A transform involving Chebyshev polynomials and its inversion formula

Óscar Ciaurri ${ }^{\mathrm{a}, 1}$, Luis M. Navas ${ }^{\mathrm{b}}$, Juan L. Varona ${ }^{\mathrm{a}, *, 1}$
${ }^{\text {a }}$ Departamento de Matemáticas y Computación, Universidad de La Rioja, Calle Luis de Ulloa s / n, 26004 Logroño, Spain
${ }^{\text {b }}$ Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain Received 9 March 2005

Available online 10 November 2005
Submitted by B.C. Berndt

Abstract

We define a functional analytic transform involving the Chebyshev polynomials $T_{n}(x)$, with an inversion formula in which the Möbius function $\mu(n)$ appears. If $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$, then given a bounded function from $[-1,1]$ into \mathbb{C}, or from \mathbb{C} into itself, the following inversion formula holds:

$$
g(x)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} f\left(T_{n}(x)\right)
$$

if and only if

$$
f(x)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} g\left(T_{n}(x)\right) .
$$

Some other similar results are given.
© 2005 Elsevier Inc. All rights reserved.
Keywords: Chebyshev polynomials; Möbius function; Möbius transform; Dirichlet convolution; Inversion formula

[^0]
1. Introduction and main results

If we have an arithmetical function $\alpha: \mathbb{N} \rightarrow \mathbb{R}($ or $\mathbb{C})$ and a function $f:(0, \infty) \rightarrow \mathbb{R}($ or $\mathbb{C})$, we can define a new function $g=\alpha \circ f$ by taking

$$
\begin{equation*}
g(x)=(\alpha \circ f)(x)=\sum_{n=1}^{\infty} \alpha(n) f\left(\frac{x}{n}\right), \quad x \in(0, \infty) . \tag{1}
\end{equation*}
$$

Moreover, let us suppose that α is invertible with respect to Dirichlet convolution (this happens if and only if $\alpha(1) \neq 0)$. Then, it is well known that we have the inversion formula $f=\alpha^{-1} \circ g$. A typical case is when α is a completely multiplicative function; in this case $\alpha^{-1}(n)=\mu(n) \alpha(n)$, where $\mu(n)$ is the Möbius function. Thus, we have

$$
f(x)=\sum_{n=1}^{\infty} \mu(n) \alpha(n) g\left(\frac{x}{n}\right), \quad x \in(0, \infty)
$$

(see, for instance, [1]). A common example of a completely multiplicative function is $\alpha(n)=n^{-s}$, $s \in \mathbb{C}$, which gives rise to Dirichlet series.

In this paper we present a new transform/inverse pair in which both the Chebyshev polynomials $\left\{T_{n}(x)\right\}_{n=1}^{\infty}$ and the Möbius function $\mu(n)$ appear. The Chebyshev polynomials satisfy many identities and orthogonal conditions, but for our purposes only the property

$$
\begin{equation*}
T_{m}\left(T_{n}(x)\right)=T_{m n}(x) \tag{2}
\end{equation*}
$$

is essential. For $x \in[-1,1]$, this formula is clear from $T_{k}(x)=\cos (k \arccos x)$ and, for $x \in \mathbb{C}$, it follows by analytic continuation. It is interesting to note that, up to a linear change of variable, $\left\{x^{n}\right\}$ and the Chebyshev polynomials are the unique families of polynomials that satisfy an identity similar to (2) (see [2, Chapter 4, Theorem 4.4] for details); in particular, similar inversion formulas can be given for expansions in $\left\{x^{n}\right\}$ on $[0,1]$.

Prior to continuing, let us establish our notation. For $x \in[-1,1]$, we have $T_{n}(x)=$ $\cos (n \arccos x)$ so $T_{n}:[-1,1] \rightarrow[-1,1]$. But we can also consider T_{n} both as $T_{n}: \mathbb{R} \rightarrow \mathbb{R}$ or $T_{n}: \mathbb{C} \rightarrow \mathbb{C}$. Moreover, $T_{n}(x) \in \mathbb{Z}[x]$, so we also have $T_{n}: \mathbb{Z} \rightarrow \mathbb{Z}$ and $T_{n}: \mathbb{Q} \rightarrow \mathbb{Q}$. Let us then use Δ to denote $[-1,1], \mathbb{R}, \mathbb{C}, \mathbb{Z}$, or \mathbb{Q}, accordingly. Thus, for functions f of type $f: \Delta \rightarrow \mathbb{R}$ (or \mathbb{C}), the composition $f\left(T_{n}(x)\right)$ is well defined for every n. (Some perhaps more "esoteric" choices can be taken into account for Δ, such as $[1, \infty), \mathbb{N}$, or the algebraic numbers.)

The main result of this paper is the following:
Theorem 1. Let $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ and $\Delta=[-1,1], \mathbb{R}, \mathbb{C}, \mathbb{Z}$, or \mathbb{Q}. If f is a bounded function defined on Δ, then the series

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} f\left(T_{n}(x)\right), \quad x \in \Delta, \tag{3}
\end{equation*}
$$

is absolutely convergent, the function g is bounded, and we can recover f as

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} g\left(T_{n}(x)\right), \quad x \in \Delta . \tag{4}
\end{equation*}
$$

Conversely, if we have a bounded function g on Δ, the function f defined as in (4) is bounded and fulfills (3).

We also study some other conditions that yield similar results. In particular, in Section 3 we give a more general approach to our inversion formula.

2. The transform and the inversion formula: Proof of the main theorem

Let us begin by defining an operation \odot similar to the \circ in (1), but properly adapted to our circumstances. Given a function f on Δ and an arithmetical function $\alpha: \mathbb{N} \rightarrow \mathbb{R}$ (or \mathbb{C}), we define the transform

$$
\begin{equation*}
g(x)=(\alpha \odot f)(x)=\sum_{n=1}^{\infty} \alpha(n) f\left(T_{n}(x)\right) \tag{5}
\end{equation*}
$$

provided that the series converges.
Let us suppose that we have another arithmetical function $\beta: \mathbb{N} \rightarrow \mathbb{R}$ (or \mathbb{C}) that is inverse to α with respect to Dirichlet convolution, i.e., $\alpha * \beta=\delta$ with $\delta(1)=1$ and $\delta(n)=0$ for $n>1$. Let us calculate $(\beta \odot g)(x)$, at least formally, from (5). If the formal manipulations that follow are analytically justified, we can reorder series, group the terms such than $n m=k$, use (2), $\alpha * \beta=\delta$, and $T_{1}(x)=x$, so

$$
\begin{align*}
(\beta \odot g)(x) & =\sum_{n \in \mathbb{N}} \beta(n)(\alpha \odot f)\left(T_{n}(x)\right) \\
& =\sum_{n \in \mathbb{N}} \beta(n) \sum_{m \in \mathbb{N}} \alpha(m) f\left(T_{m}\left(T_{n}(x)\right)\right) \\
& =\sum_{n, m \in \mathbb{N}} \beta(n) \alpha(m) f\left(T_{m n}(x)\right) \\
& =\sum_{k \in \mathbb{N}}\left(\sum_{n m=k} \beta(n) \alpha(m)\right) f\left(T_{k}(x)\right) \\
& =\sum_{k \in \mathbb{N}}(\alpha * \beta)(k) f\left(T_{k}(x)\right) \\
& =f(x) \tag{6}
\end{align*}
$$

Thus, we have found the inversion formula. It remains to determine conditions under which the series that define $(\alpha \odot f)(x)$ and $(\beta \odot g)(x)$ converge and the manipulations in (6) can be justified.

Some simple assumptions guaranteeing this are the following:
Proposition 1. Let α and β be two arithmetical functions related by $\alpha * \beta=\delta$, and such that $\sum_{n=1}^{\infty}|\alpha(n)|<\infty$ and $\sum_{n=1}^{\infty}|\beta(n)|<\infty$; let Δ be $[-1,1], \mathbb{R}, \mathbb{C}, \mathbb{Z}$, or \mathbb{Q}. If f is a bounded function defined on Δ, then the series

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} \alpha(n) f\left(T_{n}(x)\right), \quad x \in \Delta \tag{7}
\end{equation*}
$$

is absolutely convergent, the function g is bounded by

$$
\begin{equation*}
\sup _{x \in \Delta}|g(x)| \leqslant\left(\sum_{n=1}^{\infty}|\alpha(n)|\right) \sup _{x \in \Delta}|f(x)| \tag{8}
\end{equation*}
$$

and we can recover f as

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \beta(n) g\left(T_{n}(x)\right), \quad x \in \Delta \tag{9}
\end{equation*}
$$

Conversely, if we have a bounded function g on Δ, the function f defined as in (9) is bounded in a similar way and fulfills (7).

With this, we have
Proof of Theorem 1. In the proposition, take $\alpha(n)=\alpha_{s}(n)=n^{-s}$, which is a completely multiplicative function whose inverse is $\alpha^{-1}(n)=\mu(n) n^{-s}$. As $\operatorname{Re}(s)>1$, it follows that $\sum_{n=1}^{\infty}|a(n)|=\sum_{n=1}^{\infty}\left|n^{-s}\right|=\zeta(\operatorname{Re}(s))$, where $\zeta(s)$ denote the Riemann's zeta function. The inversion part is similar.

Another example. Let us consider the Liouville function $\lambda(n)$, defined by

$$
\lambda(n)= \begin{cases}1, & \text { if } n=1, \\ (-1)^{a_{1}+\cdots+a_{k}}, & \text { if } n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}\end{cases}
$$

(where $p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ denotes the decomposition of n into prime factors). $\lambda(n)$ is completely multiplicative whose inverse function is $\lambda^{-1}(n)=\mu(n) \lambda(n)=|\mu(n)|$. Then, in a similar way to Theorem 1, for $\operatorname{Re}(s)>1$ and bounded functions, we have

$$
g(x)=\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}} f\left(T_{n}(x)\right), \quad x \in \Delta
$$

if and only if

$$
f(x)=\sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^{s}} g\left(T_{n}(x)\right), \quad x \in \Delta .
$$

3. A more general approach

The assumptions in Proposition 1 are very demanding. Here we study other general conditions under which the transformation formula holds.

For an arithmetical function ρ, we say that $f \in L(\Delta, \rho)$ if

$$
\sum_{n=1}^{\infty}\left|\rho(n) f\left(T_{n}(x)\right)\right|<\infty, \quad \forall x \in \Delta
$$

(recall that we are using Δ to denote $[-1,1], \mathbb{R}, \mathbb{C}, \mathbb{Z}$ or $\mathbb{Q})$. In particular, $f \in L(\Delta, \alpha)$ means that (5) converges absolutely for every $x \in \Delta$.

Once again we use the arithmetical function δ defined by $\delta(1)=1$ and $\delta(n)=0$ for all $n>1$. The relation $\delta \odot f=f$ follows easily from $T_{1}(x)=x$.

Analogously to the mixed associative property between \circ and Dirichlet convolution $*$, we have the following version between \odot and $*$. The proof is straightforward, because the absolute convergence allows the rearrangement of the sums.

Proposition 2. Let α, β be two arithmetical functions, $f: \Delta \rightarrow \mathbb{R}$ (or \mathbb{C}), and suppose at a given $x \in \Delta$,

$$
\begin{equation*}
\sum_{n, m \in \mathbb{N}}\left|\alpha(n) \beta(m) f\left(T_{n m}(x)\right)\right|=\sum_{k \in \mathbb{N}}(|\alpha| *|\beta|)(k)\left|f\left(T_{k}(x)\right)\right|<\infty . \tag{10}
\end{equation*}
$$

Then, all the series involved in the definitions of $(\alpha \odot(\beta \odot f))(x)$ and $((\alpha * \beta) \odot f)(x)$ are absolutely convergent and

$$
(\alpha \odot(\beta \odot f))(x)=((\alpha * \beta) \odot f)(x)
$$

In particular, if $f \in L(\Delta,|\alpha| *|\beta|)$, then $\alpha \odot(\beta \odot f)=(\alpha * \beta) \odot f$.
In this general context, the inversion formula becomes
Proposition 3. Let α be an arithmetical function with Dirichlet convolution inverse α^{-1}. Given a function $f: \Delta \rightarrow \mathbb{R}(\operatorname{or} \mathbb{C})$, with $f \in L\left(\Delta,|\alpha| *\left|\alpha^{-1}\right|\right)$, the transform $g(x)=(\alpha \odot f)(x)$ is defined for all $x \in \Delta$. Moreover, if $g \in L\left(\Delta,|\alpha| *\left|\alpha^{-1}\right|\right)$, then $f(x)=\left(\alpha^{-1} \odot g\right)(x)$ for all $x \in \Delta$.

Proof. By Proposition 2,

$$
\alpha^{-1} \odot g=\alpha^{-1} \odot(\alpha \odot f)=\left(\alpha^{-1} * \alpha\right) \odot f=\delta \odot f=f
$$

For the second part, recall that $|\alpha| *\left|\alpha^{-1}\right|=\left|\alpha^{-1}\right| *|\alpha|$.
In general, it does not seem easy to check that the condition $f \in L\left(\Delta,|\alpha| *\left|\alpha^{-1}\right|\right)$ implies $g \in L\left(\Delta,|\alpha| *\left|\alpha^{-1}\right|\right)$; this-if true-would mean that the inversion formula $\alpha^{-1} \odot g$ is defined without this extra hypothesis.

The following special case of Proposition 3 has special interest:
Proposition 4. Let α be a completely multiplicative arithmetical function, $f: \Delta \rightarrow \mathbb{R}$ (or \mathbb{C}), and suppose that $f \in L(\Delta, \alpha d)$ (where $d(n)$ is the number of divisors of n). Then

$$
g(x)=\sum_{n \in \mathbb{N}} \alpha(n) f\left(T_{n}(x)\right)
$$

is defined for all $x \in \Delta$. Moreover, if $g \in L(\Delta, \alpha d)$, then

$$
f(x)=\sum_{n \in \mathbb{N}} \mu(n) \alpha(n) g\left(T_{n}(x)\right)
$$

for all $x \in \Delta$.
Proof. If α is completely multiplicative, then $\alpha^{-1}(n)=\mu(n) \alpha(n)$. Moreover,

$$
\left(|\alpha| *\left|\alpha^{-1}\right|\right)(k)=\sum_{n m=k}|\alpha(n) \mu(m) \alpha(m)| \leqslant \sum_{n m=k}|\alpha(n m)|=d(k)|\alpha|(k)=|d(k) \alpha(k)|,
$$

so the hypothesis $f \in L(\Delta, \alpha d)$ allows us to apply Proposition 3. The same holds with respect to $g \in L(\Delta, \alpha d)$.

Remark. As commented previously, it does not seem easy to check if $g \in L(\Delta, \alpha d)$ given that $f \in L(\Delta, \alpha d)$. However, we claim that something weaker is true:

$$
f \in L\left(\Delta, \alpha d^{2}\right) \quad \Rightarrow \quad g \in L(\Delta, \alpha d)
$$

To prove this, take into account that $d(n) \leqslant d(k)$ when $n \mid k$, and notice also that $|\alpha|$ is completely multiplicative. Thus

$$
\begin{aligned}
\sum_{n \in \mathbb{N}} d(n)\left|\alpha(n) g\left(T_{n}(x)\right)\right| & =\sum_{n \in \mathbb{N}} d(n)|\alpha(n)|\left|\sum_{m \in \mathbb{N}} \alpha(m) f\left(T_{m}\left(T_{n}(x)\right)\right)\right| \\
& \leqslant \sum_{k \in \mathbb{N}} d(k)\left(\sum_{n m=k}|\alpha(n) \alpha(m)|\right)\left|f\left(T_{k}(x)\right)\right| \\
& =\sum_{k \in \mathbb{N}} d(k)^{2}|\alpha(k)|\left|f\left(T_{k}(x)\right)\right|<\infty
\end{aligned}
$$

since $f \in L\left(\Delta, \alpha d^{2}\right)$, so the claim is proved. Actually, the extra factor $d(n)$ is not very troublesome, because $d(n)=o\left(n^{r}\right)$ for every $r>0$ (see [1, Section 18.1, Theorem 315, p. 260]).

References

[1] G.M. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, fifth ed., Oxford Univ. Press, 1979.
[2] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second ed., Wiley, 1990.

[^0]: * Corresponding author.

 E-mail addresses: oscar.ciaurri@dmc.unirioja.es (Ó. Ciaurri), navas@usal.es (L.M. Navas), jvarona@dmc.unirioja.es (J.L. Varona).

 URL: http://www.unirioja.es/dptos/dmc/jvarona/welcome.html (J.L. Varona).
 ${ }^{1}$ Research of the author supported by grant BFM2003-06335-C03-03 of the DGI.

