Corrections

Milo J. Aukerman and Hajime Sakai. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its *APETALA2*-Like Target Genes. Plant Cell **15**, 2730–2741.

In Table 1 on page 2732, the second and fifth entries under "Floral Phenotype" are incorrect. The corrected table is printed below.

	Rosette Leaf No.		
Genotype	(Average) ^a	SD	Floral Phenotype
Wild type	11.4	1.2	Wild type
Wild type, short days	36.7	5.2	Wild type
eat-D	3.1	0.8	ap2
35S-EAT	2.0	0.2	ap2 plus additional ^b
35S-EAT, short days	6.1	1.2	ap2 plus additional ^b
35S-eatdel	11.1°	1.1	Wild type
35S-miR172a-1	2.1	0.3	ap2 plus additional ^b
toe1-1D	22.5	2.1	Wild type
35S-TOE1	28.6	3.6	Wild type
toe1-2	8.7	0.6	Wild type
toe2-1	10.2 ^c	1.4	Wild type
toe1-2 toe2-1	6.0	0.8	Wild type

Flowering time was determined by counting the number of rosette leaves, and floral phenotypes were observed visually. All plants were in the Col-0 genetic background and were grown in long-day conditions (16 h of light and 8 h of dark), except as indicated (short days [8 h of light and 16 h of dark]).

^a Average values from at least 10 plants per line.

^b See text and Figure 1 for details.

^c No statistically significant difference compared with the wild type. All other lines were significantly different from the wild type (Student's *t* test, P < 0.0001).

Rafael Catalá, Elisa Santos, José M. Alonso, Joseph R. Ecker, José M. Martínez-Zapater, and Julio Salinas. (2003). Mutations in the Ca²⁺/H⁺ Transporter CAX1 Increase *CBF/DREB1* Expression and the Cold-Acclimation Response in Arabidopsis. Plant Cell **15**, 2940–2951.

Two sentences on page 2940 contain errors. The second sentence in the abstract should read as follows: "Subsequent reestablishment of $[Ca^{2+}]_{cyt}$ to resting levels by Ca^{2+} pumps and antiporters is required for the correct transduction of the signal." Also, the last sentence of the first paragraph in the Introduction should read as follows: "After Ca^{2+} influx, efflux systems to internal stores and out of the cell restore $[Ca^{2+}]_{cyt}$ to unstimulated levels via Ca^{2+} pumps and exchangers (Knight, 2000)."

Corrections *Plant Cell* 2004;16;555 DOI 10.1105/tpc.cor238

This information is current as of October 18, 2019

Permissions	https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X	
eTOCs	Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain	
CiteTrack Alerts	Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain	
Subscription Information	Subscription Information for <i>The Plant Cell</i> and <i>Plant Physiology</i> is available at: http://www.aspb.org/publications/subscriptions.cfm	