A TRANSFORM INVOLVING CHEBYSHEV POLYNOMIALS AND ITS INVERSION FORMULA

ÓSCAR CIAURRI, LUIS M. NAVAS, AND JUAN L. VARONA

ABSTRACT. We define a functional analytic transform involving the Chebyshev polynomials $T_n(x)$, with an inversion formula in which the Möbius function $\mu(n)$ appears. If $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$, then given a bounded function from [-1, 1] into \mathbb{C} , or from \mathbb{C} into itself, the following inversion formula holds:

$$g(x) = \sum_{n=1}^{\infty} \frac{1}{n^s} f(T_n(x))$$

if and only if

$$f(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} g(T_n(x)).$$

Some other similar results are given.

1. INTRODUCTION AND MAIN RESULTS

If we have an arithmetical function $\alpha : \mathbb{N} \to \mathbb{R}$ (or \mathbb{C}) and a function $f : (0, \infty) \to \mathbb{R}$ (or \mathbb{C}), we can define a new function $g = \alpha \circ f$ by taking

(1)
$$g(x) = (\alpha \circ f)(x) = \sum_{n=1}^{\infty} \alpha(n) f\left(\frac{x}{n}\right), \qquad x \in (0,\infty).$$

Moreover, let us suppose that α is invertible with respect to Dirichlet convolution (this happens if and only if $\alpha(1) \neq 0$). Then, it is well known that we have the inversion formula $f = \alpha^{-1} \circ g$. A typical case is when α is a completely multiplicative function; in this case, $\alpha^{-1}(n) = \mu(n)\alpha(n)$, where $\mu(n)$ is the Möbius function. Thus, we have

$$f(x) = \sum_{n=1}^{\infty} \mu(n)\alpha(n)g\left(\frac{x}{n}\right), \qquad x \in (0,\infty)$$

(see, for instance, [1]). A common example of a completely multiplicative function is $\alpha(n) = n^{-s}$, $s \in \mathbb{C}$, which gives rise to Dirichlet series.

In this paper we present a new transform/inverse pair in which both the Chebyshev polynomials $\{T_n(x)\}_{n=1}^{\infty}$ and the Möbius function $\mu(n)$ appear. The Chebyshev polynomials satisfy many identities and orthogonal conditions, but for our purposes only the property

(2)
$$T_m(T_n(x)) = T_{mn}(x)$$

is essential. For $x \in [-1, 1]$, this formula is clear from $T_k(x) = \cos(k \arccos x)$ and, for $x \in \mathbb{C}$, it follows by analytic continuation. It is interesting to note that, up to a linear change of variable, $\{x^n\}$ and the Chebyshev polynomials are the unique families of polynomials that satisfy an identity similar to (2) (see [2, Chapter 4, Th. 4.4])

THIS PAPER HAS BEEN PUBLISHED IN: J. Math. Anal. Appl. 323 (2006), 57–62.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11A25; Secondary 33C45. Key words and phrases. Chebyshev polynomials, Möbius function, Möbius transform, Dirichlet convolution, inversion formula.

Research of the first and third authors supported by grant BFM2003-06335-C03-03 of the DGI.

for details); in particular, similar inversion formulas can be given for expansions in $\{x^n\}$ on [0, 1].

Prior to continuing, let us establish our notation. For $x \in [-1,1]$, we have $T_n(x) = \cos(n \arccos x)$ so $T_n : [-1,1] \to [-1,1]$. But we can also consider T_n both as $T_n : \mathbb{R} \to \mathbb{R}$ or $T_n : \mathbb{C} \to \mathbb{C}$. Moreover, $T_n(x) \in \mathbb{Z}[x]$, so we also have $T_n : \mathbb{Z} \to \mathbb{Z}$ and $T_n : \mathbb{Q} \to \mathbb{Q}$. Let us then use Δ to denote [-1,1], \mathbb{R} , \mathbb{C} , \mathbb{Z} , or \mathbb{Q} , accordingly. Thus, for functions f of type $f : \Delta \to \mathbb{R}$ (or \mathbb{C}), the composition $f(T_n(x))$ is well defined for every n. (Some perhaps more "esoteric" choices can be taken into account for Δ , such us $[1, \infty)$, \mathbb{N} , or the algebraic numbers.)

The main result of this paper is the following:

Theorem 1. Let $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and $\Delta = [-1, 1]$, \mathbb{R} , \mathbb{C} , \mathbb{Z} , or \mathbb{Q} . If f is a bounded function defined on Δ , then the series

(3)
$$g(x) = \sum_{n=1}^{\infty} \frac{1}{n^s} f(T_n(x)), \qquad x \in \Delta,$$

is absolutely convergent, the function g is bounded, and we can recover f as

(4)
$$f(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} g(T_n(x)), \qquad x \in \Delta.$$

Conversely, if we have a bounded function g on Δ , the function f defined as in (4) is bounded and fulfills (3).

We also study some other conditions that yield similar results. In particular, in Section 3 we give a more general approach to our inversion formula.

2. The transform and the inversion formula: proof of the main theorem

Let us begin by defining an operation \odot similar to the \circ in (1), but properly adapted to our circumstances. Given a function f on Δ and an arithmetical function $\alpha : \mathbb{N} \to \mathbb{R}$ (or \mathbb{C}), we define the transform

(5)
$$g(x) = (\alpha \odot f)(x) = \sum_{n=1}^{\infty} \alpha(n) f(T_n(x)),$$

provided that the series converges.

Let us suppose that we have another arithmetical function $\beta : \mathbb{N} \to \mathbb{R}$ (or \mathbb{C}) that is inverse to α with respect to Dirichlet convolution, i.e., $\alpha * \beta = \delta$ with $\delta(1) = 1$ and $\delta(n) = 0$ for n > 1. Let us calculate $(\beta \odot g)(x)$, at least formally, from (5). If the formal manipulations that follow are analytically justified, we can reorder series, group the terms such than nm = k, use (2), $\alpha * \beta = \delta$, and $T_1(x) = x$, so

(6)

$$(\beta \odot g)(x) = \sum_{n \in \mathbb{N}} \beta(n)(\alpha \odot f)(T_n(x))$$

$$= \sum_{n \in \mathbb{N}} \beta(n) \sum_{m \in \mathbb{N}} \alpha(m) f(T_m(T_n(x)))$$

$$= \sum_{n,m \in \mathbb{N}} \beta(n)\alpha(m) f(T_{mn}(x))$$

$$= \sum_{k \in \mathbb{N}} \left(\sum_{nm=k} \beta(n)\alpha(m)\right) f(T_k(x))$$

$$= \sum_{k \in \mathbb{N}} (\alpha * \beta)(k) f(T_k(x))$$

$$= f(x).$$

Thus, we have found the inversion formula. It remains to determine conditions under which the series that define $(\alpha \odot f)(x)$ and $(\beta \odot g)(x)$ converge and the manipulations in (6) can be justified.

Some simple assumptions guaranteeing this are the following:

Proposition 1. Let α and β be two arithmetical functions related by $\alpha * \beta = \delta$, and such that $\sum_{n=1}^{\infty} |\alpha(n)| < \infty$ and $\sum_{n=1}^{\infty} |\beta(n)| < \infty$; let Δ be [-1,1], \mathbb{R} , \mathbb{C} , \mathbb{Z} , or \mathbb{Q} . If f is a bounded function defined on Δ , then the series

(7)
$$g(x) = \sum_{n=1}^{\infty} \alpha(n) f(T_n(x)), \qquad x \in \Delta,$$

is absolutely convergent, the function g is bounded by

(8)
$$\sup_{x \in \Delta} |g(x)| \le \left(\sum_{n=1}^{\infty} |\alpha(n)|\right) \sup_{x \in \Delta} |f(x)|,$$

and we can recover f as

(9)
$$f(x) = \sum_{n=1}^{\infty} \beta(n)g(T_n(x)), \qquad x \in \Delta.$$

Conversely, if we have a bounded function g on Δ , the function f defined as in (9) is bounded in a similar way and fulfills (7).

With this, we have,

Proof of Theorem 1. In the proposition, take $\alpha(n) = \alpha_s(n) = n^{-s}$, which is a completely multiplicative function whose inverse is $\alpha^{-1}(n) = \mu(n)n^{-s}$. As $\operatorname{Re}(s) > 1$, it follows that $\sum_{n=1}^{\infty} |a(n)| = \sum_{n=1}^{\infty} |n^{-s}| = \zeta(\operatorname{Re}(s))$, where $\zeta(s)$ denote the Riemann's zeta function. The inversion part is similar.

Another example. Let us consider the Liouville function $\lambda(n)$, defined by

$$\lambda(n) = \begin{cases} 1, & \text{if } n = 1, \\ (-1)^{a_1 + \dots + a_k}, & \text{if } n = p_1^{a_1} \cdots p_k^{a_k} \end{cases}$$

(where $p_1^{a_1} \cdots p_k^{a_k}$ denotes the decomposition of n into prime factors). $\lambda(n)$ is a completely multiplicative whose inverse function is $\lambda^{-1}(n) = \mu(n)\lambda(n) = |\mu(n)|$. Then, in a similar way to Theorem 1, for $\operatorname{Re}(s) > 1$ and bounded functions, we have

$$g(x) = \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} f(T_n(x)), \qquad x \in \Delta,$$

if and only if

$$f(x) = \sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^s} g(T_n(x)), \qquad x \in \Delta.$$

3. A more general approach

The assumptions in Proposition 1 are very demanding. Here we study other general conditions under which the transformation formula holds.

For an arithmetical function ρ , we say that $f \in L(\Delta, \rho)$ if

$$\sum_{n=1}^{\infty} |\rho(n)f(T_n(x))| < \infty \quad \forall x \in \Delta$$

(recall that we are using Δ to denote [-1,1], \mathbb{R} , \mathbb{C} , \mathbb{Z} or \mathbb{Q}). In particular, $f \in L(\Delta, \alpha)$ means that (5) converges absolutely for every $x \in \Delta$.

Once again we use the arithmetical function δ defined by $\delta(1) = 1$ and $\delta(n) = 0$ for all n > 1. The relation $\delta \odot f = f$ follows easily from $T_1(x) = x$.

Analogously to the mixed associative property between \circ and Dirichlet convolution *, we have the following version between \odot and *. The proof is straightforward, because the absolute convergence allows the rearrangement of the sums.

Proposition 2. Let α, β be two arithmetical functions, $f : \Delta \to \mathbb{R}$ (or \mathbb{C}), and suppose at a given $x \in \Delta$

(10)
$$\sum_{n,m\in\mathbb{N}} |\alpha(n)\beta(m)f(T_{nm}(x))| = \sum_{k\in\mathbb{N}} (|\alpha|*|\beta|)(k)|f(T_k(x))| < \infty.$$

Then, all the series involved in the definitions of $(\alpha \odot (\beta \odot f))(x)$ and $((\alpha * \beta) \odot f)(x)$ are absolutely convergent, and

$$(\alpha \odot (\beta \odot f))(x) = ((\alpha * \beta) \odot f)(x).$$

In particular, if $f \in L(\Delta, |\alpha| * |\beta|)$, then $\alpha \odot (\beta \odot f) = (\alpha * \beta) \odot f$.

In this general context, the inversion formula becomes

Proposition 3. Let α be an arithmetical function with Dirichlet convolution inverse α^{-1} . Given a function $f : \Delta \to \mathbb{R}$ (or \mathbb{C}), with $f \in L(\Delta, |\alpha| * |\alpha^{-1}|)$, the transform $g(x) = (\alpha \odot f)(x)$ is defined for all $x \in \Delta$. Moreover, if $g \in L(\Delta, |\alpha| * |\alpha^{-1}|)$, then $f(x) = (\alpha^{-1} \odot g)(x)$ for all $x \in \Delta$.

Proof. By Proposition 2,

$$\alpha^{-1} \odot g = \alpha^{-1} \odot (\alpha \odot f) = (\alpha^{-1} * \alpha) \odot f = \delta \odot f = f.$$

For the second part, recall that $|\alpha| * |\alpha^{-1}| = |\alpha^{-1}| * |\alpha|$.

In general, it does not seem easy to check that the condition $f \in L(\Delta, |\alpha| * |\alpha^{-1}|)$ implies $g \in L(\Delta, |\alpha| * |\alpha^{-1}|)$; this—if true—would mean that the inversion formula $\alpha^{-1} \odot g$ is defined without this extra hypothesis.

The following special case of Proposition 3 has special interest:

Proposition 4. Let α be a completely multiplicative arithmetical function, $f : \Delta \rightarrow \mathbb{R}$ (or \mathbb{C}), and suppose that $f \in L(\Delta, \alpha d)$ (where d(n) is the number of divisors of n). Then

$$g(x) = \sum_{n \in \mathbb{N}} \alpha(n) f(T_n(x))$$

is defined for all $x \in \Delta$. Moreover, if $g \in L(\Delta, \alpha d)$, then

$$f(x) = \sum_{n \in \mathbb{N}} \mu(n) \alpha(n) g(T_n(x))$$

for all $x \in \Delta$.

Proof. If α is completely multiplicative, then $\alpha^{-1}(n) = \mu(n)\alpha(n)$. Moreover,

$$\begin{aligned} (|\alpha|*|\alpha^{-1}|)(k) &= \sum_{nm=k} |\alpha(n)\mu(m)\alpha(m)| \\ &\leq \sum_{nm=k} |\alpha(nm)| = d(k)|\alpha|(k) = |d(k)\alpha(k)|, \end{aligned}$$

so the hypothesis $f \in L(\Delta, \alpha d)$ allows us to apply Proposition 3. The same holds with respect to $g \in L(\Delta, \alpha d)$.

Remark. As commented previously, it does not seem easy to check if $g \in L(\Delta, \alpha d)$ given that $f \in L(\Delta, \alpha d)$. However, we claim that something weaker is true:

$$f \in L(\Delta, \alpha d^2) \ \Rightarrow \ g \in L(\Delta, \alpha d)$$

To prove this, take into account that $d(n) \leq d(k)$ when $n \mid k$, and notice also that $|\alpha|$ is completely multiplicative. Thus

$$\begin{split} \sum_{n \in \mathbb{N}} d(n) |\alpha(n)g(T_n(x))| &= \sum_{n \in \mathbb{N}} d(n) |\alpha(n)| \left| \sum_{m \in \mathbb{N}} \alpha(m)f(T_m(T_n(x))) \right| \\ &\leq \sum_{k \in \mathbb{N}} d(k) \left(\sum_{nm=k} |\alpha(n)\alpha(m)| \right) |f(T_k(x))| \\ &= \sum_{k \in \mathbb{N}} d(k)^2 |\alpha(k)| |f(T_k(x))| < \infty \end{split}$$

since $f \in L(\Delta, \alpha d^2)$, so the claim is proved. Actually, the extra factor d(n) is not very troublesome, because $d(n) = o(n^r)$ for every r > 0 (see [1, Section 18.1, Theorem 15, p. 260]).

References

- G. M. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth ed., Oxford Univ. Press, 1979.
- [2] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second ed., Wiley, 1990.

Departamento de Matemáticas y Computación, Universidad de La Rioja, Calle Luis de Ulloa s/n, 26004 Logroño, Spain

 $E\text{-}mail\ address:$ oscar.ciaurri@dmc.unirioja.es

Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merce
d1-4,37008Salamanca, Spain

 $E\text{-}mail\ address: \texttt{navasQusal.es}$

Departamento de Matemáticas y Computación, Universidad de La Rioja, Calle Luis de Ulloa s/n, 26004 Logroño, Spain

 $E\text{-}mail\ address:$ jvarona@dmc.unirioja.es

 $\mathit{URL}: \texttt{http://www.unirioja.es/dptos/dmc/jvarona/welcome.html}$