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Abstract. Let Jν be the Bessel function of order ν. For α > −1, the
functions x−α−1Jα+2n+1(x), n = 0, 1, 2 . . . , form an orthogonal system in

L2(x2α+1 dx), but the span of such functions is not dense in this space. For

a function f , let Sα
k f denote the kth partial sum of the Fourier-Neumann

series of f . In this paper we provide the minimal conditions on a real γ and

1 < p <∞, for which the means Rα
nf =

λ0Sα
0 f+···+λnSα

n f

λ0+···+λn
, λk = 2(α+2k+2),

are uniformly bounded in the spaces Lp(x2(α+γ)+1 dx). Clearly, the conver-
gence Rα

nf → f holds only for functions from the closure of the linear span of

the orthogonal system in these spaces. As a byproduct of the main result, we
obtain a characterization of the closure of the span in terms of functions whose

modified Hankel transforms of order α are supported on the interval [0, 1].

1. Introduction and statement of results

Let Jν stand for the Bessel function of the first kind of order ν. For α > −1, the
formula∫ ∞

0

Jα+2n+1(x)Jα+2m+1(x)
dx

x
=

δnm

2(2n + α + 1)
, n,m = 0, 1, 2, . . . ,

provides an orthonormal system {jα
n}∞n=0 in L2((0,∞), x2α+1 dx) (L2(dµα) and,

more generally, Lp(dµα) from now on) given by

jα
n (x) =

√
2(2n + α + 1) Jα+2n+1(x)x−α−1, n = 0, 1, 2, . . . .

For a function f , provided that the coefficients

cα
k (f) =

∫ ∞

0

f(y)jα
k (y)y2α+1 dy, k = 0, 1, 2, . . . ,

exist, consider its formal expansion f ∼
∑∞

k=0 cα
k (f)jα

k (x) and the partial sum
operators

Sα
n (f, x) =

n∑
k=0

cα
k (f)jα

k (x), n = 0, 1, 2, . . . .

Series of the form
∑

n≥0 anJα+n are usually called the Neumann series, hence we
refer to

∑∞
k=0 cα

k (f)jα
k (x) as to the Fourier-Neumann series.

For α and γ, α > −1, γ > −1− α, let

p0(α, γ) = max
{

1,
4(α + γ + 1)

2α + 3

}
, p1(α, γ) =

{
4(α+γ+1)

2α+1 , α > −1/2,

∞, −1 < α ≤ −1/2.

In the case γ = 0 we simply write pi(α) in place of pi(α, 0), i = 1, 2.
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The essential aim of this paper is to study the convergence Rα
nf → f in the

Lp(dµα+γ) spaces (note that it is equivalent to the study of the convergence in
the weighted Lp(x2γdµα) spaces), 1 < p < ∞, where Rα

n are means of the partial
sum operators {Sα

k }n
k=0, cf. (6). To pose the problem correctly, we must impose

some natural conditions on the parameters involved. First, we have the requirement
jα
n ∈ Lp(dµα+γ). Second, to ensure the existence of the coefficients cα

n(f) for every
f ∈ Lp(dµα+γ), we must require jα

n ∈ Lp′
(x−2γp′

dµα+γ). However, assuming
1 < p < ∞, we have jα

n ∈ Lp(dµα+γ) ∩ Lp′
(x−2γp′

dµα+γ) for every n = 0, 1, 2, . . .
if and only if 0 < α + γ + 1 < (α + 1)p and p0(α, γ) < p < p1(α, γ), and these are
precisely the minimal assumptions we impose. The last equivalence easily follows
by using the following well-known asymptotics for the Bessel functions:

(1) Jν(x) =
xν

2νΓ(ν + 1)
+ O(xν+2), x → 0+;

(2) Jν(x) =
(

2
πx

)1/2 [
cos

(
x− νπ

2
− π

4

)
+ O(x−1)

]
, x →∞.

Most orthogonal systems considered in the literature, for instance, the trigono-
metric, Jacobi, Laguerre and Hermite systems as well as the ones related to Freud
weights, Bessel and Dini, are complete. Moreover, the span of each of these systems
is dense in the corresponding Lp spaces, 1 ≤ p < ∞. Thus, the Lp-convergence of
the associated Fourier series is equivalent to the uniform boundedness of the partial
sum operators. However, this is not the present case since the span of {jα

n} is not
dense in Lp(dµα). Therefore, it is important to identify the closure in Lp(dµα) of
the subspace spanned by jα

n , n = 0, 1, 2, . . . , or, more generally, the space

Bp,α,γ = span{jα
n : n = 0, 1, 2, . . . } (closure in Lp(dµα+γ)),

because the uniform boundedness of the partial sum operators Sα
n , or the Cesàro-

type means Rα
n , would imply the Lp-convergence only for functions in Bp,α,γ . Note

that the spaces Bp,α,γ are well defined if jα
n ∈ Lp(dµα+γ) and this holds if and only

if α + γ + 1 > 0 and p0(α, γ) < p (again by using (1) and (2), or see [2]).
Identifying the spaces Bp,α,γ with those defined in (5), we will use the modified

Hankel transform Hα given by

(3) Hα(f, x) =
∫ ∞

0

Jα(xy)
(xy)α

f(y)y2α+1 dy, x > 0.

For α ≥ −1/2, (1), (2) and Hölder’s inequality show that (3) is well defined for
every f ∈ Lp(dµα) with 1 ≤ p < p0(α). Furthermore, it is easy to see that Hα is
a bounded operator from L1(dµα) into L∞(dµα). It is also well known that Hα

extends to an isometric isomorphism from L2(dµα) onto itself and Hα ◦ Hα = Id
(for −1 < α < −1/2, the isometric extension of Hα to L2(dµα) can also be done;
see [7, 1]). As a consequence, by interpolation, for α ≥ −1/2 we consider Hα to be
a bounded operator from Lp(dµα) into Lp′

(dµα), 1 ≤ p ≤ 2.
The Hankel transform of the function jα

n is

Hα(jα
n , x) =

√
2(α + 2n + 1)P (α,0)

n (1− 2x2)χ[0,1](x),

where P
(α,β)
n (x) is the n-th Jacobi polynomial of order (α, β), cf. [3], a remark on

p. 127. The important fact here is that Hα(jα
n ) is supported on [0, 1]; then, only

functions f having this property could be approximated by the sequence Sα
nf . We

describe this property using the language of the modified Hankel transform.
Thus, define the operator Mα, associated with Hα, as the multiplier operator

Mαf = Hα(χ[0,1]Hαf).



MEAN CESÀRO-TYPE SUMMABILITY OF FOURIER-NEUMANN SERIES 3

Applying Fubini’s theorem, we have Mα(f, x) =
∫∞
0

Mα(x, y)f(y) dµα(y), where

(4) Mα(x, y) = (xy)−α

∫ 1

0

Jα(xs)Jα(ys)s ds.

It is known that Mα is a bounded operator on Lp(dµα) if and only if p0(α) < p <
p1(α), cf. [9, 14, 4, 5, 1].

For α ≥ −1/2 and p0(α) < p < p1(α) define the following closed subspace
of Lp(dµα):

(5) Ep,α = {f ∈ Lp(dµα) : Mαf = f} = Mα(Lp(dµα)).

The spaces Ep,α enjoy some nice properties: for 1 < p < q < ∞, Ep,α ⊂ Eq,α and
the inclusion is continuous and dense. Besides, the dual space of Ep,α is naturally
identified with Ep′,α, cf. [14] for details.

Note that we assume α > −1 in the definition of Bp,α,γ . We require, however,
α ≥ −1/2 for Ep,α. Actually, the definition of Ep,α can be extended to the whole
range of α > −1. But in the case α < −1/2, Hα is not a bounded operator from L1

into L∞ since Jα(t)t−α is not a bounded function. As a consequence, the spaces
Ep,α do not behave for α < −1/2 like those for α ≥ −1/2. Thus, some of the results
in this paper will be established for α > −1, but we will require α ≥ −1/2 when
Ep,α appears.

It is clear from the very definition that for f ∈ Ep,α ∩ L2(dµα) the Hankel
transform of f is supported on [0, 1]. When p = 2, using the fact that Hα is an
isomorphism and the completeness of the Jacobi system, we easily get that {jα

n} is,
indeed, a basis for E2,α. But this cannot be proved in such a direct way for other
values of p.

In [14], one of the authors (actually, in that paper there is a change of notation
that is, basically, a change of variable x 7→ x2; see [5, Remark 1] for appropriate
comments on the change of notation) proved the following: by using the basic case
p = 2, and the properties of Ep,α, it follows that Bp,α,0 = Ep,α for 2 ≤ p < p1(α).
On the other hand, it was also shown that, for α ≥ −1/2,

‖Sα
nf‖Lp(dµα) ≤ C‖f‖Lp(dµα), n = 0, 1, 2, . . . ,

if and only if max{p0(α), 4/3} < p < min{p1(α), 4} (for a more general result
in a weighted setting, see [3, Theorem 1]). Then, for this range of p’s, ‖Sα

nf −
f‖Lp(dµα) → 0 for every f from the space Bp,α,0, already identified as Ep,α for
2 ≤ p < p1(α). By using duality and the uniform boundedness of the partial sum
operators Sα

n , it also follows that Bp,α,0 = Ep,α when max{p0(α), 4/3} < p < 2.
If −1/2 ≤ α < 0, we have p0(α) < 4/3. Thus, there is a gap p0(α) < p < 4/3,

for which the previous argument does not show if Bp,α,0 and Ep,α are equal. Filling
this gap is another aim of this paper (see Theorem 2 with γ = 0).

To overcome the difficulty, we will use means equivalent to Cesàro (C, 1) means
instead of partial sums. This will allow us to eliminate the condition 4/3 < p < 4
and, again by using a duality argument, will enable us to identify Bp,α,0 with Ep,α

in the whole range of p0(α) < p < p1(α). Actually, instead of using Cesàro means,
we will use the means

(6) Rα
n =

λ0S
α
0 + · · ·+ λnSα

n

λ0 + · · ·+ λn
, λk = 2(α + 2k + 2).

A reason for this is that for such means it is possible to write an exact expression for
their kernels. This summation method is sometimes known as the Riesz method
(R, λk); see, for instance, [10, § 59, p. 470]. The convergence in this method is
equivalent to the convergence of Cesàro (C, 1) means (see, for instance, [8, § 3.8,
Th. 14]). Thus, we refer to this method as to a Cesàro-type summation method.
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Investigating the uniform boundedness and convergence of Rα
n reveals that the

kernels of these operators remind those for the Hankel transform partial sum oper-
ators, cf. [5]; boundedness properties of the corresponding operators were studied
there by using a convolution structure for the Hankel transform. Unfortunately,
in the case of kernels considered here, an extra factor of size xy/n2 appears, and
the method used in [5] didn’t turn out to be useful. On the other hand, however,
the kernels have a similar behaviour as the ones that appear in [6]; boundedness
properties of the corresponding operators were established without using properties
of the aforementioned convolution. It occurs that the proofs may be adapted to the
present case and the extra factor can be properly annihilated. This is particularly
well visible in the proof of Proposition 4.

Finally, some comments seem to be relevant. Although, in many aspects, the
situation of the present setting is similar to the one of the Laguerre expansions,
for instance, the condition 4/3 < p < 4 disappears when we pass from the partial
sum operators to the (C, 1) means, cf. [11] (see [13] for a motivation of such a
comparison), there are important differences. First, the (C, 1) (and also (C, δ))
summability of the Laguerre series can be deduced from an associated convolution
structure, see [12]. Second, we always restrict the p’s interval to 1 < p < ∞,
not including p = 1 or p = ∞. This is explained by the fact that already in the
unweigted case, γ = 0, the system jα

n , n = 0, 1, 2, . . . , is not contained in L1(dµα).
The main result of the paper states the uniform boundedness of Rα

n in Lp(dµα+γ).

Theorem 1. Let α > −1 and γ ∈ R. Assume that

(7) 0 < α + γ + 1 < (α + 1)p

and

(8) p0(α, γ) < p < p1(α, γ).

Then
‖Rα

nf‖Lp(dµα+γ) ≤ C‖f‖Lp(dµα+γ) ,

with C independent of n = 0, 1, 2, . . . and f .

Note, that the assumptions that appear in Theorem 1 are, according to what
was said earlier, “natural” (minimal).

The second main result of the paper concerns the spaces Bp,α,γ .

Theorem 2. Let α > −1, α + γ ≥ −1/2, p0(α + γ) < p < p1(α + γ) and γ < 1/2.
If p < 2, assume further that p0(α, γ) < p and α + γ + 1 < p

4 (2α + 4γ + 3). Then
Bp,α,γ = Ep,α+γ .

The proofs of Theorems 1 and 2 are postponed to Sections 3 and 4. Theorem 2
imediately shows that Bp,α,0 = Ep,α in the whole range of p’s in which both spaces
are well defined.

By using Theorems 1 and 2, the proof of the following result is standard.

Corollary 3. Let α > −1, α + γ ≥ −1/2, p0(α + γ) < p < p1(α + γ), γ < 1/2,
and (7) and (8) are satisfied. If p < 2, assume further α + γ + 1 < p

4 (2α + 4γ + 3).
Then, Rα

nf → f in Lp(dµα+γ) for every f ∈ Ep,α+γ .

Apart of the expansions based on the system {jα
n}∞n=0, there is another setting

in which the Fourier-Neumann series may be investigated. The system of functions

ϕα
n(x) =

√
2(2n + α + 1) Jα+2n+1(x)x−1/2, n = 0, 1, 2, . . .

is orthonormal (but not complete) in L2((0,∞), dx); in what follows we simply
write L2(dx) or, more generally, Lp(xγdx) for weighted Lp spaces. Hence, for
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any suitable function f on (0,∞) consider its expansion f ∼
∑∞

k=0 dα
k (f)ϕα

k (x),
dα

k (f) =
∫∞
0

f(x)ϕα
k (x) dx, and the partial sum operators

Sα
n (f, x) =

n∑
k=0

dα
k (f)ϕα

k (x), n = 0, 1, 2, . . . .

Analogously, define the means

Rα
n =

λ0Sα
0 + · · ·+ λnSα

n

λ0 + · · ·+ λn
, λk = 2(α + 2k + 2).

Clearly enough, results concerning both types of expansions are linked together
since Sα

n (f, x) = xα+1/2Sα
n ((·)−(α+1/2)f, x).

Therefore, Theorem 1 has its counterpart in the following.

Theorem 4. Let α > −1, γ ∈ R and 1 < p < ∞. Assume that

(9) max{−1,−1− p(α + 1/2)} < γ < min{−1 + p,−1 + p(α + 3/2)}.

Then
‖Rα

nf‖Lp(xγ dx) ≤ C‖f‖Lp(xγ dx) ,

with C independent of n = 0, 1, 2, . . . and f .

As in the case of Theorem 1, it can be easily seen by a direct computation that the
assumptions of Theorem 4 are minimal in the sense that for all n = 0, 1, . . . , ϕα

n ∈
Lp(xγ dx) and the coefficients dα

k (f) exist for every f ∈ Lp(xγ dx) if and only if (9)
is satisfied. Clearly, Theorem 4 and Theorem 1 are equivalent. Actually, the direct
proof of Theorem 4 simplifies a little bit; for instance, the formula corresponding
to that of Proposition 1 becomes

Rα
n(f, x) = M0

α(f, x)− dn

2

(
xM1

α+1(yf, x)− xM1
α+2n+3(yf, x)

)
.

2. The kernel

In this section we find exact expressions for the kernel of the Cesàro-type means Rα
n .

The partial sum operators Sα
n can be written as

(10) Sα
n (f, x) =

∫ ∞

0

Sα
n (x, y)f(y)y2α+1 dy

with the kernel

Sα
n (x, y) = (xy)−(α+1)

n∑
k=0

2(α + 2k + 1)Jα+2k+1(x)Jα+2k+1(y).

Thus, by (6),

Rα
n(f, x) =

∫ ∞

0

Rα
n(x, y)f(y)y2α+1 dy

with

Rα
n(x, y) = dn (λ0S

α
0 (x, y) + · · ·+ λnSα

n (x, y)) , λk = 2(α + 2k + 2),

where d−1
n =

∑n
k=0 λk = 4(n + 1)(α + n + 2).

For ν > −1, let

(11) Jν(x, y) =
∫ 1

0

Jν(xs)Jν(ys)s ds.

Then

(12) Jν(x, y) =
1

x2 − y2
{xJν+1(x)Jν(y)− yJν(x)Jν+1(y)}
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and

(13) Jν(x, y) =
1

x2 − y2
{yJ ′ν(y)Jν(x)− xJ ′ν(x)Jν(y)}.

We applied von Lommel’s formula, cf. [3], and, for the last equality, the identity
zJν+1(z) = νJν(z)− zJ ′ν(z).

By using (12), it can be proved (see [3]) that

(14) Sα
n (x, y) = (xy)−α{Jα(x, y)− Jα+2n+2(x, y)}.

Then

Rα
n(x, y) =

1
2
dn(xy)−α

n∑
k=0

2(α + 2k + 2){Jα(x, y)− Jα+2k+2(x, y)}

= (xy)−α

[
Jα(x, y)− dn

∫ 1

0

s

( n∑
k=0

2(α + 2k + 2)Jα+2k+2(xs)Jα+2k+2(ys)
)

ds

]

= (xy)−α

[
Jα(x, y)− dn

∫ 1

0

s(xsys)(Jα+1(xs, ys)− Jα+2n+3(xs, ys)) ds

]
.

Therefore, denoting

ξν(x, y) = 2
∫ 1

0

s3Jν(xs, ys) ds,

we finally obtain

(15) Rα
n(x, y) = (xy)−αJα(x, y)− 1

2
dn(xy)−α+1(ξα+1(x, y)− ξα+2n+3(x, y)).

In this decomposition, the first summand is just the integral kernel of the multi-
plier operator Mα, as one can observe by comparing (11) with (4). Its boundedness
properties has already been studied; see for instance [3] (note also that this sum-
mand appears in the decomposition of the kernel Sα

n (x, y) used to study the uniform
boundedness of Sα

n ).
We will find another expression for ξν(x, y). By using (11), the change of variable

t = w/s and Fubini’s theorem easily produce

ξν(x, y) =
∫ 1

0

w(1− w2)Jν(xw)Jν(yw) dw.

This expression for ξν(x, y) will be useful for our purposes for the following reasons:
let Hν denote the (non-modified) Hankel transform of order ν > −1, i.e.,

Hν(f, x) =
∫ ∞

0

(xy)1/2Jν(xy)f(y) dy, x > 0.

The Bochner-Riesz multiplier of order δ ≥ 0 for Hν is given by

(16) Mδ
ν(f, x) = Hν(mδ · Hνf, x) =

∫ ∞

0

Mδ
ν(x, y)f(y) dy,

where mδ(y) = (1− y2)δ
+ and

(17) Mδ
ν(x, y) =

∫ 1

0

(1− w2)δ(xw)1/2Jν(xw)(yw)1/2Jν(yw) dw.

Then, ξν(x, y) = (xy)−1/2M1
ν(x, y). Pointwise estimates for M1

ν(x, y), as well as
necessary and sufficient conditions for the uniform boundedness

‖M1
ν(f, x)xa‖Lp(dx) ≤ C‖f(x)xa‖Lp(dx), ν ≥ α,

were found in [6]. We will partially use those results in Section 3 of this paper.
Actually, also the first summand in (15) can be described following the notation

of (16): the multiplier Mα (for the modified Hankel transform Hα) is related to
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the multiplier Mα = M0
α (for the Hankel transform Hα) by mean of Mα(f, x) =

xα+1/2Mα((·)−(α+1/2)f, x), with the analogous relation for the kernels Mα(x, y)
and Mα(x, y).

Summarizing, we found the following decomposition.

Proposition 1. Let α > −1 and n = 0, 1, 2 . . . . Then

Rα
n(f, x) = x−α−1/2M0

α(yα+1/2f, x)

− dn

2

(
x−α+1/2M1

α+1(y
α+3/2f, x)− x−α+1/2M1

α+2n+3(y
α+3/2f, x)

)
with d−1

n =
∑n

k=0 λk = 4(n + 1)(α + n + 2).

3. Proof of Theorem 1

The main idea of the proof is the following. The first summand in the decom-
position of Rα

n(f, x), x−α−1/2M0
α(yα+1/2f, x), may be easily treated since we know

appropriate weighted bounds for the operator M0
α. Thus we are immediately left

with the operators

Qα
n(f, x) = Rα

n(f, x)− x−α−1/2M0
α(yα+1/2f, x).

The relevant uniform inequalities for them,

‖Qα
nf‖Lp(dµα+γ) ≤ C‖f‖Lp(dµα+γ), n = 1, 2, . . . ,

will be obtained by a proper splitting of (0,∞)× (0,∞) and then by treating each
resulting region separately. It is important to stress here the fact that in the region
that corresponds to large x and y we will go back to the original definition of Rα

n

as a Cesàro type mean of {Sα
k }. In consequence, the results of Section 2 will allow

us to write Qα
nf as a mean of x−α−1/2M0

α+2k+2(y
α+1/2f, x), k = 0, 1, . . . , n, and

then to treat each resulting term in the aforementioned region separately.
The weighted bound for M0

α is contained in the following (see, with different
degree of generality, [9], [4], [13] and, in particular, [3, § 6.4]).

Proposition 2. Let α > −1, γ ∈ R and 1 < p < ∞. Then

‖x−α−1/2M0
α(yα+1/2f, x)‖Lp(dµα+γ) ≤ C‖f(x)‖Lp(dµα+γ)

if and only if (7) and (8) are satisfied.

Let ν = ν(n) = α + 2n + 3, n = 0, 1, . . . , and A = (0, 4ν), B = (2ν,∞). Since

χ(0,∞)×(0,∞) = χA×A + χAc×Bc + χBc×Ac + χB×B − χ(A∩B)×(A∩B),

by using the notation Qα
n,T,Sf = χT Qα

n(χSf) we have

‖Qα
nf‖Lp(dµα+γ) ≤ ‖Qα

n,A,Af‖Lp(dµα+γ) + ‖Qα
n,Ac,Bcf‖Lp(dµα+γ)

+ ‖Qα
n,Bc,Acf‖Lp(dµα+γ) + ‖Qα

n,B,Bf‖Lp(dµα+γ) + ‖Qα
n,A∩B,A∩Bf‖Lp(dµα+γ).

We will bound each of the five quantities above by C‖f‖Lp(dµα+γ) with C inde-
pendent of n and f . In the rest of this section we write ‖ · ‖p for the unweighted
Lp-norm on (0,∞).

3.1. Estimating ‖Qα
n,A,Af‖Lp(dµα+γ). Noting that dn ∼ ν(n)−2, it is enough to

show the uniform bounds:

ν−2‖x−α+1/2χA(x)M1
ν(yα+3/2χAf, x)‖Lp(dµα+γ) ≤ C‖χAf‖Lp(dµα+γ), ν ≥ α + 3,

and the analogous bound with M1
ν frozen to M1

α+1 (but with A associated to ν,
not to α + 1 !). In both cases, taking g(y) = yα+3/2f(y) and using the notation

(18) a = −α− 1/2 + (2(α + γ) + 1)/p,
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proving the former bounds reduces to showing that

ν−2‖xχA(x)M1
ν(χAg, x)xa‖p ≤ C‖y−1χAgya‖p, ν ≥ α + 3,

and the analogous bound with M1
ν replaced by M1

α+1. These bounds, due to
x ≤ 4ν and (4ν)−1 ≤ y−1, are further reduced to

(19) ‖χA(x)M1
ν(χAg, x)xa‖p ≤ C‖χAgya‖p, ν ≥ α + 3,

and the one with M1
ν replaced by M1

α+1.
In [6], the following result on the uniform boundedness of the Bochner-Riesz

operators for the Hankel transform was found (actually, in a more general setting).

Proposition 3 ([6, Theorem 1]). Let β > −1 and 1 < p < ∞. The Bochner-Riesz
multipliers of order one for Hν given by (16), satisfy the uniform estimate

‖M1
ν(g, x)xa‖p ≤ C‖g(x)xa‖p, ν ≥ β,

if and only if −1/p−(β+1/2) < a < 1−1/p+(β+1/2) and −1/p−1 < a < 2−1/p.

Thus, taking β = α + 1 gives (19) and its companion once we assume that

max
{

1,
4(α + γ + 1)

2α + 5

}
< p <

{
4(α+γ+1)

2α−1 , if α > 1/2,

∞, if −1 < α ≤ 1/2,

and
0 < α + γ + 1 < (α + 3/2)p

are satisfied. Finally, note that the two conditions are implied by (7) and (8).

3.2. Estimating ‖Qα
n,Bc,Acf‖Lp(dµα+γ) and ‖Qα

n,Ac,Bcf‖Lp(dµα+γ). Applying an
argument from the previous subsection and taking g(y) = yα+1/2f(y) it is enough
to prove the uniform inequalities

(20) ν−2‖xχBc(x)M1
ν(yχAcg, x)xa‖p ≤ C‖g(y)ya‖p, ν ≥ α + 3,

and

(21) ν−2‖xχAc(x)M1
ν(yχBcg, x)xa‖p ≤ C‖g(y)ya‖p, ν ≥ α + 3,

with a given by (18), and its counterparts with M1
ν replaced by M1

α+1. This will
be done in Propositions 4 and 5 below by applying uniform pointwise estimates of
Bessel functions which were already used in [6]: with a constant C, independent of
ν and x,

(22) |x1/2Jν(x)| ≤ CΦν(x)

where, for ν ≥ 1,

Φν(x) =


xν+1/2

Γ(ν+1)2ν , 0 < x < ν/2,

ν1/4(ν1/3 + |x− ν|)−1/4, ν/2 < x < 2ν,

1, 2ν < x < ∞,

and, for −1 < ν < 1,

Φν(x) =

{
xν+1/2

Γ(ν+1) , 0 < x < 1/2,

1, 1/2 < x < ∞.

Moreover, there exists a constant C independent of ν > −1, such that, for (x, y) ∈
Bc ×Ac or (x, y) ∈ Ac ×Bc, we have

(23) |M1
ν(x, y)| ≤ C

Φν(x)Φν(y)
|x− y|2

;

see [6, Lemma 4] and a slight modification of [6, Lemma 2].
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Proposition 4. Let α > −1, α + γ > −1, 1 < p < ∞, and a be given by (18).
If p < p1(α, γ), then the inequality (20) and its aforementioned counterpart are
satisfied.

Proof. We consider only the case of (20). The proof of its mutant, with M1
α+1 in

place of M1
ν , requires minor modifications only. For (x, y) ∈ Bc×Ac, x ≤ 2ν. Thus(∫ 2ν

0

∣∣∣ x

ν2
M1

ν(ygχAc , x)xa
∣∣∣p dx

)1/p

≤ C

ν

(∫ 2ν

0

∣∣M1
ν(ygχAc , x)xa

∣∣p dx

)1/p

.

Moreover, in that region, y − x ≥ y/2, so 1/|x − y|2 ≤ 4/y2. Then, by using (23)
and Hölder’s inequality,∣∣χBc(x)M1

ν(ygχAc , x)xa
∣∣ ≤ CχBc(x)xaΦν(x)

(∫ ∞

0

χAc(y)y−1|g(y)|Φν(y) dy

)
≤ CχBc(x)xaΦν(x) ‖g(y)ya‖p ‖χAc(y)y−a−1Φν(y)‖p′

and thus

ν−2‖χBc(x)M1
ν(ygχAc , x)xa‖p

≤ Cν−1 ‖g(y)ya‖p ‖χAc(y)y−a−1Φν(y)‖p′ ‖χBc(x)xaΦν(x)‖p.

Therefore, to establish the proposition we only need to check that the product of
the last two terms is bounded by Cν. This easily follows, by a direct calculation,
once we have (−a− 1)p′ < −1 (i.e., p < p1(α, γ)), from the definition of Φν . �

Proposition 5. Let α > −1, α + γ > −1, 1 < p < ∞ and a be given by (18).
If p0(α, γ) < p, then the inequality (21) and its aforementioned counterpart are
satisfied.

Proof. The proof is very similar to that of the previous proposition. Moreover, a
duality argument can also be used, because the operators from Propositions 4 and 5
are adjoint in the following sense:

〈xχBcM1
ν(y−ayg1χAc , x)xa, h1〉 = 〈yχAcM1

ν(xaxh1χBc , y)y−a, g1〉.

Thus, the hypothesis (−a − 1)p′ < −1 from the proof of Proposition 4 becomes
(a− 1)p < −1, i.e., p0(α, γ) < p. �

3.3. Estimating ‖Qα
n,B,Bf‖Lp(dµα+γ) and ‖Qα

n,A∩B,A∩Bf‖Lp(dµα+γ). Start with
the case of B ×B. Here we do not use the decomposition of Qα

n(f, x) that follows
from Proposition 1. Instead, we apply earlier results of Section 2 that lead to
writing Qα

n(f, x) as the mean

Qα
n(f, x) = −dn

2

n∑
k=0

λkx−α−1/2M0
α+2k+2(y

α+1/2f, x).

The required bound

‖Qα
n,B,Bf‖Lp(dµα+γ) ≤ C‖f‖Lp(dµα+γ)

then follows from the following.

Proposition 6. Let α > −1, α + γ > −1, 1 < p < ∞ and, for simplicity, write
κ = α + 2k + 2. If the assumption (8) is satisfied then

‖x−α−1/2χB(x)M0
κ(yα+1/2χBf, x)‖Lp(dµα+γ) ≤ C‖f(x)‖Lp(dµα+γ), 0 ≤ k ≤ n,

with a constant C independent of n.
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Proof. Denoting by H(g, x) the Hilbert transform of g,

H(g, x) = P.V.
∫ ∞

0

g(y)
x− y

dy,

and performing the change of variables x 7→ x1/2 and y 7→ y1/2 in (13), it is then
enough to prove

(24)
∫ ∞

0

∣∣χB(
√

x)x−α/2Jκ(
√

x)H(χB(
√

y)f(
√

y)y(1+α)/2J ′κ(
√

y), x)
∣∣pxα+γ dx

≤ C

∫ ∞

0

∣∣f(
√

x)
∣∣pxα+γ dx

and the analogous inequality with Jκ(
√

x) replaced by J ′κ(
√

x) and J ′κ(
√

y) replaced
by Jκ(

√
y). We treat (24) only, the proof of its companion is completely analogous.

By (22) (and similar bounds for J ′ν , see [6]), it is clear that |Jκ(x)| ≤ Cx−1/2

and |J ′κ(x)| ≤ Cx−1/2 for x ≥ 2ν with a constant C independent of x, κ and ν
(ν ≥ α + 2 > 1).

We will use the fact that the Hilbert transform is a bounded operator on weighted
Lp spaces with weights from Ap. It is clear that xα+γ±p/4−αp/2 ∈ Ap if and only
if −1 < α + γ ± p/4 − αp/2 < p − 1. Here, the relevant inequalities are −1 <
α + γ − p/4 − αp/2 and α + γ + p/4 − αp/2 < p − 1, which are equivalent to (8)
when considered together. Take

g(y) = χB(
√

y)f(
√

y)y(1+α)/2J ′κ(
√

y).

To prove (24) we apply successively |Jκ(
√

x)| ≤ Cx−1/4, xα+γ−p/4−αp/2 ∈ Ap,
and |J ′κ(

√
x)| ≤ Cx−1/4, obtaining∫ ∞

0

∣∣χB(
√

x)x−α/2Jκ(
√

x)H(g, x)
∣∣p xα+γ dx ≤ C

∫ ∞

0

|H(g, x)|pxα+γ−p/4−αp/2 dx

≤ C

∫ ∞

0

|g(x)|pxα+γ−p/4−αp/2 dx

≤ C

∫ ∞

0

∣∣f(
√

x)
∣∣pxα+γ dx.

�

The bound for ‖Qα
n,A∩B,A∩Bf‖Lp(dµα+γ) follows from the uniform estimate

‖x−α−1/2χA∩B(x)M0
κ(yα+1/2χA∩Bf, x)‖Lp(dµα+γ) ≤ C‖f(x)‖Lp(dµα+γ),

0 ≤ k ≤ n, with C independent of n. This can be obtained by applying Proposi-
tion 6 to the function f(y)χA∩B(y) and taking into account that

|x−α−1/2χA∩B(x)M0
κ(yα+1/2χA∩Bf, x)| ≤ |x−α−1/2χB(x)M0

κ(yα+1/2χA∩Bf, x)|.

The proof of Theorem 1 is completed.

4. Proof of Theorem 2

We follow closely the proof of Theorem 4 in [3], where we refer the reader for
details. Clearly, the assumptions p0(α + γ) < p < p1(α + γ) and α + γ ≥ −1/2 are
needed to have the space Ep,α+γ well defined and assure good properties of it, see a
comment in Section 1. Moreover, in our argument the case p = 2 is crucial since it
is required when considering other cases, p < 2 and p > 2. Therefore, in the range
of p’s, p0(α, γ) < p, for which the spaces Bp,α,γ are well defined, p = 2 must be
included, which forces us to impose the condition γ < 1/2. Clearly, with the last
assumption the spaces Bp,α,γ are well defined for all p ≥ 2. Thus, apart of α > −1,
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in what follows we assume the conditions α+γ ≥ −1/2, p0(α+γ) < p < p1(α+γ),
and γ < 1/2 to hold.

The formula (which holds for α > −1, γ < 1 and α + γ > −1, see [3, Lemma 3])

Hα+γ(jα
n , x) = 21/2+γ

√
α + 2n + 1 Γ(n + 1)

Γ(n + 1− γ)
(1− x2)−γP (α+γ,−γ)

n (1− 2x2)χ[0,1](x).

shows the inclusion Bp,α,γ ⊆ Ep,α+γ . It remains to check that in fact the inclusion
becomes the identity (with the additional assumption α + γ + 1 < p

4 (2α + 4γ + 3)
if p < 2).

Case p = 2. The above formula, the completeness of the Jacobi system and the
fact that Hα+γ is an automorphism of L2(dµα+γ) prove the claim, i.e. B2,α,γ =
E2,α+γ .

Case p > 2. Here the crucial fact is the result of Case p = 2 and continuity and
density of the inclusion E2,α+γ ⊂ Ep,α+γ .

Case p < 2. The required equality follows by showing that the only functional
T ∈ (Ep,α+γ)′ such that T (f) = 0 for all f ∈ Bp,α,γ is T = 0. Since dual of Ep,α+γ

is naturally identified with Ep′,α+γ , there exists g ∈ Ep′,α+γ , such that T (f) =∫∞
0

g(x)f(x) dµα+γ(x), for every f ∈ Ep,α+β . With the additional assumption
α + γ + 1 < p

4 (2α + 4γ + 3), we have jα+γ
n ∈ Bp,α,γ , see [3, Lemma 2]. Therefore,

in particular, cα+γ
n (g) =

∫∞
0

g(x)jα+γ
n (x) dµα+γ(x) = 0, for n = 0, 1, 2, . . . . Now,

from the preceding case, we have Bp′,α+γ,0 = Ep′,α+γ , so that g ∈ Bp′,α+γ,0. This
fact, taking into account that with the hypothesis p0(α, γ) < p < 2 we can apply
Theorem 1, together with cα+γ

n (g) = 0 gives 0 = limn→∞Rα+γ
n g = g in Lp′

(dµα+γ).
The proof of Theorem 2 is completed.
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