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Abstract. We define a functional analytic transform involving the Chebyshev
polynomials Tn(x), with an inversion formula in which the Möbius function

µ(n) appears. If s ∈ C with Re(s) > 1, then given a bounded function from

[−1, 1] into C, or from C into itself, the following inversion formula holds:

g(x) =

∞X
n=1

1

ns
f(Tn(x))

if and only if

f(x) =

∞X
n=1

µ(n)

ns
g(Tn(x)).

Some other similar results are given.

1. Introduction and main results

If we have an arithmetical function α : N → R (or C) and a function f : (0,∞) →
R (or C), we can define a new function g = α ◦ f by taking

(1) g(x) = (α ◦ f)(x) =
∞∑

n=1

α(n)f
(x

n

)
, x ∈ (0,∞).

Moreover, let us suppose that α is invertible with respect to Dirichlet convolution
(this happens if and only if α(1) 6= 0). Then, it is well known that we have the
inversion formula f = α−1◦g. A typical case is when α is a completely multiplicative
function; in this case, α−1(n) = µ(n)α(n), where µ(n) is the Möbius function. Thus,
we have

f(x) =
∞∑

n=1

µ(n)α(n)g
(x

n

)
, x ∈ (0,∞)

(see, for instance, [1]). A common example of a completely multiplicative function
is α(n) = n−s, s ∈ C, which gives rise to Dirichlet series.

In this paper we present a new transform/inverse pair in which both the Cheby-
shev polynomials {Tn(x)}∞n=1 and the Möbius function µ(n) appear. The Cheby-
shev polynomials satisfy many identities and orthogonal conditions, but for our
purposes only the property

(2) Tm(Tn(x)) = Tmn(x)

is essential. For x ∈ [−1, 1], this formula is clear from Tk(x) = cos(k arccos x) and,
for x ∈ C, it follows by analytic continuation. It is interesting to note that, up to a
linear change of variable, {xn} and the Chebyshev polynomials are the unique fam-
ilies of polynomials that satisfy an identity similar to (2) (see [2, Chapter 4, Th. 4.4]
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2 ÓSCAR CIAURRI, LUIS M. NAVAS, AND JUAN L. VARONA

for details); in particular, similar inversion formulas can be given for expansions in
{xn} on [0, 1].

Prior to continuing, let us establish our notation. For x ∈ [−1, 1], we have
Tn(x) = cos(n arccos x) so Tn : [−1, 1] → [−1, 1]. But we can also consider Tn

both as Tn : R → R or Tn : C → C. Moreover, Tn(x) ∈ Z[x], so we also have
Tn : Z → Z and Tn : Q → Q. Let us then use ∆ to denote [−1, 1], R, C, Z, or Q,
accordingly. Thus, for functions f of type f : ∆ → R (or C), the composition
f(Tn(x)) is well defined for every n. (Some perhaps more “esoteric” choices can be
taken into account for ∆, such us [1,∞), N, or the algebraic numbers.)

The main result of this paper is the following:

Theorem 1. Let s ∈ C with Re(s) > 1 and ∆ = [−1, 1], R, C, Z, or Q. If f is a
bounded function defined on ∆, then the series

(3) g(x) =
∞∑

n=1

1
ns

f(Tn(x)), x ∈ ∆,

is absolutely convergent, the function g is bounded, and we can recover f as

(4) f(x) =
∞∑

n=1

µ(n)
ns

g(Tn(x)), x ∈ ∆.

Conversely, if we have a bounded function g on ∆, the function f defined as in (4)
is bounded and fulfills (3).

We also study some other conditions that yield similar results. In particular, in
Section 3 we give a more general approach to our inversion formula.

2. The transform and the inversion formula: proof of the main
theorem

Let us begin by defining an operation � similar to the ◦ in (1), but properly
adapted to our circumstances. Given a function f on ∆ and an arithmetical function
α : N → R (or C), we define the transform

(5) g(x) = (α� f)(x) =
∞∑

n=1

α(n)f(Tn(x)),

provided that the series converges.
Let us suppose that we have another arithmetical function β : N → R (or C) that

is inverse to α with respect to Dirichlet convolution, i.e., α ∗ β = δ with δ(1) = 1
and δ(n) = 0 for n > 1. Let us calculate (β � g)(x), at least formally, from (5).
If the formal manipulations that follow are analytically justified, we can reorder
series, group the terms such than nm = k, use (2), α ∗ β = δ, and T1(x) = x, so

(6)

(β � g)(x) =
∑
n∈N

β(n)(α� f)(Tn(x))

=
∑
n∈N

β(n)
∑
m∈N

α(m)f(Tm(Tn(x)))

=
∑

n,m∈N
β(n)α(m)f(Tmn(x))

=
∑
k∈N

( ∑
nm=k

β(n)α(m)

)
f(Tk(x))

=
∑
k∈N

(α ∗ β)(k)f(Tk(x))

= f(x).
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Thus, we have found the inversion formula. It remains to determine conditions
under which the series that define (α � f)(x) and (β � g)(x) converge and the
manipulations in (6) can be justified.

Some simple assumptions guaranteeing this are the following:

Proposition 1. Let α and β be two arithmetical functions related by α ∗ β = δ,
and such that

∑∞
n=1 |α(n)| < ∞ and

∑∞
n=1 |β(n)| < ∞; let ∆ be [−1, 1], R, C, Z,

or Q. If f is a bounded function defined on ∆, then the series

(7) g(x) =
∞∑

n=1

α(n)f(Tn(x)), x ∈ ∆,

is absolutely convergent, the function g is bounded by

(8) sup
x∈∆

|g(x)| ≤
( ∞∑

n=1

|α(n)|
)

sup
x∈∆

|f(x)|,

and we can recover f as

(9) f(x) =
∞∑

n=1

β(n)g(Tn(x)), x ∈ ∆.

Conversely, if we have a bounded function g on ∆, the function f defined as in (9)
is bounded in a similar way and fulfills (7).

With this, we have,

Proof of Theorem 1. In the proposition, take α(n) = αs(n) = n−s, which is a
completely multiplicative function whose inverse is α−1(n) = µ(n)n−s. As Re(s) >
1, it follows that

∑∞
n=1 |a(n)| =

∑∞
n=1 |n−s| = ζ(Re(s)), where ζ(s) denote the

Riemann’s zeta function. The inversion part is similar. �

Another example. Let us consider the Liouville function λ(n), defined by

λ(n) =

{
1, if n = 1,

(−1)a1+···+ak , if n = pa1
1 · · · pak

k

(where pa1
1 · · · pak

k denotes the decomposition of n into prime factors). λ(n) is a
completely multiplicative whose inverse function is λ−1(n) = µ(n)λ(n) = |µ(n)|.
Then, in a similar way to Theorem 1, for Re(s) > 1 and bounded functions, we
have

g(x) =
∞∑

n=1

λ(n)
ns

f(Tn(x)), x ∈ ∆,

if and only if

f(x) =
∞∑

n=1

|µ(n)|
ns

g(Tn(x)), x ∈ ∆.

3. A more general approach

The assumptions in Proposition 1 are very demanding. Here we study other
general conditions under which the transformation formula holds.

For an arithmetical function ρ, we say that f ∈ L(∆, ρ) if
∞∑

n=1

|ρ(n)f(Tn(x))| < ∞ ∀x ∈ ∆

(recall that we are using ∆ to denote [−1, 1], R, C, Z or Q). In particular, f ∈
L(∆, α) means that (5) converges absolutely for every x ∈ ∆.
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Once again we use the arithmetical function δ defined by δ(1) = 1 and δ(n) = 0
for all n > 1. The relation δ � f = f follows easily from T1(x) = x.

Analogously to the mixed associative property between ◦ and Dirichlet convolu-
tion ∗, we have the following version between � and ∗. The proof is straightforward,
because the absolute convergence allows the rearrangement of the sums.

Proposition 2. Let α, β be two arithmetical functions, f : ∆ → R (or C), and
suppose at a given x ∈ ∆

(10)
∑

n,m∈N
|α(n)β(m)f(Tnm(x))| =

∑
k∈N

(|α| ∗ |β|)(k)|f(Tk(x))| < ∞.

Then, all the series involved in the definitions of (α�(β�f))(x) and ((α∗β)�f)(x)
are absolutely convergent, and

(α� (β � f))(x) = ((α ∗ β)� f)(x).

In particular, if f ∈ L(∆, |α| ∗ |β|), then α� (β � f) = (α ∗ β)� f .

In this general context, the inversion formula becomes

Proposition 3. Let α be an arithmetical funcion with Dirichlet convolution in-
verse α−1. Given a function f : ∆ → R (or C), with f ∈ L(∆, |α|∗|α−1|), the trans-
form g(x) = (α� f)(x) is defined for all x ∈ ∆. Moreover, if g ∈ L(∆, |α| ∗ |α−1|),
then f(x) = (α−1 � g)(x) for all x ∈ ∆.

Proof. By Proposition 2,

α−1 � g = α−1 � (α� f) = (α−1 ∗ α)� f = δ � f = f.

For the second part, recall that |α| ∗ |α−1| = |α−1| ∗ |α|. �

In general, it does not seem easy to check that the condition f ∈ L(∆, |α|∗|α−1|)
implies g ∈ L(∆, |α| ∗ |α−1|); this—if true—would mean that the inversion formula
α−1 � g is defined without this extra hypothesis.

The following special case of Proposition 3 has special interest:

Proposition 4. Let α be a completely multiplicative arithmetical function, f : ∆ →
R (or C), and suppose that f ∈ L(∆, αd) (where d(n) is the number of divisors of n).
Then

g(x) =
∑
n∈N

α(n)f(Tn(x))

is defined for all x ∈ ∆. Moreover, if g ∈ L(∆, αd), then

f(x) =
∑
n∈N

µ(n)α(n)g(Tn(x))

for all x ∈ ∆.

Proof. If α is completely multiplicative, then α−1(n) = µ(n)α(n). Moreover,

(|α| ∗ |α−1|)(k) =
∑

nm=k

|α(n)µ(m)α(m)|

≤
∑

nm=k

|α(nm)| = d(k)|α|(k) = |d(k)α(k)|,

so the hypothesis f ∈ L(∆, αd) allows us to apply Proposition 3. The same holds
with respect to g ∈ L(∆, αd). �
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Remark. As commented previously, it does not seem easy to check if g ∈ L(∆, αd)
given that f ∈ L(∆, αd). However, we claim that something weaker is true:

f ∈ L(∆, αd2) ⇒ g ∈ L(∆, αd).

To prove this, take into account that d(n) ≤ d(k) when n | k, and notice also that
|α| is completely multiplicative. Thus∑

n∈N
d(n)|α(n)g(Tn(x))| =

∑
n∈N

d(n)|α(n)|

∣∣∣∣∣∑
m∈N

α(m)f(Tm(Tn(x)))

∣∣∣∣∣
≤
∑
k∈N

d(k)

( ∑
nm=k

|α(n)α(m)|

)
|f(Tk(x))|

=
∑
k∈N

d(k)2|α(k)||f(Tk(x))| < ∞

since f ∈ L(∆, αd2), so the claim is proved. Actually, the extra factor d(n) is
not very troublesome, because d(n) = o(nr) for every r > 0 (see [1, Section 18.1,
Theorem 15, p. 260]).
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