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Abstract. A Whittaker-Shannon-Kotel’nikov sampling theorem related
to the Dunkl transform on the real line is proved. To this end we state,
in terms of Bessel functions, an orthonormal system which is complete
in L2((−1, 1), |x|2α+1 dx). This orthonormal system is a generalization
of the classical exponential system defining Fourier series.

1. Introduction

The fundamental result in sampling theory states that if a signal f(t)
contains no frequencies higher than w cycles per second, then f(t) is com-
pletely determined by its values f(k/(2w)) at a discrete sequence of sample
points with spacing 1/(2w) and can be reconstructed from these values by
the formula

(1) f(t) =
∞∑

k=−∞
f

(
k

2w

)
sin(π(2wt− k))
π(2wt− k)

.

A signal f(t) that contains no frequencies beyond w cycles per second is
said to be, in engineering and mathematical terminology, a signal bandlim-
ited to (−2πw, 2πw). Equivalently, its Fourier transform F is zero outside
of this interval:

f(t) =
1√
2π

∫ 2πw

−2πw
F (x)eixt dx.

An important underlying engineering principle in (1) is that all the infor-
mation contained in a such signal f(t) is stored in its samples f(k/(2w)).

The previous result is taken from the classical Shannon’s work “Communi-
cation in the presence of noise” [14]. A series as in (1) is known as a cardinal
series from the work of J. M. Whittaker [17], where he makes a refinement
of the work of his father in [16]. The result given by (1) is usually known in
mathematical literature as the Whittaker-Shannon-Kotel’nikov theorem (or

THIS PAPER HAS BEEN PUBLISHED IN: Proc. Amer. Math. Soc. 135 (2007), 2939–
2947.

2000 Mathematics Subject Classification. Primary 94A20; Secondary 42A38.
Key words and phrases. WSK sampling theorem, reproducing kernel, Dunkl transform,

orthonormal system, Bessel functions.
Research supported by grant MTM2006-13000-C03-03 of the DGI.

1
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WSK theorem). An historical overview about the WSK sampling theorem,
explaining the reasons for its name, can be seen in the first chapter of [18].

There are other examples of sampling theorems, and the main idea under
them is the relation between a continuous transform and its discrete counter-
part. The classical WSK sampling theorem involves the Fourier transform
and the Fourier series. Higgins, in [9], describes a very general situation in
which a sampling theorem is possible. As an example of the theory devel-
oped he show a sampling theorem for the pair Fourier-Bessel series/Hankel
transform. In [18] we can find a great variety of extensions and general-
izations of the classical results (see also the expository paper [8]). More
recently q-analogues of these results have appeared. In [10], considering a
q-exponential function, a q-version of the classical WSK was proved. The
q-version of Higgins’ result was established in [1].

The Dunkl transform in the real line is a generalization of the Fourier
transform; it was introduced (before Dunkl, but in a different context) by
Roosenraad in his Ph.D. thesis [12], written under the direction of Richard
Askey. The main aim of this paper is a generalization of (1) in the setting
of the Dunkl transform. The corresponding sampling theorem related to the
Hankel transform will also be covered by our result, because the even part of
the Dunkl transform is the Hankel transform. To prove our sampling theo-
rem we obtain an orthonormal system related to the Dunkl transform. This
orthonormal system is an extension of the classical trigonometric system.

This paper is organized as follows. In Section 2 we give the facts that
are needed about the Dunkl transform, and we state our main results: the
orthogonality (Theorem 1) and the sampling theorem (Theorem 2). The
proof of the orthogonality, and the completeness of the orthogonal system,
is given in Section 3. Section 4 is devoted to providing some technical
results about reproducing kernels; in it, we summarize the general theory of
reproducing kernels, showing the properties that will be applied in the rest
of the paper. Then, the proof of the sampling theorem is given in Section 5.
We finalize with an example.

2. Main results

For α > −1, let Jα denote the Bessel function of order α and, for complex
values of the variable z, let

Iα(z) = 2αΓ(α+ 1)
Jα(iz)
(iz)α

= Γ(α+ 1)
∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)

(Iα is a small variation of the so-called modified Bessel function of the first
kind and order α, usually denoted by Iα; see [15]). Moreover, let us take

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z), z ∈ C.

The Dunkl operators on Rn are differential-difference operators associated
with some finite reflection groups (see [5]). We consider the Dunkl operator
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Λα, α ≥ −1/2, associated with the reflection group Z2 on R given by

Λαf(x) =
d

dx
f(x) +

2α+ 1
x

(
f(x)− f(−x)

2

)
.

For α ≥ −1/2 and λ ∈ C, the initial value problem

(2)

{
Λαf(x) = λf(x), x ∈ R,
f(0) = 1

has Eα(λx) as its unique solution (see [6] and [7]); this function is called the
Dunkl kernel. For α = −1/2, it is clear that Λ−1/2 = d/dx, and E−1/2(λx) =
eλx.

Let dµα(x) = (2α+1Γ(α+1))−1|x|2α+1 dx. In a similar way to the Fourier
transform (which is the particular case α = −1/2), the Dunkl transform of
order α ≥ −1/2 is given by

(3) Fαf(y) =
∫

R
f(x)Eα(−iyx) dµα(x), y ∈ R,

for f ∈ L1(R, dµα). By means of the Schwartz class S(R), the definition is
extended to L2(R, dµα) in the usual way. In [7], it is showed that Fα is an
isometric isomorphism on L2(R, dµα) and that

F−1
α f(y) = Fαf(−y)

for functions such that f,Fαf ∈ L1(R, dµα).
Actually, the Dunkl transform Fα can also be defined in L2(R, dµα)

for −1 < α ≤ −1/2, although the expression (3) is no longer valid for
f ∈ L1(R, dµα) in general. However, it preserves the same properties in
L2(R, dµα); see [13] for details. This allows us to extend our study to the
case α > −1.

The function Iα(x) is even, and Eα(ix) can be expressed as

Eα(ix) = 2αΓ(α+ 1)
(
Jα(x)
xα

+
Jα+1(x)
xα+1

xi

)
.

It is well-known that the Bessel function Jα+1(x) has an increasing se-
quence of positive zeros {sj}j≥1. Then, the real function Im(Eα(ix)) =

x
2(α+1) Iα+1(ix) is odd and it has an infinite sequence of zeros {sj}j∈Z (with
s−j = −sj and s0 = 0). With them, let us define the functions

(4) eα,j(r) =
2α/2(Γ(α+ 1))1/2

|Iα(isj)|
Eα(isjr), j ∈ Z \ {0}, r ∈ (−1, 1),

and eα,0(r) = 2(α+1)/2(Γ(α + 2))1/2 (beware of the difference of a constant
factor (2α+ 2)1/2 from (4) with j = 0).

With this notation, we have

Theorem 1. Let α > −1. Then, the sequence of functions {eα,j}j∈Z is a
complete orthonormal system in L2((−1, 1), dµα).
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Now, as usual in sampling theory, we take the space of Paley-Wiener type
that, under our setting, is defined as
(5)

PWα =
{
f ∈ L2(R, dµα) : f(x) =

∫ 1

−1
u(y)Eα(ixy) dµα(y), u ∈ L2((−1, 1), dµα)

}
endowed with the norm of L2(R, dµα).

In this way, our sampling theorem is

Theorem 2. If f ∈ PWα, α > −1, then f has the representation

f(x) = f(s0)Iα+1(ix) +
∑

j∈Z\{0}

f(sj)
xIα+1(ix)

2(α+ 1)Iα(isj)(x− sj)
,

that converges in the norm of L2(R, dµα). Moreover, the series converges
uniformly in compact subsets of R.

Finally, it is interesting to note that an alternative description for the
Paley-Wiener space PWα (with α ≥ −1/2) can be found in [2, § 5].

3. Proof of Theorem 1

The identities in the following lemma will be the main tool to show the
orthonormality. This is a small variation of [3, Lemma 1], but we reproduce
it for completeness.

Lemma 1. Let α > −1 and x, y ∈ C. Then, for x 6= y,
(6)∫ 1

−1
Eα(ixr)Eα(iyr) dµα(r) =

1
2α+1Γ(α+ 2)

xIα+1(ix)Iα(iy)− yIα+1(iy)Iα(ix)
x− y

,

and, for x = y,

(7)
∫ 1

−1
|Eα(ixr)|2 dµα(r) =

1
2α+1Γ(α+ 2)

( x2

2(α+ 1)
I2
α+1(ix)

− (2α+ 1)Iα+1(ix)Iα(ix) + 2(α+ 1)I2
α(ix)

)
.

Proof. We start proving (6). From (2) and integrating by parts, it is not
difficult to find∫ 1

−1
Eα(ixr)Eα(−iyr) dµα(r) =

1
2α+1Γ(α+ 1)

Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)
i(x− y)

;

see the details in [3, Lemma 1]. Now, using that Eα(it) = Eα(−it) and that,
for a, b ∈ C, ab − ab = 2i Im(ab) = 2i(Re(a) Im(b) + Im(a) Re(b)), part (6)
follows.

To prove (7) it is enough to evaluate

lim
y→x

1
2α+1Γ(α+ 2)

xIα+1(ix)Iα(iy)− yIα+1(iy)Iα(ix)
x− y

.
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The result is obtained by using L’Hopital rule and the identities
dIα(iy)
dy

= − y

2(α+ 1)
Iα+1(iy)

and
Iα+2(ix) =

4(α+ 1)(α+ 2)
x2

(Iα+1(ix)− Iα(ix)). �

Before starting the proof of Theorem 1, let us recall some facts from the
theory of Dini series (see [15, p. 134]). Given ν > −1, let Jν denote the
Bessel function of order ν; and, for ρ ∈ R, let {µn}n≥1 be the sequence of
successive positive zeros of the equation

(8) xJ ′ν(x) + ρJν(x) = 0.

Then, the functions

θν,ρn (x) = bn
√
xJν(µnx), b−2

n =
∫ 1

0
(θν,ρn (x))2 dx,

n = 1, 2, . . . , form an orthonormal system in L2((0, 1), dx). Moreover, the
system {θν,ρn }n≥1 is complete if ν + ρ > 0; and, if ν + ρ = 0, the system
becomes complete after adding to it the function θν,ρ0 (x) =

√
2(ν + 1)xν+1/2.

By considering the identity

xJ ′ν(x) = νJν(x)− xJν+1(x)

we can rewrite equation (8) as

−xJν+1(x) + (ρ+ ν)Jν(x) = 0.

In this way, it is easy to check that the sequences φn(x) = x−α−1/2θα,−αn (x),
for n = 0, 1, 2, . . . (with φ0(x) =

√
2(α+ 1) ), and ψn(x) = x−α−1/2θα+1,−α

n (x),
for n = 1, 2, . . . , are two complete orthonormal systems in L2((0, 1), x2α+1 dx).

Then, we have all the tools for

Proof of Theorem 1. Letting x = sj and y = sk, with j 6= k, from (6) it
follows that ∫ 1

−1
eα,j(r)eα,k(r) dµα(r) = 0.

For j = k 6= 0, we have∫ 1

−1
|eα,j(r)|2 dµα(r) =

2αΓ(α+ 1)
I2
α(isj)

∫ 1

−1
|Eα(isjr)|2 dµα(r) = 1,

where we have considered (7). The case j = k = 0 is similar, but taking
into account that s0 = 0 and Iα+1(is0) = 1.

Let’s see the completeness. We consider a function φ ∈ L2((−1, 1), dµα)
such that ∫ 1

−1
φ(r)eα,j(r) dµα(r) = 0, j ∈ Z.

Showing that φ ≡ 0 we obtain the completeness. We suppose that φ(r) =
ao(r) + ae(r) + i(bo(r) + be(r)), where ao and bo are odd functions, and ae
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and be are even functions. By using the fact that Iα is an even function and
s−j = −sj , it is clear that the identity∫ 1

−1
φ(r)eα,j(r) dµα(r) +

∫ 1

−1
φ(r)eα,−j(r) dµα(r) = 0

implies that∫ 1

0
ao(r)Iα(isjr)r2α+1 dr =

∫ 1

0
bo(r)Iα(isjr)r2α+1 dr = 0,

for j = 0, 1, . . . , and∫ 1

0
ae(r)(sjr)Iα+1(isjr)r2α+1 dr =

∫ 1

0
be(r)(sjr)Iα+1(isjr)r2α+1 dr = 0,

for j = 1, 2, . . . . Now, taking into account that Iα(isjr) = cjφj(r) and
(sjr)Iα+1(isjr) = djψj(r), for some non-vanishing constants cj and dj , and
the fact that the systems {φj}j≥0 and {ψj}j≥1 are orthonormal and complete
in L2((0, 1), r2α+1 dr), we conclude that ao(r) = ae(r) = bo(r) = be(r) = 0.
Then, φ ≡ 0. �

4. Preliminaries on reproducing kernels

Let X denote a subset of R, and dµ a measure on X. As usual, the inner
product in L2(X, dµ) is given by

〈u, v〉L2(X,dµ) =
∫
X
u(x)v(x) dµ(x).

Also, let H be a class of complex-valued functions defined on X, and such
that H is a Hilbert space with the norm of L2(X, dµ). It is said that g(s, x)
(with s, x ∈ X) is a reproducing kernel for H if

(i) g(·, x) ∈ H for every x ∈ X;
(ii) f(x) = 〈f(·), g(·, x)〉L2(X,dµ) for every f ∈ H, x ∈ X.

It is easy to check that, if a reproducing kernel exists for H, it is unique.
The next proposition describes some facts related to Hilbert spaces with

reproducing kernel that will be used in the remainder. Properties (a), (c)
and (d) are proved in [9]. Property (b) is a well-known result of the repro-
ducing kernels, of primary importance, because it relates two different kinds
of convergence. A proof of (b) can be found in [11].

Proposition 1. Let (a, b) be an interval included on X, and K(x, t) (with
x ∈ X and t ∈ (a, b)) a function such that K(x, ·) ∈ L2((a, b), dµ) for every
x ∈ X. In L2((a, b), dµ), an operator K is defined by

Ku(x) = 〈K(x, ·), u(·)〉L2((a,b),dµ), x ∈ X.
Then,

(a) If K is one to one and K−1 is bounded, the range of K, denoted by N ,
is a Hilbert space with reproducing kernel.

In general, if H has reproducing kernel g, the following properties hold:
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(b) If the sequence {fn} converges to f in the norm of H, then {fn}
converges pointwise in X to f . The convergence is uniform in every
set of X where g(x, x) is bounded.

(c) If K is an isometry, then g(s, x) = 〈K(s, ·),K(x, ·)〉L2((a,b),dµ).
(d) Let {gn} be a complete orthogonal sequence in H and {sn} a sequence

such that gn(sm) = δnm. Then

gn(x) =
g(x, sn)
g(sn, sn)

, x ∈ X.

The usual case is when N ⊂ L2(X, dµ), K is an isometry, and {K(sn, ·)}
forms a complete orthogonal system in L2((a, b), dµ). The factN ⊂ L2(X, dµ)
implies that K is bounded. By K being an isometry, from the orthogonality
and completeness of {K(sn, ·)} it follows that {〈K(x, ·),K(sn, ·)〉L2((a,b),dµ)}
is a complete orthogonal system in N . Under these circumstances, K is one
to one, and K−1 is a transformation of N over L2((a, b), dµ), also bounded.
In particular, part (a) guarantees that N is a Hilbert space with reproducing
kernel.

5. Proof of Theorem 2

Let us recall that, for α > −1, we have taken the Paley-Wiener space
PWα defined in (5). Then, in the language of the previous section, let us
take X = R, dµ = dµα, (a, b) = (−1, 1) and the kernel K(x, y) = Eα(ixy).
The corresponding operator K is given by

(9) Ku(x) = 〈K(x, y), u(y)〉L2((−1,1),dµα) =
∫ 1

−1
u(y)Eα(ixy) dµα(y).

From the fact that the Dunkl transform is an isometry, we can deduce that
K is also an isometry. Clearly, the range of K, denoted by N in the previous
section, is PWα. Finally, let us take {sj}j∈Z (that corresponds to {sn}
in (d)) as the infinite sequence of zeros of the real function Im(Eα(ix)).

By definition, PWα ⊂ L2(R, dµα), which implies that K is bounded.
Moreover, K(sj , r) = Eα(isjr) and, according Theorem 1, it forms a com-
plete orthogonal system in L2((−1, 1), dµα). Then, K is one to one and
K−1 is a transformation of PWα over L2((−1, 1), dµα), also bounded. In
this manner, by Proposition 1 (a), the set PWα is a space with reproducing
kernel.

An appropriate expression for this kernel is

Lemma 2. Let α > −1. The reproducing kernel for PWα is

(10) gα(x, y) =
1

2α+1Γ(α+ 2)
xIα+1(ix)Iα(iy)− yIα+1(iy)Iα(ix)

x− y
.

Proof. From Proposition 1 (c), since K is an isometry, the reproducing kernel
is given by

gα(x, y) = 〈K(x, r),K(y, r)〉L2((−1,1),dµα) =
∫ 1

−1
Eα(ixr)Eα(iyr) dµα(r).
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Then, by using (6), we have (10). �

Let us observe that, taking α = −1/2 in the above lemma we recover the
Bateman reproducing kernel

g−1/2(x, y) =

√
2
π

sinx cos y − cosx sin y
x− y

=

√
2
π

sin(x− y)
x− y

.

Now, we are in a position to prove the sampling theorem:

Proof of Theorem 2. Let us take the functions ej(x) = eα,j(x), j ∈ Z, such
as they are defined in (4). By Theorem 1 the sequence {ej}j∈Z is a complete
orthonormal system for L2((−1, 1), dµα). By using the fact that the operator
K, given by (9), is an isometry, the sequence {Kej}j∈Z is also orthonormal
and complete in PWα. Let’s consider

gj(x) =
Kej(x)
Kej(sj)

, j ∈ Z.

The orthogonality of the system {ej}j∈Z gives that gj(sk) = δjk and then,
by (d) in Proposition 1, we have

gj(x) =
gα(x, sj)
gα(sj , sj)

,

where g is given by (10). With the identities in Lemma 1, we can rewrite

gj(x) =
xIα+1(ix)

2(α+ 1)Iα(isj)(x− sj)
, j 6= 0,

and g0(x) = Iα+1(ix). The functions {gj}j∈Z form a complete orthonormal
system in PWα and then, for f ∈ PWα, we obtain

(11) f(x) =
∑
j∈Z

ajgj(x),

where aj are the Fourier coefficients of f with respect to {gj}j∈Z. The
previous series is convergent in the norm of L2((−1, 1), dµα) and also in the
norm of PWα. Taking into account that gα(x, x) is a continuous function,
and then bounded in each compact subset of R, by applying part (b) in
Proposition 1, it follows that the series (11) converges uniformly in compact
subsets of R (of course, fn in (b) corresponds to the partial sum

∑n
j=−n). To

finish the proof, we have to observe that aj = f(sj) because gj(sk) = δjk. �

An example. In [4], the following identity was proved: For α, β, α + β >
−1,∫ ∞

0

Jα+β+2n+1(t)
tα+β+1

Jα(xt)
(xt)α

t2α+1 dt

=
Γ(n+ 1)

2βΓ(β + n+ 1)
(1− x2)βP (α,β)

n (1− 2x2)χ[0,1](x), n = 0, 1, 2, . . . ,
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where P (α,β)
n denotes the n-th Jacobi polynomial of order (α, β), and χ[0,1]

is the characteristic function of the interval [0, 1]. From this formula, it is
clear that the function x2nEα+β+2n+1(ix), x ∈ R, belongs to PWα. Then,
from Theorem 2 we have

x2nEα+β+2n+1(ix) =
∑

j∈Z\{0}

s2n
j Eα+β+2n+1(isj)

xIα+1(ix)
2(α+ 1)Iα(isj)(x− sj)

,

which is valid for α, β, α+ β > −1, and n = 1, 2, . . . ; and

Eα+β+1(ix) = Iα+1(ix) +
∑

j∈Z\{0}

Eα+β+1(isj)
xIα+1(ix)

2(α+ 1)Iα(isj)(x− sj)

when n = 0.
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[8] A. G. Garćıa, Orthogonal sampling formulas: a unified approach, SIAM Rev. 42

(2000), 499–512.
[9] J. R. Higgins, An interpolation series associated with the Bessel-Hankel transform,

J. Lond. Math. Soc. 5 (1972), 707–714.
[10] M. E. Ismail and A. I. Zayed, A q-analogue of the Whittaker-Shannon-Kotel’nikov

sampling theorem, Proc. Amer. Math. Soc. 131 (2003), 3711–3719.
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