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We present a semilocal convergence analysis for a uniparametric family of efficient secant-like methods (including the secant and
Kurchatovmethod as special cases) in a Banach space setting (Ezquerro et al., 2000–2012). Using our idea of recurrent functions and
tighter majorizing sequences, we provide convergence results under the same or less computational cost than the ones of Ezquerro
et al., (2013, 2010, and 2012) and Hernández et al., (2000, 2005, and 2002) and with the following advantages: weaker sufficient
convergence conditions, tighter error estimates on the distances involved, and at least as precise information on the location of the
solution. Numerical examples validating our theoretical results are also provided in this study.

1. Introduction

Let 𝑈(𝑥, 𝑟) and 𝑈(𝑥, 𝑟) stand, respectively, for the open and
closed ball inX with center 𝑥 ∈ X and radius 𝑟 > 0. Denote
by L(X,Y) the space of bounded linear operators from X
intoY.

In this study, we are concerned with the problem of
approximating a locally unique solution 𝑥∗ of nonlinear
equation as follows:

𝐹 (𝑥) = 0, (1)

where 𝐹 is a Fréchet-differentiable operator defined on a
nonempty convex subsetD of a Banach spaceX with values
in a Banach spaceY.

Many problems from computational sciences, physics
and other disciplines can be taken in the form of (1)
using mathematical modelling [1–7]. The solution of these
equations can rarely be found in closed form. That is why
the solution methods for these equations are iterative. In
particular, the practice of numerical analysis for finding such
solutions is essentially connected to variants of Newton’s
method [1, 2, 4–10]. The study about the convergence of
iterative procedures is usually focused on two types: semilocal
and local convergence analysis. The semilocal convergence

is, based on the information around an initial point, to
give criteria ensuring the convergence of iterative procedure;
while the local one is, based on the information around a
solution, to find estimates of the radii of convergence balls.
There are a lot of studies on the weakness and/or extension
of the hypothesis made on the underlying operators; see, for
example, [1–26] and the references therein.

Hernández and Rubio used in [22] the uniparametric
family of secant-like methods defined by

𝑥
−1
, 𝑥
0

given in D,

𝑦
𝑛
= 𝜇𝑥
𝑛
+ (1 − 𝜇) 𝑥

𝑛−1
, 𝜇 ∈ [0, 1] ,

𝑥
𝑛+1
= 𝑥
𝑛
− 𝐵
−1

𝑛
𝐹 (𝑥
𝑛
) , 𝐵

𝑛
= [𝑦
𝑛
, 𝑥
𝑛
; 𝐹] ,

for each 𝑛 = 0, 1, . . . ,

(2)

and the method of recurrent relations to generate a sequence
{𝑥
𝑛
} approximating 𝑥∗. Here, [𝑧, 𝑤; 𝐹] for each 𝑧, 𝑤 ∈ D is

a divided difference of order one, which is a bounded linear
operator such that [1, 4, 6–8, 14, 15]

[𝑧, 𝑤; 𝐹] : D 󳨀→Y,

[𝑧, 𝑤; 𝐹] (𝑧 − 𝑤) = 𝐹 (𝑧) − 𝐹 (𝑤) .

(3)
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Secant-like method (2) can be considered as a combina-
tion of the secant and Newton’s method. Indeed, if 𝜇 = 0,
we obtain the secant method and if 𝜇 = 1, we get Newton’s
method provided that 𝐹󸀠 is Fréchet-differentiable onD, since
then 𝑥

𝑛
= 𝑦
𝑛
and [𝑦

𝑛
, 𝑥
𝑛
; 𝐹] = 𝐹

󸀠

(𝑥
𝑛
).

It was shown in [20, 21] that the 𝑅-order of convergence
is at least (1 + √5)/2 for 𝜆 ∈ [0, 1), the same as that of the
secant method. Later in [5], another uniparametric family of
secant-like methods defined by

𝑥
−1
, 𝑥
0

given in D,

𝑦
𝑛
= 𝜆𝑥
𝑛
+ (1 − 𝜆) 𝑥

𝑛−1
, 𝜆 ≥ 1,

𝑥
𝑛+1
= 𝑥
𝑛
− 𝐴
−1

𝑛
𝐹 (𝑥
𝑛
) , 𝐴

𝑛
= [𝑦
𝑛
, 𝑥
𝑛−1
; 𝐹]

for each 𝑛 = 0, 1, . . .

(4)

was studied. It was shown that there exists𝜆
0
≥ 2, and that the

𝑅-order of convergence is at least (1+√5)/2 if 𝜆 ∈ [1, 𝜆
0
] and

𝜆 ̸= 2, and if 𝜆 = 2, the 𝑅-order of convergence is quadratic.
Note that if 𝜆 = 1, we obtain the secant method, whereas if
𝜆 = 2, we obtain the Kurchatov method [4, 5, 7, 8].

We present a semilocal convergence analysis for secant-
like method (2) using our idea of recurrent functions instead
of recurrent relations and tighter majorizing sequences. This
way, our analysis provided the following advantages (𝐴) over
the work in [5] under the same computational cost.

(𝐴
1
) Weaker sufficient convergence conditions.

(𝐴
2
) Tighter estimates on the distances ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ and

‖𝑥
𝑛
− 𝑥
∗

‖ for each 𝑛 = 0, 1, . . ..
(𝐴
3
) At least as precise information on the location of the
solution.

(𝐴
4
)The results are presented in affine invariant form,
whereas the ones in [5] are given in nonaffine invari-
ant forms. The advantages of affine versus nonaffine
results have been explained in [1, 4, 6–8, 14, 15].

Our hypotheses for the semilocal convergence of secant-
like method (4) are as follows.

(𝐶
1
)There exists a divided difference of order one [𝑧, 𝑤;
𝐹] ∈L(X,Y) satisfying (3).

(𝐶
2
)There exist 𝑥

0
∈ D, 𝜂 ≥ 0 such that 𝐴−1

0
∈ L(Y,X)

and ‖𝐴−1
0
𝐹(𝑥
0
)‖ ≤ 𝜂.

(𝐶
3
)There exist 𝑥

−1
, 𝑥
0
∈ D and 𝑐 ≥ 0 such that

󵄩󵄩󵄩󵄩𝑥0 − 𝑥−1
󵄩󵄩󵄩󵄩 ≤ 𝑐. (5)

(𝐶
4
)There exists 𝐾 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
([𝑥, 𝑦; 𝐹] − [V, 𝑤; 𝐹])

󵄩󵄩󵄩󵄩󵄩
≤ 𝐾 (‖𝑥 − V‖ + 󵄩󵄩󵄩󵄩𝑦 − 𝑤

󵄩󵄩󵄩󵄩)

for each 𝑥, 𝑦, V, 𝑤 ∈ D.
(6)

We will denote by (𝐶) conditions (𝐶
1
)–(𝐶
4
). In view of (𝐶

4
),

there exist𝐻
0
,𝐻
1
,𝐻 > 0 such that

(𝐶
5
) ‖𝐴
−1

0
([𝑥
1
, 𝑥
0
; 𝐹] − 𝐴

0
)‖ ≤ 𝐻

0
(‖𝑥
1
− 𝑦
0
‖ + ‖𝑥

0
− 𝑥
−1
‖),

(𝐶
6
) ‖𝐴
−1

0
(𝐴
1
− 𝐴
0
)‖ ≤ 𝐻

1
(‖𝑦
1
− 𝑦
0
‖ + ‖𝑥

0
− 𝑥
−1
‖),

(𝐶
7
) ‖𝐴
−1

0
([𝑥, 𝑦; 𝐹] − 𝐴

0
)‖ ≤ 𝐻(‖𝑥 − 𝑦

0
‖ + ‖𝑦 − 𝑥

−1
‖) for

each 𝑥, 𝑦 ∈ D.

Clearly,

𝐻
0
≤ 𝐻
1
≤ 𝐻 ≤ 𝐾 (7)

hold in general and 𝐾/𝐻, 𝐻/𝐻
1
can be arbitrarily large

[1, 2, 4]. Note that (𝐶
5
), (𝐶
6
), and (𝐶

7
) are not additional to

(𝐶
4
) hypotheses. In practise, the computation of 𝐾 requires

the computation of 𝐻
0
, 𝐻
1
, and 𝐻. It also follows from (𝐶

4
)

that 𝐹 is differentiable [1–3, 8, 9].
The paper is organized as follows. In Section 2, we show

that under the same hypotheses as in [23] and using recurrent
relations, we obtain at least as precise information on the
location of the solution. Section 3 contains the semilocal
convergence analysis using weaker hypotheses and recurrent
functions. We also show the advantages (𝐴). The results are
also extended to cover the case of equations with nondiffer-
entiable operators. Numerical examples are presented in the
concluding Section 4.

2. Semilocal Convergence Using
Recurrent Relations

As in [5], let us define sequences {𝑎
𝑛
} and {𝑏

𝑛
} for each 𝑛 =

0, 1, . . . by

𝑎
−1
=

𝜂

𝑐 + 𝜂
, 𝑏

−1
=
𝐾𝑐
2

𝑐 + 𝜂
,

𝑎
𝑛
= 𝑓 (𝑎

𝑛−1
) 𝑔 (𝑎
𝑛−1
) 𝑏
𝑛−1
,

𝑏
𝑛
= 𝑓(𝑎

𝑛−1
)
2

𝑎
𝑛−1
𝑏
𝑛−1
,

(8)

and functions 𝑓, 𝑔 on [0, 1) by

𝑓 (𝑡) =
1

1 − 𝑡
, 𝑔 (𝑡) = (2 − 𝜆) + 𝜆𝑓 (𝑡) 𝑡. (9)

Next, we present the main result in this section in affine
invariant form.

Theorem 1. Under the (𝐶) hypotheses, further suppose that

𝑈 (𝑥
0
, 𝑅) ⊆ D, (10)

and for 𝜆 ∈ [1, 𝜆
0
],

𝑎
−1
<
3 − √5

2
, 𝑏

−1
<

𝑎
−1
(1 − 𝑎

−1
)
2

2 (1 − 𝑎
−1
) − 𝜆 (1 − 2𝑎

−1
)
, (11)

where

𝑅 =
1 − 𝑎
0

1 − 2𝑎
0

𝜆𝜂, 𝜆
0
∈ [2,

2𝑐

𝑐 − 𝜂
) . (12)

Then, sequence {𝑥
𝑛
} generated by secant-like method (4) is

well defined, remains in 𝑈(𝑥
0
, 𝑅) for each 𝑛 = 0, 1, 2, . . ., and
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converges to a solution 𝑥∗ ∈ 𝑈(𝑥
0
, 𝑅) of equation 𝐹(𝑥) = 0.

Moreover, the following estimates hold
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑓 (𝑎𝑛−1) 𝑎𝑛−1
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

(𝑓 (𝑎
0
) 𝑎
0
)
𝑛

1 − 𝑓 (𝑎
0
) 𝑎
0

󵄩󵄩󵄩󵄩𝑥1 − 𝑥0
󵄩󵄩󵄩󵄩 .

(13)

Furthermore, the solution 𝑥∗ is unique inD
0
= 𝑈(𝑥

0
, 𝜎
0
) ∩𝐷,

where 𝜎
0
= (1/𝐻) − 𝜆𝑐 − 𝑅, provided that

𝑅 <
1

2
(
1

𝐻
− 𝜆𝑐) = 𝑅

0
. (14)

Proof. The proof with the exception of the uniqueness part is
given inTheorem 3 in [5] if we use 𝐴−1

0
𝐹 instead of 𝐹 and set

𝑏 = 1, where ‖𝐴−1
0
‖ ≤ 𝑏.

To prove the uniqueness of the solution, let us assume that
𝑦
∗

∈ D
0
is a solution of 𝐹(𝑥) = 0. Let 𝐿 = [𝑦∗, 𝑥∗; 𝐹]. Then,

using (𝐶
7
) and the definition of 𝜎

0
, we get in turn that

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
(𝐿 − 𝐴

0
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐻 (

󵄩󵄩󵄩󵄩𝑦
∗

− 𝑦
0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
−1

󵄩󵄩󵄩󵄩)

< 𝐻 (𝜎
0
+ 𝜆𝑐 + 𝑅) = 1.

(15)

It follows from (15) and the Banach lemma on invertible
operators [1, 2, 4, 6–8, 14] that 𝐿−1 ∈ L(Y,X). Using the
identity 0 = 𝐹(𝑦∗) − 𝐹(𝑥∗) = 𝐿(𝑦∗ − 𝑥∗), we deduce that
𝑥
∗

= 𝑦
∗. That completes the proof of the theorem.

Remark 2. If𝐾 = 𝐻, Theorem 1 reduces toTheorem 3 in [5].
Otherwise, that is, if𝐻 < 𝐾, then our Theorem 1 constitutes
an improvement over Theorem 3, since

𝜎 < 𝜎
0
,

𝑅
0
< 𝑅
1
,

(16)

where

𝜎 =
1

𝐾
− 𝜆𝑐 − 𝑅, 𝑅

0
=
1

2
(
1

𝐾
− 𝜆𝑐) , (17)

where given in [5] (for 𝑏 = 1). Hence, (16) justify our claim
for this section which was made in the Introduction of this
study.

3. Semilocal Convergence Using
Recurrent Functions

We present the semilocal convergence of secant-like meth-
ods. First, we need some auxiliary results on majorizing
sequences for secant-like method.

Lemma 3. Let 𝑐 ≥ 0, 𝜂 > 0, 𝐻 > 0, 𝐾 > 0 and 𝜆 ≥ 1. Set
𝑡
−1
= 0, 𝑡

0
= 𝑐, and 𝑡

1
= 𝑐 + 𝜂. Define scalar sequences {𝑞

𝑛
},

{𝑡
𝑛
}, {𝛼
𝑛
} for each 𝑛 = 0, 1, . . . by

𝑞
𝑛
= 𝐻𝜆 (𝑡

𝑛+1
+ 𝑡
𝑛
− 𝑐) , (18)

𝑡
𝑛+2
= 𝑡
𝑛+1
+
𝐾 (𝑡
𝑛+1
− 𝑡
𝑛
+ 𝜆 (𝑡

𝑛
− 𝑡
𝑛−1
))

1 − 𝑞
𝑛

(𝑡
𝑛+1
− 𝑡
𝑛
) ,

𝛼
𝑛
=
𝐾 (𝑡
𝑛+1
− 𝑡
𝑛
+ 𝜆 (𝑡

𝑛
− 𝑡
𝑛−1
))

1 − 𝑞
𝑛

,

(19)

functions 𝑓
𝑛
on [0, 1) for each 𝑛 = 1, 2, . . . by

𝑓
𝑛
(𝑡) = 𝐾 (𝑡

𝑛

+ 𝜆𝑡
𝑛−1

) 𝜂

+ 𝐻𝜆 ((1 + 𝑡 + ⋅ ⋅ ⋅ + 𝑡
𝑛+1

) 𝜂

+ (1 + 𝑡 + ⋅ ⋅ ⋅ + 𝑡
𝑛

) 𝜂 + 𝑐) − 1,

(20)

and polynomial 𝑝 on [0, 1) by

𝑝 (𝑡) = 𝐻𝜆𝑡
3

+ (𝐻𝜆 + 𝐾) 𝑡
2

+ 𝐾 (𝜆 − 1) 𝑡 − 𝜆𝐾. (21)

Denote by 𝛼 the only root of polynomial 𝑝 in (0, 1). Suppose
that

0 ≤ 𝛼
0
≤ 𝛼 ≤

1 − 𝐻𝜆 (𝑐 + 2𝜂)

1 − 𝐻𝜆𝑐
⋅ (22)

Then, sequence {𝑡
𝑛
} is nondecreasing, bounded from above by

𝑡
∗∗ that is defined by

𝑡
∗∗

=
𝜂

1 − 𝛼
+ 𝑐, (23)

and converges to its unique least upper bound 𝑡∗ which satisfies

𝑐 + 𝜂 ≤ 𝑡
∗

≤ 𝑡
∗∗

. (24)

Moreover, the following estimates are satisfied for each 𝑛 =
0, 1, 2, . . .:

0 ≤ 𝑡
𝑛+1
− 𝑡
𝑛
≤ 𝛼
𝑛

𝜂, (25)

𝑡
∗

− 𝑡
𝑛
≤
𝛼
𝑛

𝜂

1 − 𝛼
⋅ (26)

Proof. Wewill first show that polynomial𝑝 has roots in (0, 1).
Indeed, we have 𝑝(0) = −𝜆𝐾 < 0 and 𝑝(1) = 2𝐻𝜆 > 0. Using
the intermediate value theorem, we deduce that there exists
at least one root of 𝑝 in (0, 1). Moreover 𝑝󸀠(𝑡) > 0. Hence, 𝑝
crosses the positive axis only once. Denote by 𝛼 the only root
of 𝑝 in (0, 1). It follows from (18) and (19) that estimate (25)
is certainly satisfied if

0 ≤ 𝛼
𝑛
≤ 𝛼. (27)

Estimate (27) is true by (22) for 𝑛 = 0. Then, we have by (18)
that

𝑡
2
− 𝑡
1
≤ 𝛼 (𝑡

1
− 𝑡
0
) 󳨐⇒ 𝑡

2
≤ 𝑡
1
+ 𝛼 (𝑡

1
− 𝑡
0
)

󳨐⇒ 𝑡
2
≤ 𝜂 + 𝑡

0
+ 𝛼𝜂

= 𝑐 + (1 + 𝛼) 𝜂 = 𝑐 +
1 − 𝛼
2

1 − 𝛼
𝜂 < 𝑡
∗∗

.

(28)

Suppose that

𝑡
𝑘+1
− 𝑡
𝑘
≤ 𝛼
𝑘

𝜂, 𝑡
𝑘+1
≤ 𝑐 +

1 − 𝛼
𝑘+1

1 − 𝛼
𝜂

for each 𝑘 ≤ 𝑛.
(29)
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Estimate (27) will be true for 𝑘 + 1 replacing 𝑛 if

0 ≤ 𝛼
𝑘+1
≤ 𝛼, (30)

or

𝑓
𝑘
(𝛼) ≤ 0, (31)

where 𝑓
𝑘
is defined by (20). We need a relationship between

two consecutive recurrent functions 𝑓
𝑘
for each 𝑘 = 1, 2 . . ..

Using (20) and (21), we deduce that

𝑓
𝑘+1
(𝛼) = 𝑓

𝑘
(𝛼) + 𝑝 (𝛼) 𝛼

𝑘−1

𝜂 = 𝑓
𝑘
(𝛼) , (32)

since 𝑝(𝛼) = 0. Define function 𝑓
∞

on (0, 1) by

𝑓
∞
(𝑡) = lim
𝑘→+∞

𝑓
𝑘
(𝑡) . (33)

Then, we get from (20) and (33) that

𝑓
∞
(𝛼) = 𝐻𝜆(

2𝜂

1 − 𝛼
+ 𝑐) − 1. (34)

Hence, by (32)–(34), (31) is satisfied if

𝑓
∞
(𝛼) ≤ 0, (35)

which is true by (22).The induction for (25) is complete.That
is, sequence {𝑡

𝑛
} is nondecreasing, bounded from above by

𝑡
∗∗ that is given by (23), and as such it converges to some 𝑡∗
which satisfies (24). Estimate (26) follows from (25) by using
standard majorization techniques [1, 2, 4, 6–8, 14]. The proof
of Lemma 3 is complete.

Lemma 4. Let 𝑐 ≥ 0, 𝜂 > 0, 𝐻
0
> 0, 𝐻

1
> 0, 𝐻 > 0, 𝐾 > 0,

and 𝜆 ≥ 1. Set 𝑠
−1
= 0, 𝑠

0
= 𝑐, and 𝑠

1
= 𝑐 + 𝜂. Define scalar

sequences {𝑠
𝑛
}, {𝑏
𝑛
} for each 𝑛 = 1, 2, . . . by

𝑠
2
= 𝑠
1
+
𝐻
0
(𝑠
1
− 𝑠
0
+ 𝜆 (𝑠

0
− 𝑠
−1
))

1 − 𝐻
1
𝜆 (𝑠
1
+ 𝑠
0
− 𝑐)

(𝑠
1
− 𝑠
0
) ,

𝑠
𝑛+2
= 𝑠
𝑛+1
+
𝐾 (𝑠
𝑛+1
− 𝑠
𝑛
+ 𝜆 (𝑠

𝑛
− 𝑠
𝑛−1
))

1 − 𝐻𝜆 (𝑠
𝑛+1
+ 𝑠
𝑛
− 𝑐)

(𝑠
𝑛+1
− 𝑠
𝑛
) ,

(36)

𝑏
1
=
𝐻
0
(𝑠
1
− 𝑠
0
+ 𝜆 (𝑠

0
− 𝑠
−1
))

1 − 𝐻
1
𝜆 (𝑠
1
+ 𝑠
0
− 𝑐)

,

𝑏
𝑛
=
𝐾 (𝑠
𝑛+1
− 𝑠
𝑛
+ 𝜆 (𝑠

𝑛
− 𝑠
𝑛−1
))

1 − 𝐻𝜆 (𝑠
𝑛+1
+ 𝑠
𝑛
− 𝑐)

,

(37)

and functions 𝑔
𝑛
on [0, 1) by

𝑔
𝑛
(𝑡) = 𝐾 (𝑡 + 𝜆) 𝑡

𝑛−1

(𝑠
2
− 𝑠
1
)

+ 𝐻𝜆𝑡(2𝑠
1
+
1 − 𝑡
𝑛+1

1 − 𝑡
(𝑠
2
− 𝑠
1
) +
1 − 𝑡
𝑛

1 − 𝑡
(𝑠
2
− 𝑠
1
))

− (1 + 𝐻𝜆𝑐) 𝑡.

(38)

Suppose that

0 ≤ 𝑏
1
≤ 𝛼 ≤

1 − 𝐻𝜆 (2𝑠
2
− 𝑐)

1 − 𝐻𝜆 (2𝑠
1
− 𝑐)

, (39)

where 𝛼 is defined in Lemma 3. Then, sequence {𝑠
𝑛
} is non-

decreasing, bounded from above by 𝑠∗∗ that is defined by

𝑠
∗∗

= 𝑐 + 𝜂 +
𝑠
2
− 𝑠
1

1 − 𝛼
, (40)

and converges to its unique least upper bound 𝑠∗ which satisfies

𝑐 + 𝜂 ≤ 𝑠
∗

≤ 𝑠
∗∗

. (41)

Moreover, the following estimates are satisfied for each 𝑛 =
1, 2, . . .:

0 ≤ 𝑠
𝑛+2
− 𝑠
𝑛+1
≤ 𝛼
𝑛

(𝑠
2
− 𝑠
1
) . (42)

Proof. We will show using induction that

0 ≤ 𝑏
𝑛
≤ 𝛼. (43)

Estimate (43) is true for 𝑛 = 0 by (39). Then, we have by (36)
that

0 ≤ 𝑠
3
− 𝑠
2
≤ 𝛼 (𝑠

2
− 𝑠
1
)

󳨐⇒ 𝑠
3
≤ 𝑠
2
+ 𝛼 (𝑠

2
− 𝑠
1
)

󳨐⇒ 𝑠
3
≤ 𝑠
2
+ (1 + 𝛼) (𝑠

2
− 𝑠
1
)

− (𝑠
2
− 𝑠
1
) 󳨐⇒ 𝑠

3
≤ 𝑠
1
+
1 − 𝛼
2

1 − 𝛼
(𝑠
2
− 𝑠
1
) ≤ 𝑠
∗∗

.

(44)

Suppose that (43) holds for each 𝑛 ≤ 𝑘. Then, using (36), we
get that

0 ≤ 𝑠
𝑘+2
− 𝑠
𝑘+1
≤ 𝛼
𝑘

(𝑠
2
− 𝑠
1
) ,

𝑠
𝑘+2
≤ 𝑠
1
+
1 + 𝛼
𝑘+1

1 − 𝛼
(𝑠
2
− 𝑠
1
) .

(45)

Estimate (43) will be satisfied if

𝑔
𝑘
(𝛼) ≤ 0. (46)

Using (38), we get the following relationship between two
consecutive recurrent functions 𝑔

𝑘
:

𝑔
𝑘+1
(𝛼) = 𝑔

𝑘
(𝛼) + 𝑝 (𝛼) 𝛼

𝑘−1

(𝑠
2
− 𝑠
1
) = 𝑔
𝑘
(𝛼) . (47)

Define function 𝑔
∞

on [0, 1) by

𝑔
∞
(𝑡) = lim
𝑘→+∞

𝑔
𝑘
(𝑡) . (48)

Then, we get from (38) that

𝑔
∞
(𝛼) = 2𝛼𝐻𝜆 [𝑠

1
+
𝑠
2
− 𝑠
1

1 − 𝛼
] − 𝛼 (1 + 𝐻𝜆𝑐) . (49)

Then, (46) is satisfied if

𝑔
∞
(𝛼) ≤ 0, (50)

which is true by the choice of 𝛼 and the right hand side
inequality in hypothesis (39). The induction for (43) (i.e.,
(42)) is complete. The rest of the proof as identical to Lemma
3 is omitted. The proof is complete.
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Remark 5. (a) Let us consider an interesting choice for 𝜆. Let
𝜆 = 1 (secant method). Then, using (21) and (22), we have
that

𝛼 =
2𝐾

𝐾 + √𝐾2 + 4𝐻𝐾

, (51)

𝐾(𝑐 + 𝜂)

1 − 𝐻 (𝑐 + 𝜂)
≤ 𝛼 ≤

1 − 𝐻 (𝑐 + 2𝜂)

1 − 𝐻𝑐
⋅ (52)

The corresponding condition for the secant method is
given by [2, 4, 9, 23] as follows:

𝐾𝑐 + 2√𝐾𝜂 ≤ 1. (53)

Condition (52) can be weaker than (53) (see also the
numerical examples at the end of the study). Moreover, the
majorizing sequence {𝑢

𝑛
} for the secant method related to

(53) is given by

𝑢
−1
= 0, 𝑢

0
= 𝑐, 𝑢

1
= 𝑐 + 𝜂,

𝑢
𝑛+2
= 𝑢
𝑛+1
+

𝐾 (𝑢
𝑛+1
− 𝑢
𝑛−1
)

1 − 𝐾 (𝑢
𝑛+1
+ 𝑢
𝑛
− 𝑐)

(𝑢
𝑛+1
− 𝑢
𝑛
) .

(54)

A simple inductive argument shows that if 𝐻 < 𝐾, then
for each 𝑛 = 2, 3, . . .:

𝑡
𝑛
< 𝑢
𝑛
, 𝑡

𝑛+1
− 𝑡
𝑛
< 𝑢
𝑛+1
− 𝑢
𝑛
,

𝑡
∗

≤ 𝑢
∗

= lim
𝑛→+∞

𝑢
𝑛
.

(55)

(b)Themajorizing sequence {V
𝑛
} used in [5] is essentially

given by

V
−1
= 0, V

0
= 𝑐, V

1
= 𝑐 + 𝜂,

V
𝑛+2
= V
𝑛+1
+
𝐾 (V
𝑛+1
− V
𝑛
+ 𝜆 (V

𝑛
− V
𝑛−1
))

1 − 𝐾𝜆 (V
𝑛+1
+ V
𝑛
− 𝑐)

(V
𝑛+1
− V
𝑛
) .

(56)

Then, again we have

𝑡
𝑛
< V
𝑛
, 𝑡

𝑛+1
− 𝑡
𝑛
< V
𝑛+1
− V
𝑛
,

𝑡
∗

≤ V∗ = lim
𝑛→+∞

V
𝑛
.

(57)

Moreover, our sufficient convergence conditions can be
weaker than [5].

(c) Clearly, iteration {𝑠
𝑛
} is tighter than {𝑡

𝑛
} and aswe have

in (57) than for𝐻
0
< 𝐾 or𝐻

1
< 𝐻 as follows:

𝑠
𝑛
< 𝑡
𝑛
, 𝑠

𝑛+1
− 𝑠
𝑛
< 𝑡
𝑛+1
− 𝑡
𝑛
,

𝑠
∗

= lim
𝑛→+∞

𝑠
𝑛
< 𝑡
∗

.

(58)

Next, we present obvious and useful extensions of Lem-
mas 3 and 4, respectively.

Lemma 6. Let𝑁 = 0, 1, 2, . . . be fixed. Suppose that

𝑡
1
≤ 𝑡
2
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑁
≤ 𝑡
𝑁+1
,

1

𝐻𝜆
> 𝑡
𝑁+1
− 𝑡
𝑁
+ 𝜆 (𝑡

𝑁
− 𝑡
𝑁−1
) ,

0 ≤ 𝛼
𝑁
≤ 𝛼 ≤

1 − 𝐻𝜆 (𝑡
𝑁
− 𝑡
𝑁−1
+ 2 (𝑡
𝑁+1
− 𝑡
𝑁
))

1 − 𝐻𝜆 (𝑡
𝑁
− 𝑡
𝑁−1
)

.

(59)

Then, sequence {𝑡
𝑛
} generated by (19) is nondecreasing, bound-

ed from above by 𝑡∗∗, and converges to 𝑡∗ which satisfies 𝑡∗ ∈
[𝑡
𝑁+1
, 𝑡
∗

]. Moreover, the following estimates are satisfied for
each 𝑛 = 0, 1, . . .:

0 ≤ 𝑡
𝑁+𝑛+1

− 𝑡
𝑁+𝑛

≤ 𝛼
𝑛

(𝑡
𝑁+1
− 𝑡
𝑁
) ,

𝑡
∗

− 𝑡
𝑁+𝑛

≤
𝛼
𝑛

1 − 𝛼
(𝑡
𝑁+1
− 𝑡
𝑁
) .

(60)

Lemma 7. Let𝑁 = 1, 2, . . . be fixed. Suppose that

𝑠
1
≤ 𝑠
2
≤ ⋅ ⋅ ⋅ ≤ 𝑠

𝑁
≤ 𝑠
𝑁+1
,

1

𝐻𝜆
> 𝑠
𝑁+1
− 𝑠
𝑁
+ 𝜆 (𝑠

𝑁
− 𝑠
𝑁−1
) ,

0 ≤ 𝑏
𝑁
≤ 𝛼 ≤

1 − 𝐻𝜆 (2𝑠
𝑁+1
− 𝑠
𝑁−1
)

1 − 𝐻𝜆 (2𝑠
𝑁
− 𝑠
𝑁−1
)
⋅

(61)

Then, sequence {𝑠
𝑛
} generated by (36) is nondecreasing, bound-

ed from above by 𝑠∗∗ and converges to 𝑠∗ which satisfies 𝑠∗ ∈
[𝑠
𝑁+1
, 𝑠
∗

]. Moreover, the following estimates are satisfied for
each 𝑛 = 0, 1, . . .

0 ≤ 𝑠
𝑁+𝑛+1

− 𝑠
𝑁+𝑛

≤ 𝛼
𝑛

(𝑠
𝑁+1
− 𝑠
𝑁
) ,

𝑠
∗

− 𝑠
𝑁+𝑛

≤
𝛼
𝑛

1 − 𝛼
(𝑠
𝑁+1
− 𝑠
𝑁
) .

(62)

Next, we present the following semilocal convergence
result for secant-like method under the (𝐶) conditions.

Theorem 8. Suppose that the (𝐶), Lemma 3 (or Lemma 6)
conditions and

𝑈 = 𝑈 (𝑥
0
, (2𝜆 − 1) 𝑡

∗

) ⊆ D (63)

hold. Then, sequence {𝑥
𝑛
} generated by secant-like method is

well defined, remains in 𝑈 for each 𝑛 = −1, 0, 1, 2, . . ., and
converges to a solution 𝑥∗ ∈ 𝑈(𝑥

0
, 𝑡
∗

−𝑐) of equation 𝐹(𝑥) = 0.
Moreover, the following estimates are satisfied for each 𝑛 =
0, 1, . . .:

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ 𝑡𝑛+1 − 𝑡𝑛, (64)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝑡

∗

− 𝑡
𝑛
. (65)

Furthermore, if there exists 𝑇 ≥ 𝑡∗ − 𝑐 such that

𝑈 (𝑥
0
, 𝑟) ⊆ D,

𝐻 (𝑇 + 𝑡
∗

+ (𝜆 − 1) 𝑐) < 1,

(66)

then, the solution 𝑥∗ is unique in 𝑈(𝑥
0
, 𝑇).
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Proof. We use mathematical induction to prove that
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘

󵄩󵄩󵄩󵄩 ≤ 𝑡𝑘+1 − 𝑡𝑘, (67)

𝑈 (𝑥
𝑘+1
, 𝑡
∗

− 𝑡
𝑘+1
) ⊆ 𝑈 (𝑥

𝑘
, 𝑡
∗

− 𝑡
𝑘
) , (68)

for each 𝑘 = −1, 0, 1, . . .. Let 𝑧 ∈ 𝑈(𝑥
0
, 𝑡
∗

− 𝑡
0
). Then, we

obtain that
󵄩󵄩󵄩󵄩𝑧 − 𝑥−1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑧 − 𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥0 − 𝑥−1

󵄩󵄩󵄩󵄩 ≤ 𝑡
∗

− 𝑡
0
+ 𝑐 = 𝑡

∗

= 𝑡
∗

− 𝑡
−1
,

(69)

which implies that 𝑧 ∈ 𝑈(𝑥
−1
, 𝑡
∗

−𝑡
−1
). Let also𝑤 ∈ 𝑈(𝑥

0
, 𝑡
∗

−

𝑡
1
). We get that
󵄩󵄩󵄩󵄩𝑤 − 𝑥0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑤 − 𝑥1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥1 − 𝑥0

󵄩󵄩󵄩󵄩 ≤ 𝑡
∗

− 𝑡
1
+ 𝑡
1
− 𝑡
0

= 𝑡
∗

− 𝑡
0
,

(70)

hence, 𝑤 ∈ 𝑈(𝑥
0
, 𝑡
∗

, 𝑡
0
). Note that ‖𝑥

−1
− 𝑥
0
‖ ≤ 𝑐 = 𝑡

0
− 𝑡
−1

and ‖𝑥
1
− 𝑥
0
‖ = ‖𝐴

−1

0
𝐹(𝑥
0
)‖ ≤ 𝜂 = 𝑡

1
− 𝑡
0
< 𝑡
∗. That is,

𝑥
1
∈ 𝑈(𝑥

0
, 𝑡
∗

) ⊆ D. Hence, estimates (67) and (68) hold for
𝑘 = −1 and 𝑘 = 0. Suppose that (67) and (68) hold for all
𝑛 ≤ 𝑘. Then, we obtain that

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥0
󵄩󵄩󵄩󵄩 ≤

𝑘+1

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑖−1
󵄩󵄩󵄩󵄩 ≤

𝑘+1

∑

𝑖=1

(𝑡
𝑖
− 𝑡
𝑖−1
)

= 𝑡
𝑘+1
− 𝑡
0
= 𝑡
∗

− 𝑐 ≤ 𝑡
∗

,

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥0
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝜆𝑥𝑘 + (1 − 𝜆) 𝑥𝑘−1 − 𝑥0
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜆 (𝑥𝑘 − 𝑥0) + (1 − 𝜆) (𝑥𝑘−1 − 𝑥0)

󵄩󵄩󵄩󵄩

≤ 𝜆
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥0

󵄩󵄩󵄩󵄩 + (𝜆 − 1)
󵄩󵄩󵄩󵄩𝑥𝑘−1 − 𝑥0

󵄩󵄩󵄩󵄩

≤ 𝜆𝑡
∗

+ (𝜆 − 1) 𝑡
∗

= (2𝜆 − 1) 𝑡
∗

.

(71)

Hence, 𝑥
𝑘+1

, 𝑦
𝑘
∈ 𝑈(𝑥

0
, 𝑡
∗

).
Using (𝐶

7
), Lemma 3, and the introduction hypotheses,

we get that
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
(𝐴
𝑘+1
− 𝐴
0
)
󵄩󵄩󵄩󵄩󵄩

≤ 𝐻 (
󵄩󵄩󵄩󵄩𝑦𝑘+1 − 𝑦0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥−1

󵄩󵄩󵄩󵄩)

≤ 𝐻 (𝜆
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥0

󵄩󵄩󵄩󵄩 + |1 − 𝜆|
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥−1

󵄩󵄩󵄩󵄩)

≤ 𝐻𝜆 (
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥0 − 𝑥−1

󵄩󵄩󵄩󵄩)

≤ 𝐻𝜆 (𝑡
𝑘+1
− 𝑡
0
+ 𝑡
𝑘
− 𝑡
0
+ 𝑐)

= 𝐻𝜆 (𝑡
𝑘+1
+ 𝑡
𝑘
− 𝑐) < 1.

(72)

It follows from (72) and the Banach lemma on invertible
operators [1, 2, 4, 6–8, 14] that 𝐴−1

𝑘+1
exists and

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝑘+1
𝐴
0

󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝐻𝜆 (𝑡

𝑘+1
+ 𝑡
𝑘
− 𝑐))
−1

. (73)

In view of (4), we obtain the following identity:

𝐹 (𝑥
𝑘+1
) = 𝐹 (𝑥

𝑘+1
) − 𝐹 (𝑥

𝑘
) − [𝑦

𝑘
, 𝑥
𝑘−1
; 𝐹] (𝑥

𝑘+1
− 𝑥
𝑘
)

= ([𝑥
𝑘+1
, 𝑥
𝑘
; 𝐹] − [𝑦

𝑘
, 𝑥
𝑘−1
; 𝐹]) (𝑥

𝑘+1
− 𝑥
𝑘
) .

(74)

Using (4), (34), and the induction hypotheses, we get in turn
that
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
𝐹 (𝑥
𝑘+1
)
󵄩󵄩󵄩󵄩󵄩

≤ 𝐾 (
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑦𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥𝑘−1

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘

󵄩󵄩󵄩󵄩

≤ 𝐾 (
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘

󵄩󵄩󵄩󵄩 + 𝜆
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥𝑘−1

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘

󵄩󵄩󵄩󵄩

≤ 𝐾 (𝑡
𝑘+1
− 𝑡
𝑘
+ 𝜆 (𝑡

𝑘
− 𝑡
𝑘+1
)) (𝑡
𝑘+1
− 𝑡
𝑘
) .

(75)

It now follows from (4), (18), (74), and (75) that

󵄩󵄩󵄩󵄩𝑥𝑘+2 − 𝑥𝑘+1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝑘+1
𝐴
0

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
𝐹 (𝑥
𝑘+1
)
󵄩󵄩󵄩󵄩󵄩

≤
𝐾 (𝑡
𝑘+1
− 𝑡
𝑘
+ 𝜆 (𝑡

𝑘
− 𝑡
𝑘−1
)) (𝑡
𝑘+1
− 𝑡
𝑘
)

1 − 𝐻𝜆 (𝑡
𝑘+1
+ 𝑡
𝑘
− 𝑐)

= 𝑡
𝑘+2
− 𝑡
𝑘+1
,

(76)

which completes the induction for (67). Moreover, let V ∈
𝑈(𝑥
𝑘+2
, 𝑡
∗

− 𝑡
𝑘+2
). Then, we get that

󵄩󵄩󵄩󵄩V − 𝑥𝑘+1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩V − 𝑥𝑘+2
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑘+2 − 𝑥𝑘+1

󵄩󵄩󵄩󵄩

≤ 𝑡
∗

− 𝑡
𝑘+2
+ 𝑡
𝑘+2
− 𝑡
𝑘+1
= 𝑡
∗

− 𝑡
𝑘+1
,

(77)

which implies that V ∈ 𝑈(𝑥
𝑘+1
, 𝑡
∗

− 𝑡
𝑘+1
). The induction for

(68) is complete.
Lemma 3 implies that {𝑡

𝑘
} is a complete sequence. It

follows from (67) and (68) that {𝑥
𝑘
} is a complete sequence

in a Banach space X and as such it converges to some 𝑥∗ ∈
𝑈(𝑥
0
, 𝑡
∗

−𝑐) (since𝑈(𝑥
0
, 𝑡
∗

−𝑐) is a closed set). By letting 𝑘 →
+∞ in (75), we obtain 𝐹(𝑥∗) = 0. Furthermore, estimate (65)
follows from (64) by using standard majorization techniques
[1–4, 6–8]. To show the uniqueness part, let 𝑦∗ ∈ 𝑈(𝑥

0
, 𝑇) be

such that 𝐹(𝑦∗) = 0. We have that

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
([𝑦
∗

, 𝑥
∗

; 𝐹] − 𝐴
0
)
󵄩󵄩󵄩󵄩󵄩

≤ 𝐻 (
󵄩󵄩󵄩󵄩𝑦
∗

− 𝑦
0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
−1

󵄩󵄩󵄩󵄩)

≤ 𝐻 (
󵄩󵄩󵄩󵄩𝑦
∗

− 𝑥
0

󵄩󵄩󵄩󵄩 + (𝜆 − 1)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥0 − 𝑥−1

󵄩󵄩󵄩󵄩)

≤ (𝑅
0
+ 𝑡
∗

+ (𝜆 − 1) 𝑐) < 1.

(78)

It follows from (78) and the Banach lemma on invertible
operators that [𝑦∗, 𝑥∗; 𝐹]−1 exists. Then, using the identity
0 = 𝐹(𝑦

∗

) − 𝐹(𝑥
∗

) = [𝑦
∗

, 𝑥
∗

; 𝐹](𝑦
∗

− 𝑥
∗

), we deduce that
𝑥
∗

= 𝑦
∗. The proof of Theorem 8 is complete.
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Remark 9. (a) The limit point 𝑡∗ can be replaced inTheorem
8 by 𝑡∗∗ which is given in closed form by (23).

(b) It follows from the proof ofTheorem 8 that {𝑠
𝑛
} is also

a majorizing sequence for {𝑥
𝑛
}. Hence, Lemma 4 (or Lemma

7), {𝑠
𝑛
}, 𝑠∗ can replace Lemma 3 (or Lemma 6) {𝑡

𝑛
}, 𝑡∗ in

Theorem 8.

Hence, we arrive at the following.

Theorem 10. Suppose that the (𝐶) conditions, Lemma 4 (or
Lemma 7), and

𝑈 = 𝑈 (𝑥
0
, (2𝜆 − 1) 𝑠

∗

) ⊆ D (79)

hold. Then, sequence {𝑥
𝑛
} generated by secant-like method is

well defined, remains in 𝑈 for each 𝑛 = −1, 0, 1, 2, . . ., and
converges to a solution 𝑥∗ ∈ 𝑈(𝑥

0
, 𝑠
∗

−𝑐) of equation𝐹(𝑥) = 0.
Moreover, the following estimates are satisfied for each 𝑛 =
0, 1, . . .:

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ 𝑠𝑛+1 − 𝑠𝑛,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝑠

∗

− 𝑠
𝑛
.

(80)

Furthermore, if there exists 𝑇 ≥ 𝑠∗ − 𝑐 such that

𝑈 (𝑥
0
, 𝑟) ⊆ D,

𝐻 (𝑇 + 𝑠
∗

+ (𝜆 − 1) 𝑐) < 1,

(81)

then, the solution 𝑥∗ is unique in 𝑈(𝑥
0
, 𝑇).

Let us consider the following equation:

𝐹 (𝑥) + 𝐺 (𝑥) = 0, (82)

where 𝐹 is a before and 𝐺 : D → Y is continuous. The cor-
responding secant-like method is given by

𝑥
𝑛+1
= 𝑥
𝑛
− 𝐴
−1

𝑛
(𝐹 (𝑥
𝑛
) + 𝐺 (𝑥

𝑛
)) for each 𝑛 = 0, 1, 2 . . . ,

(83)

where 𝑥
0
is an initial guess.

Suppose that

(𝐶
8
)

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
(𝐺 (𝑥) − 𝐺 (𝑦))

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 for each 𝑥, 𝑦 ∈ D,

(84)

(𝐶
9
)

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

0
(𝐺 (𝑥
1
) − 𝐺 (𝑥

0
))
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
0

󵄩󵄩󵄩󵄩𝑥1 − 𝑥0
󵄩󵄩󵄩󵄩 . (85)

Clearly,

𝑀
0
≤ 𝑀 (86)

holds and𝑀/𝑀
0
can be arbitrarily large [1–4, 14].

Wewill denote by (𝐶∗) the conditions (𝐶), (𝐶
8
), and (𝐶

9
).

Then, we can present the corresponding result along the same
lines as in Lemmas 3, 4, 6, and 7 and Theorems 8 and 10.
However, we will only present the results corresponding to
Lemma 4 andTheorem 10, respectively.The rest combination
of results can be given in an analogous way.

Lemma 11. Let 𝑐 ≥ 0, 𝜂 > 0,𝐻
0
> 0,𝐻

1
> 0,𝐻 > 0,𝑀

0
> 0,

𝑀 > 0, 𝐾 > 0, and 𝜆 ≥ 1. Set 𝛾
−1
= 0, 𝛾

0
= 𝑐, and 𝛾

1
= 𝑐 + 𝜂.

Define scalar sequences {𝛾
𝑛
}, {𝛿
𝑛
} by

𝛾
2
= 𝛾
1
+
𝐻
0
(𝛾
1
− 𝛾
0
+ 𝜆 (𝛾

0
− 𝛾
−1
)) + 𝑀

0

1 − 𝐻
1
𝜆 (𝛾
1
+ 𝛾
0
− 𝑐)

(𝛾
1
− 𝛾
0
) ,

𝛾
𝑛+2
= 𝛾
𝑛+1
+
𝐾 (𝛾
𝑛+1
− 𝛾
𝑛
+ 𝜆 (𝛾

𝑛
− 𝛾
𝑛−1
)) + 𝑀

1 − 𝐻𝜆 (𝛾
𝑛+1
+ 𝛾
𝑛
− 𝑐)

(𝛾
𝑛+1
− 𝛾
𝑛
) ,

𝛿
1
=
𝐻
0
(𝛾
1
− 𝛾
0
+ 𝜆 (𝛾

0
− 𝛾
−1
)) + 𝑀

0

1 − 𝐻
1
𝜆 (𝛾
1
+ 𝛾
0
− 𝑐)

,

𝛿
𝑛
=
𝐾 (𝛾
𝑛+1
− 𝛾
𝑛
+ 𝜆 (𝛾

𝑛
− 𝛾
𝑛−1
)) + 𝑀

1 − 𝐻𝜆 (𝛾
𝑛+1
+ 𝛾
𝑛
− 𝑐)

,

(87)

and functions ℎ
𝑛
on [0, 1) by

ℎ
𝑛
(𝑡) = 𝐾 (𝑡 + 𝜆) 𝑡

𝑛−1

(𝛾
2
− 𝛾
1
) + 𝑀

+𝐻𝜆𝑡 [2𝛾
1
+
1 − 𝑡
𝑛+1

1 − 𝑡
(𝛾
2
− 𝛾
1
) +
1 − 𝑡
𝑛

1 − 𝑡
(𝛾
2
− 𝛾
1
)]

− (1 + 𝐻𝜆𝑐) 𝑡.

(88)

Suppose that function 𝜑 given by

𝜑 (𝑡) = 2𝐻𝜆(𝛾
1
+
𝛾
2
− 𝛾
1

1 − 𝑡
) 𝑡 − (1 + 𝐻𝜆𝑐) 𝑡 + 𝑀 (89)

has a minimal zero 𝑎 in [0, 1) and

0 ≤ 𝛿
1
≤ 𝛼 ≤ 𝑎, (90)

where 𝛼 was defined in Lemma 3. Then, sequence {𝛾
𝑛
} is

nondecreasing, bounded from above by 𝛾∗∗ that is defined by

𝛾
∗∗

= 𝑐 + 𝜂 +
𝛾
2
− 𝛾
1

1 − 𝛼
, (91)

and converges to its unique least upper bound 𝛾∗ which satisfies

𝑐 + 𝜂 ≤ 𝛾
∗

≤ 𝛾
∗∗

. (92)

Moreover, the following estimates are satisfied for each 𝑛 =
1, 2, . . .:

0 ≤ 𝛾
𝑛+2
− 𝛾
𝑛+1
≤ 𝛼
𝑛

(𝛾
2
− 𝛾
1
) . (93)

Proof. Simply use {𝛾
𝑛
}, {𝛿
𝑛
}, {ℎ
𝑛
}, 𝜑, 𝑎 instead of {𝑠

𝑛
}, {𝑏
𝑛
},

{𝑔
𝑛
}, 𝑝, 𝛼 in the proof of Lemma 4.

Theorem 12. Suppose that the (𝐶∗), Lemma 11 conditions,

𝑈 ⊆ D (94)

hold, where 𝑈 was defined in Theorem 8 and ‖𝐴−1
0
(𝐹(𝑥
0
) +

𝐺(𝑥
0
))‖ ≤ 𝜂. Then, sequence {𝑥

𝑛
} generated by the secant-like
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method (83) in well defined, remains in 𝑈 for each 𝑛 =

−1, 0, 1, 2, . . ., and converges to a solution 𝑥∗ ∈ 𝑈(𝑥
0
, 𝛾
∗

− 𝑐)

of equation 𝐹(𝑥)+𝐺(𝑥) = 0. Moreover, the following estimates
are satisfied for each 𝑛 = 0, 1, . . .:

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ 𝛾𝑛+1 − 𝛾𝑛,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝛾

∗

− 𝛾
𝑛
.

(95)

Furthermore, if there exists 𝛾 ≥ 𝛾∗ − 𝑐 such that

𝑈 (𝑥
0
, 𝛾) ⊆ D,

0 <
𝐾 ((𝜆 − 1) 𝑐 + 𝛾) +𝑀

1 − 𝐻𝜆 (2𝛾 − 𝑐)
≤ 𝜂, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜇 ∈ (0, 1) ,

(96)

then, the solution 𝑥∗ is unique in 𝑈(𝑥
0
, 𝛾).

Proof. The proof until the uniqueness part follows as in
Theorem 8 but using the following identity:

𝐹 (𝑥
𝑘+1
) + 𝐺 (𝑥

𝑘+1
)

= ([𝑥
𝑘+1
, 𝑥
𝑘
; 𝐹] − 𝐴

𝑘
) (𝑥
𝑘+1
− 𝑥
𝑘
) + (𝐺 (𝑥

𝑘+1
) − 𝐺 (𝑥

𝑘
))

(97)

instead of (74). Finally, for the uniqueness part, let 𝑦∗ ∈
𝑈(𝑥
0
, 𝛾) be such that 𝐹(𝑦∗) + 𝐺(𝑦∗) = 0. Then, we get from

(83) the identity

𝑥
𝑛+1
− 𝑦
∗

= 𝑥
𝑛
− 𝐴
−1

𝑛
(𝐹 (𝑥
𝑛
) + (𝑥

𝑛
)) − 𝑦

∗

= − 𝐴
−1

𝑛
(𝐹 (𝑥
𝑛
) − 𝐹 (𝑥

∗

) − 𝐴
𝑛
(𝑥
𝑛
− 𝑦
∗

)

+ (𝐺 (𝑥
𝑛
) − 𝐺 (𝑦

∗

)))

= − 𝐴
−1

𝑛
(([𝑥
𝑛
, 𝑦
∗

; 𝐹] − [𝑦
𝑛
, 𝑥
𝑛−1
; 𝐹]) (𝑥

𝑛
− 𝑦
∗

)

+ 𝐺 (𝑥
𝑛
) − 𝐺 (𝑦

∗

)) .

(98)

This identity leads to

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
∗󵄩󵄩󵄩󵄩 ≤

𝐾 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑦

∗󵄩󵄩󵄩󵄩) + 𝑀

1 − 𝐻𝜆 (𝛾
𝑛+1
+ 𝛾
𝑛
− 𝑐)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩

≤
𝐾 ((𝜆 − 1)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑦

∗󵄩󵄩󵄩󵄩) + 𝑀

1 − 𝐻𝜆 (2𝛾 − 𝑐)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

≤
𝐾 ((𝜆 − 1) 𝑐 + 𝛾) +𝑀

1 − 𝐻𝜆 (2𝛾 − 𝑐)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩

≤ 𝜇
󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦

∗󵄩󵄩󵄩󵄩

≤ 𝜇
𝑛+1 󵄩󵄩󵄩󵄩𝑥0 − 𝑦

∗󵄩󵄩󵄩󵄩 ≤ 𝜇
𝑛+1

𝛾.

(99)

Hence, we deduce lim
𝑛→+∞

𝑥
𝑛
= 𝑦
∗. But we know that

lim
𝑛→+∞

𝑥
𝑛
= 𝑥
∗. That is, we conclude that 𝑥∗ = 𝑦∗. That

completes the proof of the theorem.

4. Numerical Examples

Example 1. Let X = Y = C[0, 1], equipped with the
max-norm.Consider the following nonlinear boundary value
problem:

𝑢
󸀠󸀠

= −𝑢
3

− 𝛾𝑢
2

,

𝑢 (0) = 0, 𝑢 (1) = 1.

(100)

It is well known that this problem can be formulated as the
integral equation

𝑢 (𝑠) = 𝑠 + ∫

1

0

Q (𝑠, 𝑡) (𝑢
3

(𝑡) + 𝛾𝑢
2

(𝑡)) 𝑑𝑡, (101)

where Q is the Green function as follows:

Q (𝑠, 𝑡) = {
𝑡 (1 − 𝑠) , 𝑡 ≤ 𝑠,

𝑠 (1 − 𝑡) , 𝑠 < 𝑡.
(102)

We observe that

max
0≤𝑠≤1

∫

1

0

|Q (𝑠, 𝑡)| 𝑑𝑡 =
1

8
. (103)

Then, problem (101) is in the form (1), where 𝐹 : D → Y is
defined as

[𝐹 (𝑥)] (𝑠) = 𝑥 (𝑠) − 𝑠 − ∫

1

0

Q (𝑠, 𝑡) (𝑥
3

(𝑡) + 𝛾𝑥
2

(𝑡)) 𝑑𝑡.

(104)

The Fréchet derivative of the operator 𝐹 is given by

[𝐹
󸀠

(𝑥) 𝑦] (𝑠) = 𝑦 (𝑠) − 3∫

1

0

Q (𝑠, 𝑡) 𝑥
2

(𝑡) 𝑦 (𝑡) 𝑑𝑡

− 2𝛾∫

1

0

Q (𝑠, 𝑡) 𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡.

(105)

Then, we have that

[(𝐼 − 𝐹
󸀠

(𝑥
0
)) (𝑦)] (𝑠) = 3∫

1

0

Q (𝑠, 𝑡) 𝑥
2

0
(𝑡) 𝑦 (𝑡) 𝑑𝑡

+ 2𝛾∫

1

0

Q (𝑠, 𝑡) 𝑥
0
(𝑡) 𝑦 (𝑡) 𝑑𝑡.

(106)

Hence, if 2𝛾 < 5, then
󵄩󵄩󵄩󵄩󵄩
𝐼 − 𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩
≤ 2 (𝛾 − 2) < 1. (107)

It follows that 𝐹󸀠(𝑥
0
)
−1 exists and

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1󵄩󵄩󵄩󵄩󵄩
≤

1

5 − 2𝛾
. (108)

We also have that ‖𝐹(𝑥
0
)‖ ≤ 1 + 𝛾. Define the divided dif-

ference defined by

𝛿𝐹 (𝑥, 𝑦) = ∫

1

0

𝐹
󸀠

(𝑦 + 𝑡 (𝑥 − 𝑦)) 𝑑𝑡. (109)
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Choosing 𝑥
−1
(𝑠) such that ‖𝑥

−1
− 𝑥
0
‖ ≤ 𝑐 and 𝑙

0
𝑐 < 1. Then,

we have for 𝜆 = 1,
󵄩󵄩󵄩󵄩󵄩
𝛿𝐹(𝑥
−1
, 𝑥
0
)
−1

𝐹 (𝑥
0
)
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝛿𝐹(𝑥
−1
, 𝑥
0
)
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
) 𝐹 (𝑥

0
)
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩
𝛿𝐹(𝑥
−1
, 𝑥
0
)
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩
≤

1

(1 − 𝑙
0
𝑐)
,

(110)

where 𝑙
0
is such that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

(𝐹
󸀠

(𝑥
0
) − 𝐴
0
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑙
0
𝑐. (111)

Set 𝑢
0
(𝑠) = 𝑠 and D = 𝑈(𝑢

0
, 𝑅
0
). It is easy to verify that

𝑈(𝑢
0
, 𝑅
0
) ⊂ 𝑈(0, 𝑅

0
+ 1) since ‖𝑢

0
‖ = 1. If 2𝛾 < 5 and 𝑙

0
𝑐 < 1,

the operator 𝐹󸀠 satisfies conditions of Theorem 8, with

𝜂 =
1 + 𝛾

(1 − 𝑙
0
𝑐) (5 − 2𝛾)

, 𝐾 =
𝛾 + 6𝑅

0
+ 3

8 (5 − 2𝛾) (1 − 𝑙
0
𝑐)
,

𝐻 =
2𝛾 + 3𝑅

0
+ 6

16 (5 − 2𝛾) (1 − 𝑙
0
𝑐)
.

(112)

Choosing 𝑅
0
= 1, 𝛾 = 0.5, and 𝑐 = 1, we obtain that

𝑙
0
= 0.1938137822 . . . ,

𝜂 = 0.465153 . . . ,

𝐾 = 0.368246 . . . ,

𝐻 = 0.193814 . . . .

(113)

Moreover, we obtain that 𝑎
−1
= 0.317477 and 𝑏

−1
=

0.251336, but conditions of Theorem 1 are not satisfied since

𝑏
−1
= 0.251336 > 0.147893 =

𝑎
−1
(1 − 𝑎

−1
)
2

2 (1 − 𝑎
−1
) − 𝜆 (1 − 2𝑎

−1
)
.

(114)

Notice also that the popular condition (53) is also not
satisfied, since 𝐾𝑐 + 2√𝐾𝜂 = 1.19599 > 1. Hence, there is
no guarantee under the old conditions that the secant-type
method converges to𝑥∗. However, conditions of Lemma 3 are
satisfied since

0 < 𝛼 = 0.724067 ≤ 0.776347 =
1 − 𝐻𝜆 (𝑐 + 2𝜂)

1 − 𝐻𝜆𝑐
. (115)

The convergence of the secant-typemethod is also ensured by
Theorem 8.

Example 2. LetX = Y = R, and consider the real function

𝐹 (𝑥) = 𝑥
3

− 2, (116)

and we are going to apply secant-type method with 𝜆 = 2.5.
We take the starting points 𝑥

0
= 1, 𝑥

−1
= 0.25 and we

consider the domainΩ = 𝐵(𝑥
0
, 3/4). In this case, we obtain

𝑐 = 0.75,

𝜂 = 0.120301 . . . ,

𝐾 = 0.442105 . . . ,

𝐻 = 0.180451 . . . .

(117)

Notice that the conditions of Theorem 1 and Lemma 3 are
satisfied, but since 𝐻 < 𝐾, Remark 2 ensures that our
uniqueness ball is larger. It is clear as 𝑅

1
= 1.83333 ⋅ ⋅ ⋅ >

0.193452 ⋅ ⋅ ⋅ = 𝑅
0
.
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