deviations of different methods to ob-
tain the segmentation of the lanes. In this case, FPs and nega-
tives are the number (divided by 1000) of pixels that should be
removed or added to the segmentation, respectively. There exist
significant differences among the methods in all the studied as-
pects. Derivative and STD-derivative are the methods with
significant less FP but with more FNs. On the contrary, average
is the method with significant less FNs but with more FPs. This
property is shared with the rest of the methods: more FN (posi-
tive) follows less FP (negative).

Figure 7 includes the representation of the accuracy, preci-
sion, sensitivity, specificity, negative predictive value and F-score
of the four best lane-segmentation algorithms according to the

Accuracy

F-score Precision
)
Average
.......... Derivative
Sy o]
# == « «5TD_Derivative
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Figure 6. Representation of the accuracy, precision, sensitivity, specificity, nega-
tive predictive value and F-score of the four best lane-segmentation algorithms
according to the data included in Table 5.

data included in Table 6: average, maximum, STD and sum. It is
worth noting that the big amount of TN in the segmentation
makes accuracy, specificity and predictive negative value al-
most 1 in all the methods. Average has the best sensitivity and
F-score, and derivative and STD-derivative the best preci-
sion. Average and STD are the best methods with almost a mean
above 0.85 in all these six characteristics.

Again, when we study the lane-segmentation algorithms in
the images grouped by their quality (Supplementary Appendix
C), we obtain a similar classification of the methods in the three
categories (bad, intermediate and good quality).

In the literature, there are several papers that use the lane-
detection measures included here to evaluate lane-segmenta-
tion algorithms; however, none of them evaluates how good is
the actual segmentation of the lanes, or compares different
approaches. The only paper that evaluates algorithms from dif-
ferent sources is [20], it takes two data sets of gel images and
measures the performance of the algorithms presented in [20,
24, 67, 68]—all these algorithms use the average profile as
core algorithm—considering the number of TP, FP and FN, and
the recall, precision and F-score (¢ =1) values; however, no
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Table 6. Evaluation of surveyed profiles for lane segmentation
Metric AVG BIN DER MAX STD STDDER SUM
Accuracy 0.98 (0.01) 0.96 (0.02) 0.96 (0.02) 0.97 (0.02) 0.98 (0.02) 0.97 (0.02) 0.97 (0.02)
Precision 0.84 (0.09) 0.85 (0.09) 0.93 (0.08) 0.84 (0.09) 0.83(0.1) 0.92 (0.08) 0.85 (0.07)
Sensitivity 0.92 (0.06) 0.66 (0.13) 0.46 (0.1) 0.73(0.14) 0.85(0.1) 0.62 (0.15) 0.78 (0.13)
Specificity 0.98 (0.01) 0.99 (0.01) 1(0.01) 0.99 (0.01) 0.99 (0.01) 1(0.01) 0.99 (0.01)
NPV 0.99 (0.01) 0.97 (0.03) 0.96 (0.02) 0.98 (0.02) 0.99 (0.01) 0.97 (0.02) 0.98 (0.02)
F-score 0.87 (0.06) 0.73(0.1) 0.61(0.1) 0.77 (0.1) 0.84 (0.08) 0.73(0.13) 0.80 (0.09)
FP 66.71 (49.6) 46.76 (37.48) 11.38 (13.55) 55.98 (57.4) 63.72 (47.98) 17.58 (17.99) 50.75 (37.07)
FN 29.54 (29.66) 112.66 (72.48) 179.94 (96.3) 90.09 (61.4) 51.85 (40.4) 125.97 (72.7) 71.27 (54.66)

For 42 Differences after Bonferroni correction
Accuracy 22.134"* AVG,STD,SUM,MAX,STDDER,BIN>DER; AVG>SUM; STD>MAX; SUM>BIN
Precision 28.396"* DER,STDDER>SUM,BIN,AVG,MAX,STD
Sensitivity 129.805*** AVG>STD>SUM,MAX >BIN,STDDER>DER
Specificity 21.891** DER,STDDER>BIN,SUM,STD,MAX,AVG; BIN>AVG
NPV 48.049"* AVG,STD>SUM,MAX,BIN,STDDER>STD; SUM>BIN; MAX>STDDER
F-score 74.930"* AVG>STD,SUM,MAX,BIN,STDDER>STD; STD>MAX; SUM>BIN
FP 28.679*** DER,STDDER>BIN,SUM,MAX,STD,AVG; SUM>STD
FN 72.682** AVG>STD,SUM,MAX,BIN,STDDER>DER; STD>MAX>STDDER

Note. **P < 0.001.

Top. Means (standard deviations) of different methods to obtain lane rois (N =50). Bottom. Differences among methods and paired differences between two different

methods after Bonferroni correction.

Accuracy

F-score Precision
I | Average
«+ Maximun
o e BT ED
* m— e = Sum
it 4 7
NPV Sensitivity

Specifity

Figure 7. Representation of the accuracy, precision, sensitivity, specificity, nega-
tive predictive value and F-score of the four best lane-segmentation algorithms
according to the data included in Table 6.

comparison is provided. In [19], the algorithms of four software
tools were evaluated using the number of TP, FP and FN; simi-
larly, the algorithms implemented in laneruler and image were
compared in [4] using the sensitivity and specificity values. The
number of TP, FP and FN has been used to analyse different con-
figurations of the algorithms introduced in [5, 14, 36]. The algo-
rithm presented in [32] was studied using the precision, recall
and F-score (x = 1) values. Finally, the three methods presented
in [13] were analysed using the number of TP, FP, FN and TN,
and the sensitivity, specificity and accuracy values. A summary
of the measures used in the literature is provided in Table 7. It is
worth mentioning that none of these papers provides the data
set of images, the gold standard or the implemented algorithms
to reproduce their results.

Evaluation of band-detection algorithms

Table 8 includes the means and standard deviations of different
methods provided by BandManager] to obtain the positions of
the bands in a lane image. There exist significant differences
among the different methods in all the studied aspects. Average

is the method with significant less FPs and the second method
with less FNs (only slightly overrated by sum).

Figure 8 includes the representation of the AUROC, accuracy,
precision, sensitivity, specificity, negative predictive value and
F-score of the four best band-detection algorithms according
to the data included in Table 5: average, maximum, STD and sum.
AUROC can be considered as the fundamental comparative
measure because it is independent of any threshold to differen-
tiate between positive and negative samples, and it provides
a good representation of the quality of the classifier in terms
of both false-positive and false-negative detection [45].
Considering this parameter, Average and sum share the first
position. Average is the best method in four of the other six
characteristics (accuracy, precision, sensitivity and F-score),
and sum has the best specificity and predictive negative value.
Average is the best method, and together with maximum has a
mean above 0.80 in all these six characteristics. STD-deriva-
tive (which is not included in the figure) has clearly the worst
performance with most of the parameters below 0.5.

When we study the band-detection algorithms in the images
grouped by their quality (see Supplementary Appendix C for de-
tails), we obtain a similar classification of the methods in the
three categories (bad, intermediate and good quality). Average
is the best method in the three categories. The FP means of the
methods are stable with respect to the quality of the image. For
instance, average only increases to a mean of 1.23 FPs with bad
quality images. The false-negative means varies in one or two
depending on the quality. For instance, average ranges from
2.31 with good images to 4.23 with bad images, or sum from 1.64
with good images to 3.23 with bad images.

In the literature, we can find a few papers that evaluate the
performance of band-detection algorithms; nevertheless, none
of these papers compares its approach with other methods. The
performance of four software tools in [19] was measured using
the number of TP, FP and FN. The algorithm presented in [10]
was evaluated, with several configurations, in two sets of lane
images with different qualities using as measures the TP rate
(sensitivity), the FP rate (fall-out) and the accuracy. The authors
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Table 7. Measures used in the literature to evaluate the performance of lane-segmentation and band-detection algorithms

Authors Data set size Analyse Evaluate Measures

Akbari et al. [13] 20 gel images (456 lanes) LD Algorithms presented in the article TP, FP, FN, TN, SENS, SPC and ACC
Caricade et al. [19] 96 lane images, 12 gel images BD, LD Software tools TP, FP and FN

Chan et al. [10] 2 sets of lane images BD Variants of the same algorithm SENS, FPR and ACC

Ismail et al. [14] 20 gel images LD Variants of the same algorithm FP and FN

Labyed et al. [37] 15 lane images (63 bands) BD Variants of the same algorithm TP, FP and FN

Lee et al. [27] 10 lane images (430 bands) BD Variants of the same algorithm TP, FP and FN

Machado et al. [5] 22 gel images (365 lanes) LD Variants of the same algorithm TP, FP and FN

Moreira et al. [20] 235 gel images (2073 lanes) LD Algorithms from several sources TP, FP, FN, TN, SENS, PPV and F1
Park et al. [32] 38 gel images LD Algorithm presented in the article PPV, SENS and F1

Sotaquird [36] 25 lane images, 25 gel images BD, LD Variants of the same algorithm TP, FP and FN

Wong et al. [4] 161 gel images LD Software tools SENS and SPC

Note. The following abbreviations are used:

BD=band detection, LD=1lane detection, TP=true positive, FP=false positive, FN=false negative, TN =true negative, FPR=false-positive rate, ACC=accuracy,

SENS = sensitivity, SPC = specificity, PPV = precision, F1 = F-measure (z=1).

Table 8. Evaluation of surveyed profiles

Metric AVG BIN DER MAX STD STDDER SUM

AUROC 0.89 (0.07) 0.77 (0.13) 8(0.12) 0.87 (0.11) 0.86 (0.1) 0.44 (0.14) 0. 89 (0.09)

Accuracy 0.88 (0.08) 0.75 (0.13) 0. 71 (0.12) 0.81(0.15) 0.84(0.12) 0.46 (0.13) 8(0.16)

Precision 0.93 (0.11) 0.85 (0.19) 0.79 (0.15) 0.81 (0.19) 0.87 (0.15) 0.42 (0.16) 0. 78 (0.2)

Sensitivity 0.83(0.12) 0.63 (0.19) 0.55 (0.21) 0.83 (0.14) 0.79 (0.14) 0.4 (0.16) 0.87 (0.11)

Specificity 0.93 (0.11) 0.88 (0.18) 0.87 (0.14) 0.81(0.2) 0.89 (0.15) 0. 52 (0.16) 0.77 (0.23)

NPV 0.86 (0.08) 0.74 (0.11) 0.69 (0.11) 0.85 (0.11) 0.83 (0.1) 5(0.12) 0.88 (0.1)

F-score 0.87 (0.09) 0.71(0.15) 0.63 (0.17) 0.80 (0.14) 0.82 (0.12) 0. 40 (0.15) 0.81 (0.14)

FP 0.89 (1.25) 2.19 (4) 1.78 (1.25) 2.97 (3.03) 1.55 (1.68) 8.02 (2.85) 3.95 (4.36)

FN 2.72 (2.07) 5.57 (3.17) 7.21 (4.64) 2.78 (2.48) 3.28 (2.55) 9 (3.57) 2.06 (1.9)
For ;2 Differences after Bonferroni correction

ROC area 324.723** AVG,SUM,MAX,STD>DER,BIN>STDDER;AVG>MAX; SUM>STD

Accuracy 254.942"* AVG>STD>MAX,SUM>BIN>DER>STDDER

Precision 238.282*** AVG>STD,BIN,MAX,DER,SUM>STDDER; STD>MAX; BIN>DER

Sensitivity 207.803"* SUM>AVG,MAX>STD>BIN>DER>STDDER

Specificity 173.945** AVG>STD,BIN,DER>MAX>SUM>STDDER

VPN 296.337* SUM>AVG,MAX,STD>BIN,>DER>STDDER; AVG>STD

F-score 266.549"* AVG>STD,SUM,MAX>BIN>DER>STDDER

FP 230.423"* AVG>STD,DER,BIN,MAX>SUM>STDDER; DER>MAX

FN 184.032** SUM>AVG,MAX>STD>BIN,DER>STDDER

***P <0.001.

Top. Means (standard deviations) of different methods to obtain bands (N = 120). AUROC is computed using 25 successive thresholds for the height criterion. Bottom.
Differences among methods and paired differences between two different methods after Bonferroni correction.
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Figure 8. Representation of the AUROC, accuracy, precision, sensitivity,
specificity, negative predictive value and F-score of the four best band-detection
algorithms according to the data included in Table 8.

of [27, 36, 37] evaluated their algorithms with different configur-
ations using the number of TP, FP and FN. A summary of the
measures used in the literature is provided in Table 7.

Discussion and conclusions

The analysis of DNA gel fingerprint images is a widely studied
problem, and several approaches have been proposed to sim-
plify the two stages that require user intervention: lane seg-
mentation and band detection. In this article, we have surveyed
the main techniques available in the literature—not only for
lane segmentation and band detection but also for the other
stages of the procedure. The conclusion for the surveyed lane-
segmentation and band-detection algorithms is that, even if
several approaches exist, they are all based on enhancing the
location of peaks of a profile (it can be the average, binary,
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derivative, maximum, STD, STD-derivative or sum profile) ob-
tained from the horizontal (or vertical) projection of an image.

The examined papers rarely provide the implementation of
their approaches, a comparison with other methods, or the data
set that was used to evaluate their algorithms. Hence, our survey
was not enough to establish what were the best algorithms for
lane segmentation and band detection. We have overcome this
drawback, thanks to the development of a publicly available
benchmark that includes two data sets of gel and lane images,
the gold standards associated with those images and a set of
tools—implemented as Image] plug-ins—to analyse the per-
formance of lane-segmentation and band-detection algorithms.
The infrastructure provided by our benchmark avoids the bur-
den of choosing data sets for testing algorithms, and reimple-
menting analysis tools and evaluation metrics for comparisons.

The evaluation measures implemented in the two plug-ins
of the benchmark are related to three criteria: the correct seg-
mentation of lanes, the correct detection of lanes and the cor-
rect detection of bands. Measures related to the latter two
criteria have been previously used in the literature, see Table 7;
however, the evaluation of lane-segmentation algorithms based
on the correctness of the segmentation is new. None of the
papers including an evaluation provides the data set, the tools
to perform the measurements or the comparison among differ-
ent algorithms—three aspects covered in the current article.

Finally, we have implemented the seven core algorithms,
based on finding the location of peaks of seven profiles (aver-
age, binary, derivative, maximum, STD, STD-derivative and
sum), to segment lanes and detect bands. These algorithms have
been implemented inside Image] plug-ins and have been eval-
uated using our benchmark. In general, the average algorithm
excels the rest of the algorithms regarding the three evaluated
criteria: lane segmentation and lane and band detection.

The ImageJ plug-ins for lane segmentation and band detec-
tion are freely available and open source; therefore, they can be
improved with the enhancements available in the literature. It
is also worth mentioning that these plug-ins are a good starting
point for fast prototyping because they can be combined with
the vast number of features to process images available in
Image] (e.g. filtering, background subtraction, morphological op-
erations and so on); namely, they have been used as a basis for
the GelJ tool [69]. Moreover, the plug-ins devoted to evaluate the
performance of lane-segmentation and band-detection algo-
rithms can be used in other contexts where the analysis of
image segmentation or object detection is required. As further
work, and as we have explained in ‘Similarity matrices’ section,
it would be interesting to include in GelJ the texture-based
method presented in [45] and compare it with the traditional
band- and curve-based approaches for fingerprint comparisons.

Finally, and although it is out of the reach of this article, it is
worth mentioning the explosive growth of genomic sequences.
Such an impressive work provides an unprecedented opportunity
to explore genetic variability and biological function of organisms
from a fundamental point. In this line, there has recently been a
rapid advance in developing various powerful web servers to for-
mulate DNA/RNA sequences with their feature vectors [70-75].

Key Points

* We survey the techniques applied in DNA fingerprint
analysis.

* We have created a benchmark for lane-segmentation
and band-detection algorithms.

* Benchmark contains a data set of images and their
gold standards.

* Tools to measure the performance of algorithms have
been implemented in Image].

* Core algorithms have been implemented in Image],
and tested using the benchmark.

Supplementary Data

Supplementary data are available online at https://academic
.oup.com/bib.
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