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Abstract. We study the boundedness of the multiplier of the interval [−1, 1]
for the Dunkl transform of order α ≥ −1/2 on weighted Lp spaces, with

1 < p < ∞. In particular, we get that it is bounded from Lp(R, |x|2α+1 dx)

into itself if and only if 4(α+ 1)/(2α+ 3) < p < 4(α+ 1)/(2α+ 1).

1. Introduction and main result

For α ≥ −1/2, let Jα denote the Bessel function of order α and, for complex
values of the variable z, let

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
= Γ(α+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)

(Iα is a small variation of the so-called modified Bessel function of the first kind
and order α, usually denoted by Iα; see [7] or [14]). Moreover, let us take

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z), z ∈ C.

Following [2], in the real line and with the reflection group Z2, the Dunkl operator
Λα is defined as

(1) Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
,

where f are suitable functions on R. It is easy to check that, for any λ ∈ C, we
have

(2) ΛαEα(λx) = λEα(λx).

Let us note that, when α = −1/2, we have Λ−1/2 = d/dx and E−1/2(λx) = eλx.
In a similar way to the Fourier transform (which is the particular case α = −1/2),

we can define the Dunkl transform on the real line

(3) Fαf(y) =

∫
R
Eα(−ixy)f(x) dµα(x), y ∈ R,

were dµα denotes the measure

dµα(x) = 1
2α+1Γ(α+1) |x|

2α+1 dx.

During the last years, many papers are devoted to study the properties of the Dunkl
transform. Of course, the target is to extend the harmonic analysis of the Fourier
transform to a more general context. For instance, let us cite [6, 9, 12], where many
other references can be found.
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The behavior of the Bessel functions is very well known. For instance, for real
values of the variable, they verify the asymptotics

(4) Jα(x) =
xα

2αΓ(α+ 1)
+O(xα+2), x→ 0+;

and

(5) Jα(x) =

(
2

πx

)1/2 [
cos
(
x− απ

2
− π

4

)
+O(x−1)

]
, x→ +∞.

From these and similar results, and noticing that1

(6) Eα(ix) = 2αΓ(α+ 1)
Jα(x)

xα
+ 2αΓ(α+ 1)

Jα+1(x)

xα+1
xi,

it is easy to check that |Eα(ix)| ≤ 1 for every x ∈ R. Then, (3) is well defined for
every f ∈ L1(R, dµα), and

‖Fαf‖∞,α ≤ ‖f‖1,α,
where we use ‖ · ‖p,α as a shorthand for ‖ · ‖Lp(R,dµα).

Again as for the Fourier transform, Fα is an isomorphism of the Schwartz class
S into itself, and F2

αf(x) = f(−x). Fubini’s theorem implies the multiplication
formula ∫

R
Fαf(x)g(x) dµα(x) =

∫
R
Fαg(x)f(x) dµα(x), f, g ∈ S.

Taking g(x) = Fαf(x) we get ‖Fαf‖2,α = ‖f‖2,α, f ∈ S. By density, this can be
extended to functions in L2(R, dµα).

Via S, the [−1, 1]-multiplier Mα is defined as

(7) Mαf(x) = Fα(χ[−1,1]Fαf)(−x)

or, equivalently,
Fα(Mαf)(x) = χ[−1,1](x)Fαf(x),

which is the usual notation. The aim of this paper is to study the boundedness
of the operator Mα in weighted Lp spaces (in the case α = −1/2, M−1/2 is the
so-called ball multiplier for the Fourier transform, which is bounded in Lp(dx) for
1 < p <∞). Thus, the main result of this paper is

Theorem. Let α ≥ −1/2, 1 < p <∞, and wa,b(x) = |x|a(1 + |x|)b−a. Then, there
exists a constant C such that

(8) ‖Mαfwa,b‖p,α ≤ C‖fwa,b‖p,α
if and only if

−2α+ 2

p
< a < (2α+ 2)

(
1− 1

p

)
and

2α+ 1

2
− 2α+ 2

p
< b < −2α+ 1

2
+ (2α+ 2)

(
1− 1

p

)
.

As a simple consequence, it is easy to check that, in the unweighted case a =
b = 0, we have

‖Mαf‖p,α ≤ C‖f‖p,α ⇐⇒
4(α+ 1)

2α+ 3
< p <

4(α+ 1)

2α+ 1
.

This result is in contradiction with [9, Corollary 3], which is wrong. There, it is
said that the boundedness of Mα is true for every p ∈ (1,∞).

1In the paper published in J. Funct. Anal. 242 (2007), 327–336, there are a misprint in this
formula. Between the real and the imaginary part, there appears a sign “−” instead of the
correct “+”.
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It is interesting to remark that, in a similar way as the Fourier transform is
a “complex version” of the sine and cosine transforms, the Dunkl transform is
a “complex version” of the (modified) Hankel transform. And the same happens
with its corresponding multipliers. For the Hankel transform, Herz’s classical result
determines the range of p such that the multiplier of the interval [0, 1] is a well
defined and bounded operator from Lp([0,∞), x2α+1 dx) into itself ([4]; see also [10,
13]). As expected, the same range

4(α+ 1)

2α+ 3
< p <

4(α+ 1)

2α+ 1

arises. Regarding the weighted boundedness of this multiplier, it has shown to be
useful to deal with some practical problems, as in the resolution of dual integral
equations of Titchmarsh’s type; for details, see [1].

To prove our theorem, we will find a suitable expression for the kernel of the
operator Mα. Then, we will make a clever use of the Ap theory of weights (a lot
of tricks to deal with Ap-weights can be found in [8]), and so the proof will follow.

The procedure employed here does not allow us to analyze the boundedness of
any interval of R. It is remarkable that from [11, Theorem 5.5] we can deduce that
the multiplier of the interval (0,∞) is bounded from Lp(R, dµα) into itself provided
that 1 < p <∞ and 2α+ 1 ∈ N.

2. The kernel

By (7) and (3), we have

Mαf(x) = Fα(χ[−1,1](r)Fαf(r))(−x) =

∫ 1

−1

Eα(irx)Fαf(r) dµα(r)

=

∫ 1

−1

Eα(irx)

(∫
R
Eα(−iyr)f(y) dµα(y)

)
dµα(r)

=

∫
R

(∫ 1

−1

Eα(irx)Eα(−iry) dµα(r)

)
f(y) dµα(y),

where in the last step we have used Fubini’s theorem (which is justified for f, g ∈ S,
and extended in the usual way). Then, the multiplier Mα can be written as

(9) Mαf(x) =

∫
R
Kα(x, y)f(y) dµα(y)

with kernel

(10) Kα(x, y) =

∫ 1

−1

Eα(irx)Eα(−iry) dµα(r).

In the following lemma we found a suitable expression for this kernel.

Lemma 1. Let α ≥ −1/2 and x, y ∈ R. Then, for x 6= y, we have∫ 1

−1

Eα(ixr)Eα(−iyr) dµα(r) =
1

2α+1Γ(α+ 1)

Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

i(x− y)
.

Proof. From (2), we have

Eα(ixr)ΛαEα(−iyr) = −iyEα(ixr)Eα(−iyr)

(along all the proof, the derivatives in Λα are taken with respect to r), and the
same equality holds when the pair (x, y) changes by (−y,−x), i.e.,

Eα(−iyr)ΛαEα(ixr) = ixEα(ixr)Eα(−iyr).
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Adding these identities, it follows that

i(x− y)

∫ 1

−1

Eα(ixr)Eα(−iyr) dµα(r) = I(x, y) + I(−y,−x),

with

I(x, y) =

∫ 1

−1

Eα(−iyr)ΛαEα(ixr) dµα(r).

Using (1), we can write I(x, y) = I1(x, y) + I2(x, y) with

I1(x, y) =

∫ 1

−1

Eα(−iyr) d
dr
Eα(ixr) dµα(r)

and

I2(x, y) = (2α+ 1)

∫ 1

−1

Eα(−iyr)Eα(ixr)− Eα(−ixr)
2r

dµα(r)

Applying integration by parts in I1, we get

I1(x, y) =
Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

2α+1Γ(α+ 1)

− I1(−y,−x)− (2α+ 1)

∫ 1

−1

Eα(ixr)Eα(−iyr)
r

dµα(r),

and so

I(x, y) = I1(x, y) + I2(x, y) =
Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

2α+1Γ(α+ 1)

− I1(−y,−x)− (2α+ 1)

∫ 1

−1

Eα(−iyr)Eα(ixr) + Eα(−ixr)
2r

dµα(r).

Consequently,

I(x, y) + I(−y,−x) =
Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

2α+1Γ(α+ 1)

− (2α+ 1)

∫ 1

−1

Eα(−iyr)Eα(ixr) + Eα(−ixr)
2r

dµα(r) + I2(−y,−x)

=
Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

2α+1Γ(α+ 1)

− (2α+ 1)

∫ 1

−1

Eα(ixr)Eα(iyr) + Eα(−ixr)Eα(−iyr)
2r

dµα(r)

=
Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

2α+1Γ(α+ 1)
,

where in the last step we have used that (Eα(ixr)Eα(iyr)+Eα(−ixr)Eα(−iyr))/(2r)
is an odd function in r. �

3. Proof of the theorem

3.1. Sufficient conditions. Given p ∈ (1,∞), a weight w in R is said to belong
to the Ap class if(∫

I

w(x) dx

)(∫
I

w(x)−1/(p−1) dx

)p−1

≤ C|I|p

for every interval I ⊆ R, with C independent of I. An important application of Ap
theory lies in its relation with the boundedness of the Hilbert transform

Hg(x) =

∫
R

g(y)

x− y
dy.
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Indeed, in [5] (see also [3] for further information) it is proved that

H : Lp(R, w)→ Lp(R, w) bounded ⇐⇒ w ∈ Ap.

For radial weights, it is well known that

|x|β ∈ Ap ⇐⇒ −1 < β < p− 1.

If we take Φ(x) = |x|r for x ∈ [−1, 1] and Φ(x) = |x|s for x ∈ (−∞, 1) ∪ (1,∞),

(11) Φ ∈ Ap ⇐⇒ −1 < r < p− 1 and − 1 < s < p− 1

(the intuitive behaviour is clear; see [8] for details and a proof).
In what follows, we will use C (perhaps with subindex) to denote a positive

constant independent of x or f (and all other variables), which can assume different
values in different occurrences. Moreover, for non negative functions u and v defined
on an interval, u(x) ∼ v(x) means that there exist two positive constants C1 and
C2 such that C1 ≤ u(x)/v(x) ≤ C2.

Now, let us to express Mαf in terms of the Hilbert transform to use the Ap
theory of weighs. By (9), (10) and Lemma 1, we can write

Mαf(x) =

∫
R
Kα(x, y)f(y) dµα(y)

=
1

2α+1Γ(α+ 1)

∫
R

Eα(ix)Eα(−iy)

i(x− y)
f(y) dµα(y)

− 1

2α+1Γ(α+ 1)

∫
R

Eα(−ix)Eα(iy)

i(x− y)
f(y) dµα(y)

=
1

22α+2Γ(α+ 1)2

(
T 1
α f(x)− T 2

α f(x)
)
,

with

T 1
α f(x) = Eα(ix)H

(
(Eα(−iy)/i)f(y)|y|2α+1

)
(x),

T 2
α f(x) = Eα(−ix)H

(
(Eα(iy)/i)f(y)|y|2α+1

)
(x).

Then, to establish (8), we are going to prove that there exists a constant C
independent of f ∈ Lp(R, wa,b(x)p|x|2α+1 dx) such that

‖T jα f(x)wa,b(x)‖Lp(R,|x|2α+1 dx) ≤ C‖f(x)wa,b(x)‖Lp(R,|x|2α+1 dx), j = 1, 2.

Taking g(y) = (Eα(−iy)/i)f(y)|y|2α+1, the inequality corresponding to j = 1 is
equivalent to

(12)
‖Hg(x)‖Lp(R,|Eα(ix)|pwa,b(x)p|x|2α+1 dx)

≤ C‖g(x)‖Lp(R,|Eα(−ix)|−p|x|−(2α+1)pwa,b(x)p|x|2α+1 dx);

similarly, the corresponding to j = 2 is equivalent to

(13)
‖Hg(x)‖Lp(R,|Eα(−ix)|pwa,b(x)p|x|2α+1 dx)

≤ C‖g(x)‖Lp(R,|Eα(ix)|−p|x|−(2α+1)pwa,b(x)p|x|2α+1 dx).

Let us analyze (12). Proving that there is a weight Φ ∈ Ap with

C1|Eα(ix)|pwa,b(x)p|x|2α+1 ≤ Φ(x) ≤ C2|Eα(−ix)|−p|x|−(2α+1)pwa,b(x)p|x|2α+1

will be enough.
We have wa,b(x) ∼ |x|a in [−1, 1] and wa,b(x) ∼ |x|b in (−∞,−1] ∪ [1,∞).

Moreover, from the estimates (4) and (5) it follows that, for α > −1,

|Eα(ix)| ≤ Cα, x ∈ [−1, 1],

|Eα(ix)| ≤ Cα|x|−1/2−α, x ∈ (−∞,−1] ∪ [1,∞),
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with a Cα constant depending only on α. According to these bounds, we have

|Eα(ix)|pwa,b(x)p|x|2α+1 ≤

{
C|x|ap+2α+1, if |x| ∈ (0, 1),

C|x|−p/2−αp+bp+2α+1, if |x| ∈ (1,∞),

and

|Eα(−ix)|−p|x|−(2α+1)pwa,b(x)p|x|2α+1

≥

{
C|x|−(2α+1)p+ap+2α+1 = C|x|−(2α+1)p+ap+2α+1, if |x| ∈ (0, 1),

C|x|p/2+αp−(2α+1)p+bp+2α+1 = C|x|−p/2−αp+bp+2α+1, if |x| ∈ (1,∞).

Let us try

Φ(x) =

{
|x|r, if |x| ∈ (0, 1),

|x|−p/2−αp+bp+2α+1, if |x| ∈ (1,∞).

By (11), Φ ∈ Ap will hold if

(14)


−(2α+ 1)p+ ap+ 2α+ 1 ≤ r ≤ ap+ 2α+ 1,

−1 < r < p− 1,

−1 < −p/2− αp+ bp+ 2α+ 1 < p− 1.

The third line is equivalent to

2α+ 1

2
− 2α+ 2

p
< b < −2α+ 1

2
+ (2α+ 2)

(
1− 1

p

)
,

which is the second condition of the theorem. For the inequalities in (14) involving
r, from α ≥ −1/2, it follows that −(2α + 1)p+ ap+ 2α + 1 ≤ ap+ 2α + 1. Then,
for the existence of r it is enough to show that −(2α + 1)p + ap + 2α + 1 < p − 1
and −1 < ap+ 2α+ 1; these inequalities are equivalent to

−2α+ 2

p
< a < (2α+ 2)

(
1− 1

p

)
,

the first condition of the theorem.
The study of (13) is completely similar, and so the sufficiency part of the theorem

follows.

Remark. Of course, the technique of pasting Ap-weights [8] allow to make similar
proofs for much more general weights w(x) that only to take w(x) = wa,b(x).

3.2. Necessary conditions. Let us suppose that Mαf is well defined for every
f ∈ Lp(R, wpa,b dµα) and that

‖Mαfwa,b‖p,α ≤ C‖fwa,b‖p,α.

In particular, let f be a function in the class S such that Fαf(x) = 1 for every
x ∈ [−1, 1]; it is sure that such a function exists, because Fα is an isomorphism of
S into itself and F2

αg(x) = g(−x). Then,

Mαf(x) = F−1
α (χ[−1,1])(x) =

∫ 1

−1

Eα(iyx) dµα(y).

By (6), it is clear that, as a function of y, Re(Eα(iyx)) is even and Im(Eα(iyx)) is
odd. As a consequence, for a certain constant cα 6= 0, we can write

Mαf(x) = cαx
−α
∫ 1

0

Jα(yx)yα+1 dy = cαx
−α−1Jα+1(x),

where the last integral can be easily computed (integrating the series that defines
the Bessel function, for instance).
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Thus, if Mαf(x) ∈ Lp(R, wpa,b dµα), we must have

x−α−1Jα+1(x)wa,b(x) ∈ Lp((0,∞), dµα),

i.e.,

(15)

∫ ∞
0

x(−α−1)p|Jα+1(x)|pxap(1 + |x|)(b−a)px2α+1 dx <∞.

Let us decompose this integral in (0, 1) and (1,∞). Near 0, Jα(x) ∼ xα (by (4)),
and wa,b(x) ∼ xa, so the integrability of (15) is equivalent to (−α−1)p+(α+ 1)p+
ap+ 2α+ 1 > −1 or, in other words, −(2α+ 2)/p < a.

In a similar way, near∞ we can take into account (5) and wa,b(x) ∼ xb. Then, the
integrability of (15) in (1,∞) can be reduced to (−α−1)p−p/2+bp+2α+1 < −1,
i.e., b < −(2α+ 1)/2 + (2α+ 2)(1− 1/p).

Finally, let use note that wa,bMα and w−a,−bMα are adjunct operators in the
sense that∫

R
(wa,b(x)Mαf(x))(w−a,−b(x)g(x)) dµα(x)

=

∫
R

(w−a,−b(x)Mαg(x))(wa,b(x)f(x)) dµα(x)

(for f, g ∈ S, this is true by Fubini’s theorem, and then it is extended in the usual
way). Consequently, the boundedness of Mα for p and wa,b is equivalent to its
boundedness for p′ (with 1/p + 1/p′ = 1) and w−a,−b. Thus, we get the necessary
conditions −(2α+2)/p′ < −a and −b < −(2α+1)/2+(2α+2)(1−1/p′) that, using
1/p′ = 1−1/p, can be written as a < (2α+2)(1−1/p) and (2α+1)/2−(2α+2)/p < b.

References

[1] Ó. Ciaurri, J. J. Guadalupe, M. Pérez and J. L. Varona, Solving dual integral equations on

Lebesgue spaces, Studia Math. 142 (2000), 253–267.

[2] C. F. Dunkl, Differential-difference operators associated with reflections groups, Trans. Amer.
Math. Soc. 311 (1989), 167–183.
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