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Abstract. Two-weight Lp norm inequalities, uniform with respect to the
order of the involved Bessel function, are proved for the Bochner-Riesz means

of the first order for the Hankel transform. Both sufficient and necessary
conditions for parameters used in the two weights are determined. The proof

relies on uniform pointwise asymptotic estimates for the Bessel functions that

were shown by Barceló and Córdoba.

1. Introduction

The Hankel transform Hνf of a suitable function f on (0,∞) is defined by

Hνf(x) =
∫ ∞

0

(xy)1/2Jν(xy)f(y) dy, x > 0.

Here ν > −1 is given and Jν(x) denotes the Bessel function of the first kind and
order ν, [3]. It is known that (Hν ◦ Hν)f = f and ‖Hνf‖2 = ‖f‖2, for any f ∈
C∞c (0,∞), the space of C∞ functions with compact support in (0,∞) (‖·‖p denotes
the usual unweighted norm in Lp(0,∞)). Consider the Bochner-Riesz means of
order δ ≥ 0 for the Hankel transform Hν given by

Sδ
ν,Rf(x) = Hν(mδ

R · Hνf)(x)

=
∫ ∞

0

Kδ
ν,R(x, y)f(y) dy,

where mδ
R(y) = (1− (y/R)2)δ for 0 < y < R and 0 otherwise, and

Kδ
ν,R(x, y) =

∫ R

0

mδ
R(s)(xs)1/2Jν(xs)(ys)1/2Jν(ys) ds.

Uniform boundedness, with respect to R > 0, of Sδ
ν,R in weighted Lp spaces for

fixed ν > −1 and δ = 0,

(1) ‖S0
ν,Rf(x)xa‖p ≤ C‖f(x)xa‖p, R > 0,

is known to hold if either ν ≥ −1/2, 1 < p < ∞ and −1/p < a < 1 − 1/p or
−1 < ν < −1/2, 2/(2ν + 3) < p < −2/(2ν + 1) and a = 0; cf. [7] for appropriate
references. The general case δ > 0 then follows by applying a sort of Stečkin-type
multiplier theorem for the Hankel transform. Indeed, let m(x) be a function of
bounded variation on (0,∞). Then (1) implies

‖Hν(m · Hνf)(x)xa‖p ≤ Cmax{|m(1)|,Varm}‖f(x)xa‖p
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(with the same constant C). To show this, it is sufficient to establish the inequality∣∣∣∣ ∫ ∞

0

m(y)Hνf(y)Hνg(y) dy
∣∣∣∣ ≤ Cmax{|m(1)|,Varm}‖f(x)xa‖p‖g(x)x−a‖p′

for f, g ∈ C∞c (0,∞). Define

nν(R) =
∫ R

0

Hνf(y)Hνg(y) dy, R > 0.

Then (1) gives
|nν(R)| ≤ C‖f(x)xa‖p‖g(x)x−a‖p′

and an integration by parts leads to∣∣∣∣ ∫ N

ε

m(y)Hνf(y)Hνg(y) dy
∣∣∣∣ ≤ |m(ε)nν(ε)|+ |m(N)nν(N)|+

∣∣∣∣ ∫ N

ε

nν(y) dm(y)
∣∣∣∣

≤ Cmax{|m(1)|,Varm}‖f(x)xa‖p‖g(x)x−a‖p′ .

Finally, a limit passage with ε tending to 0 and N tending to ∞ completes the
argument.

Since (1), with δ = 0 and R = 1 (hence also with any R > 0), holds uniformly
with respect to ν ≥ 2 (cf. [7] for appropriate comments) in the case when 4/3 <
p < 4 and −1/p < a < 1 − 1/p the same remains valid, by applying the argument
just used, for arbitrary δ > 0.

The present paper focuses on proving more general, uniform with respect to ν,
inequalities of the form

‖S1
νf(x)xa(1 + x)b−a‖p ≤ C‖f(x)xA(1 + x)B−A‖p;

we simplify the notation by writing S1
ν and K1

ν in place of S1
ν,1 and K1

ν,1.

Theorem 1. Let α > −1 and 1 ≤ p ≤ ∞. Then

(2) ‖S1
νf(x)xa(1 + x)b−a‖p ≤ C‖f(x)xA(1 + x)B−A‖p

with a constant C = C(p, α, a, b, A,B) independent of ν ≥ α and f if and only if
a, b, A,B, α and p satisfy the conditions

(3) a > −1/p− (α+1/2) (≥ if p = ∞), A < 1−1/p+(α+1/2) (≤ if p = 1),

(4) b < 2− 1/p (≤ if p = ∞), B > −1− 1/p (≥ if p = 1),

(5) b ≤ B.

Moreover, only ν = α in (2) is required to prove necessity of (3), (4) and (5).

It is tacitly understood that when assuming (2) to hold and then proving the
necessity of (3), (4) and (5) only such functions f are admitted for which S1

αf(x)
is well defined for (almost) all x > 0, i.e.,

∫∞
0
|K1

α(x, y)f(y)| dy < ∞ for x > 0.
Clearly, if f is compactly supported in (0,∞), say in [c, d], 0 < c < d < ∞,
and

∫ d

c
|f(y)| dy < ∞, then

∫∞
0
|K1

ν (x, y)f(y)| dy < ∞, since, with given x > 0,
K1

ν (x, y) is a continuous function of y > 0. But if we assume
∫∞
0
|f(x)xA(1 +

x)B−A|p dx <∞ with A < 1− 1/p+ (α+ 1/2) (≤ if p = 1) and B > −1− 1/p (≥
if p = 1), then S1

νf(x) is also well-defined for ν ≥ α and x > 0. This easily follows,
by using Hölder’s inequality and the estimates K1

ν (x, y) = O(yν+1/2), y → 0+,
and K1

ν (x, y) = O(y−2), y → ∞. The first estimate follows from the integral
representation of K1

ν (x, y) and the asymptotic

(6) Jν(t) = O(tν), t→ 0+,
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the second is a consequence of the Campbell-type representation ofK1
ν (x, y): cf. (26)

and follow the argument in the proof of Lemma 2 (now, with x and ν fixed!). There-
fore the second parts of (3) and (4) should be considered as “natural” assumptions.
An analysis also shows that the first conditions in (3) and (4) are dual to their right
counterparts.

It is instructive to compare the assumptions (3), (4) and (2) of Theorem 1
with those of Theorem 1.1 of [7] (partial sums case). The conditions on a and
A are exactly the same; this is probably explained by the fact that the kernels
K1

ν (x, y) and K0
ν (x, y) have the same behaviour in the neighbourhood of (0, 0). The

conditions on b and B are now relaxed (by one from both sides) when compared with
those from Theorem 1.1 of [7]. The most important difference is with the condition
on the relation between b and B; it becomes now very simple when compared with
that of Theorem 1.1 of [7]. Furthermore, the uniformity of (2) for large ν does not
imply additional restrictions: the condition b ≤ B is sufficient for (2) to hold for
ν ≥ α as well as for the single ν = α.

In [7] we compared a similar result proved there for partial sum operators (the
case of δ = 0) with Muckenhoupt’s result [4] proved for partial sum operators for
expansions with respect to the system of Laguerre functions

ψα
n(x) =

(
2Γ(n+ 1)

Γ(n+ α+ 1)

)1/2

e−x2/2 xα+1/2Lα
n(x2),

which form a complete orthonormal system in L2(0,∞) (for a motivation leading
to such a comparition see again [7]).

It seems worthy to compare our present result with that of Muckenhoupt and
Webb [5] specified to the first order Cesàro means and reformulated for expansions
with respect to {ψα

n}∞n=0,

σ
(α,1)
N (f, x) =

1
N + 1

N∑
n=0

(N + 1− n)〈f, ψα
n〉ψα

n(x).

An earlier result of Poiani, [6], admitted the case a = A and b = B only and did
not include some possibilities.

Theorem ([5], Theorem (2.29)). Let α > −1 and 1 ≤ p ≤ ∞. Then

(7) sup
N≥0

‖σ(α,1)
N (f, x)xa(1 + x)b−a‖p ≤ C‖f(x)xA(1 + x)B−A‖p,

holds with C = C(p, α, a, b, A,B) independent of f if and only if a, b, A,B and α
satisfy the conditions

(8) a ≥ −1− 1/p, a > −1/p− (α+ 1/2) (≥ if p = ∞),

(9) A ≤ a, A ≤ 1− 1/p+ 1/2, A < 1− 1/p+ (α+ 1/2) (≤ if p = 1),

(10) a+B ≥ min{−3−2/(3p),−2−2/p}, A+b ≤ min{4−2/p, 11/3−2/(3p)},

(11) b ≤ min{3− 1/p, 8/3 + 1/(3p)}, B ≥ max{−3 + 1/(3p),−2− 1/p},

(12) b ≤ B + min{0, 3− 4/(3p), 5/3 + 4/(3p)}.

The last parts of the assumptions (8) and (9) are identical with our assumptions
on a and A, cf. (3). This is caused by the fact that the kernel K1

α(x, y) and the
kernels that correspond to σ(α,1)

N have the same behaviour for small x and y. To see
this, one has to compare the result of Lemma 1 below with the estimate (2.3) of [5]
(because of the reformulation mentioned above, in (2.3) of [5] one has to take x2, y2

in place of x, y, and then multiply both sides by (xy)1/2). In general, however, the
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assumptions (8)–(12) from the Laguerre case are much more involved than those
from Theorem 1. This is again explained by more complicated nature of estimates
of the first order Cesàro kernels in the Laguerre case (cf. (2.3), (2.4) and (2.2) in
[5] with necessary modifications) when compared with the estimates contained in
Lemmas 1–4 below.

2. Preliminaries

We start with writing an exact expression for the kernel

K1
ν (x, y) =

√
xy

∫ 1

0

s(1− s2)Jν(xs)Jν(ys) ds

that corresponds to the Bochner-Riesz mean S1
ν . We use the notation

u = x2 − y2, v = x2 + y2

and

F1(x, y) =
√
xyJν(x)Jν(y), F2(x, y) =

√
xyJ ′ν(x)Jν(y),

F3(x, y) =
√
xyJν(x)J ′ν(y), F4(x, y) =

√
xyJ ′ν(x)J ′ν(y).

Then we have

K1
ν (x, y)(13)

=
2
u2

(
(2ν2 − v)F1(x, y)− 2x

v

u
F2(x, y) + 2y

v

u
F3(x, y)− 2xyF4(x, y)

)
whenever x 6= y. This may be checked by noting that

(14) K1
ν (x, y) = 2D2F1(x, y)

where

D =
1
u

(
y
∂

∂y
− x

∂

∂x

)
,

using D(fgh) = D(f)gh + fD(g)h + fgD(h) and D(xaybu−c) = xaybu−c−2((b −
a)u+ 2cv), a, b, c ∈ R, and observing how D acts on Fi, i = 1, 2, 3:

D(F1) =
1
u

(−xF2 + yF3),

D(F2) =
1
u

(
−ν

2 − x2

x
F1 + F2 + yF4

)
,

D(F3) =
1
u

(
ν2 − y2

y
F1 − F3 − xF4

)
;

the identities are obtained by using the fact that Jν(x) satisfies Bessel’s differential
equation J ′′ν (x) = ((ν2 − x2)/x2)Jν(x) − (1/x)J ′ν(x). To verify (14) we first use
Lommel’s formula∫ s

0

tJν(xt)Jν(yt) dt = s
xJν+1(sx)Jν(sy)− yJν(sx)Jν+1(sy)

x2 − y2
,

with s = 1, the identity xJν+1(x) = νJν(x)− xJ ′ν(x) and the expression on D(F1)
to obtain K0

ν (x, y) = DF1(x, y), where K0
ν (x, y) denotes the integral kernel of S0

ν =
S0

ν,1. Then, integrating by parts, using Lommel’s formula and the expression on
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D(F1) shows that

K1
ν (x, y) =

√
xy

∫ 1

0

(1− s2)sJν(xs)Jν(ys) ds

= 2
√
xy

∫ 1

0

s · sxJν+1(sx)Jν(sy)− yJν(sx)Jν+1(sy)
x2 − y2

ds

= 2
√
xy

∫ 1

0

sD(Jν(sx)Jν(sy)) ds

= 2DK0
ν (x, y).

This completes checking (14). We should add at this point that according to the
Laguerre case, (14) could be called a Campbell-type formula.

If ν = −1/2 then J−1/2(u) = (2/(πu))1/2 cosu and H−1/2 reduces to the cosine
transform. A direct calculation of the integral representing K1

−1/2(x, y) then shows
that

K1
−1/2(x, y) =

2
π

(
1

(x− y)3
sin(x− y)− 1

(x− y)2
cos(x− y) +

1
(x+ y)3

sin(x+ y)

− 1
(x+ y)2

cos(x+ y)
)
.

Similarly, if ν = 1/2 then J1/2(u) = (2/(πu))1/2 sinu, H1/2 reduces to the sine
transform and

K1
1/2(x, y) =

2
π

(
1

(x− y)3
sin(x− y)− 1

(x− y)2
cos(x− y)− 1

(x+ y)3
sin(x+ y)

+
1

(x+ y)2
cos(x+ y)

)
.

These two exact formulas (consistent with (13)!) give an immediate insight on
how estimates of K1

ν (x, y) should look like, for a single ν, in different regions of
the quarter plane. For estimates uniform on ν, (13) together with the uniform
estimates that follow are required.

We will make an extensive use of the following uniform pointwise estimates of
Bessel functions and their first derivatives: with a constant D, independent of ν
and x, for ν ≥ 1,

(15) |x1/2Jν(x)| ≤ D


xν+1/2(Γ(ν + 1)2ν)−1, 0 < x < ν/2,
ν1/4(ν1/3 + |x− ν|)−1/4, ν/2 < x < 2ν,
1, 2ν < x <∞,

and

(16) |x1/2J ′ν(x)| ≤ D


νxν−1/2(Γ(ν + 1)2ν)−1, 0 < x < ν/2,
ν−1/4(ν1/3 + |x− ν|)1/4, ν/2 < x < 2ν,
1, 2ν < x <∞,

and, for −1 < ν < 1,

(17) |x1/2Jν(x)| ≤ D

{
xν+1/2(Γ(ν + 1))−1, 0 < x < 1/2,
1, 1/2 < x <∞,

and

(18) |x1/2J ′ν(x)| ≤ D

{
xν−1/2(Γ(ν + 1))−1, 0 < x < 1/2,
1, 1/2 < x <∞.
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In the case ν = 0, the bound x−1/2 in (18) has to be replaced by x3/2. (15) and (16)
are direct consequences of the delicate bounds done by Barceló and Córdoba; they
follow from the table on p. 661 of [1], or p. 24 of [2]. The transition point x = ν/2
in (15) and (16) may be replaced (clearly, with a different D) by (1 + ε)ν/2, or in
(17) and (18), x = 1/2 may be replaced by (1 + ε)/2, where 0 < ε < 1 is chosen
earlier; cf. [7] for additional comments.

Denoting by Φν(x) the function that appears on the right of (15) when ν ≥ 1 or
on the right of (17) when −1 < ν < 1, we have

(19) |
√
xJν(x)| ≤ DΦν(x).

Accordingly, (16) and (18) may be written in the following form

(20) |
√
xJ ′ν(x)| ≤ C

√
|ν2 − x2|+ x4/3

x
Φν(x)

when ν ≥ 1 and

(21) |
√
xJ ′ν(x)| ≤ C

x+ 1
x

Φν(x)

when −1 < ν < 1 with the exception for ν = 0; then (x + 1)/x is replaced by
x/(x+ 1).

For the purpose of kernel estimates that are proved in Lemma 1 it is much more
convenient to split (ν/2, 2ν) into the three intervals (ν/2, ν−ν1/3), (ν−ν1/3, ν+ν1/3)
and (ν + ν1/3, 2ν) and, instead of Φν(x) in (19) use, if ν ≥ 3, say, the (equivalent)
bound by

Φ̃ν(x) =



xν+1/2(Γ(ν + 1)2ν)−1, 0 < x ≤ ν/2,
ν1/4(ν − x)−1/4, ν/2 < x ≤ ν − ν1/3,

ν1/6, ν − ν1/3 < x ≤ ν + ν1/3,

ν1/4(x− ν)−1/4, ν + ν1/3 < x ≤ 2ν,
1, 2ν < x.

We have, for certain aν , bν and cν , the asymptotic

(22)
√
tJν(t) =

√
2/π

(
cos(t+ aν) + bν

sin(t+ cν)
t

+O(t−2)
)
, t→∞.

At several places of the next section, without further refering to it, Stirling’s formula
is used:

lim
ν→∞

νν+1/2e−νΓ(ν + 1)−1 = (2π)−1/2.

Given p, 1 ≤ p ≤ ∞, p′ denotes its conjugate, 1/p+ 1/p′ = 1.

3. Kernel estimates and bounds for K1
ν in different regions

In the sequel we write ν = ν if ν ≥ 1 and ν = 1 if −1 < ν ≤ 1. Also, we use the
notation

wa,b(x) = xa(1 + x)b−a.

The lemmas that follow give proper estimates of the kernel K1
ν (x, y) in different

regions of the quarter plane (0,∞)×(0,∞). The corresponding propositions furnish
weighted Lp bounds of associated kernel operators restricted to relevant regions with
minimal assumptions required on a, b, A,B. In the propositions the constant C will
depend on α, p, a, b, A,B but will not depend on ν ≥ α and f . At several places
the usual interpretation of the Lp norm is needed when p = ∞.
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Lemma 1. There exists C > 0 independent of ν > −1 such that

∣∣K1
ν (x, y)

∣∣ ≤ C

{
(xy)ν+1/2/(Γ(ν + 2)2ν)2, 0 < x, y < 2ν/3,
1, x, y > ν/2.

Proof. Using (15) and (17) gives, for 0 < x, y < 2ν/3,

∣∣K1
ν (x, y)

∣∣ ≤ C
(xy)ν+1/2

Γ(ν + 1)222ν

∫ 1

0

(1− s2)s2ν+1 ds.

To get the required bound we use∫ 1

0

(1− s2)s2ν+1 ds =
1
2

Γ(ν + 1)Γ(2)
Γ(ν + 3)

and then majorize the last expression by C(1 + ν)−2. To prove the estimate for
x, y > ν/2 we note that by Schwarz’s inequality we have |K1

ν (x, y)|2 ≤ Aν(x)Aν(y),
where

Aν(x) =
∫ 1

0

(1− s2)(
√
xsJν(xs))2 ds.

It is therefore sufficient to check that Aν(x) ≤ C for x > ν/2. In what follows
we consider the case ν ≥ 1 only (analysing the case −1 < ν < 1 is much easier).
In fact we also assume that ν ≥ 3. We consider four cases to estimate Aν(x):
ν/2 < x ≤ ν − ν1/3, ν − ν1/3 < x ≤ ν + ν1/3, ν + ν1/3 < x ≤ 2ν, and 2ν < x.

Case 1 : ν/2 < x ≤ ν − ν1/3. By (19), (here and in the sequel we use (19) with
Φ̃ν(x) in place of Φν(x))

|
√
xsJν(xs)| ≤ C

{
(xs)ν+1/2(Γ(ν + 1)2ν)−1, 0 < s ≤ ν/(2x),
ν1/4(ν − xs)−1/4, ν/(2x) < s < 1.

Therefore,

Aν(x) ≤ C

(
x2ν+1(Γ(ν + 1)2ν)−2

∫ ν/(2x)

0

(1− s2)s2ν+1 ds

+ ν1/2

∫ 1

ν/(2x)

(1− s2)(ν − xs)−1/2 ds

)
.

The first summand above is bounded by using∫ ν/(2x)

0

(1− s2)s2ν+1 ds ≤ C
1

2(ν + 1)

( ν
2x

)2(ν+1)

and Stirling’s formula. For the second summand we write∫ 1

ν/(2x)

(1− s2)(ν − xs)−1/2 ds ≤
∫ ν/x

ν/(2x)

(ν − xs)−1/2 ds

and note that the last integral is bounded by Cν−1/2 which gives the correct bound
of the second summand. The claim, Aν(x) ≤ C, now follows.

Case 2 : ν − ν1/3 < x < ν + ν1/3. From (19), the following estimate holds:

|
√
xsJν(xs)| ≤ C


(xs)ν+1/2(Γ(ν + 1)2ν)−1, 0 < s ≤ ν/(2x),
ν1/4(ν − xs)−1/4, ν/(2x) < s ≤ (ν − ν1/3)/x,
ν1/6, (ν − ν1/3)/x < s < 1.
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Therefore,

Aν(x) ≤ C

(
x2ν+1(Γ(ν + 1)2ν)−2

∫ ν/(2x)

0

(1− s2)s2ν+1 ds

+ ν1/2

∫ (ν−ν1/3)/x

ν/(2x)

(1− s2)(ν − xs)−1/2 ds+ ν1/3

∫ 1

(ν−ν1/3)/x

(1− s2) ds
)
.

The first summand is that from Case 1. The same is with the second summand once
we enlarge the upper integral limit from (ν−ν1/3)/x to 1. The integral contained in
the third summand is easily seen to be bounded by Cν−1/3 which gives the correct
bound of the summand. The claim, Aν(x) ≤ C, again follows.

Case 3 : ν + ν1/3 < x ≤ 2ν. As in the previous cases we use (19) obtaining:

|
√
xsJν(xs)| ≤ C


(xs)ν+1/2(Γ(ν + 1)2ν)−1, 0 < s ≤ ν/(2x),
ν1/4(ν − xs)−1/4, ν/(2x) < s ≤ (ν − ν1/3)/x,
ν1/6, (ν − ν1/3)/x < s ≤ (ν + ν1/3)/x,
ν1/4(xs− ν)−1/4, (ν + ν1/3)/x < s < 1.

Next, we bound Aν(x) by splitting the integration accordingly. The first two re-
sulting terms are exactly those from Case 2. The same is with the third one once
the upper integral limit is enlarged from (ν + ν1/3)/x to 1. The fourth resulting
term is

ν1/2

∫ 1

(ν+ν1/3)/x

(1− s2)(xs− ν)−1/2 ds

and the required claim follows since∫ 1

(ν+ν1/3)/x

(1− s2)(xs− ν)−1/2 ds ≤ Cx−1/2

∫ 1

ν/x

(
s− ν

x

)−1/2

ds ≤ Cν−1/2.

Case 4 : 2ν < x. In this situation we have

|
√
xsJν(xs)| ≤ C



(xs)ν+1/2(Γ(ν + 1)2ν)−1, 0 < s ≤ ν/(2x),
ν1/4(ν − xs)−1/4, ν/(2x) < s ≤ (ν − ν1/3)/x,
ν1/6, (ν − ν1/3)/x < s ≤ (ν + ν1/3)/x,
ν1/4(xs− ν)−1/4, (ν + ν1/3)/x < s ≤ 2ν/x,
1, 2ν/x < s < 1.

Again, we bound Aν(x) by properly splitting the integration and noting that the
first three resulting terms are those from Case 3. The same is with the fourth
one after replacing the upper integral limit 2ν/x by 1. The fifth resulting term is∫ 1

2ν/x
(1− s2) ds and it is obviously bounded by a constant. This finishes the proof

of Case 4 hence the lemma. �

Proposition 1. Let α > −1 and 1 ≤ p ≤ ∞. Assuming a > −1/p− (α+ 1/2) (≥
if p = ∞) and A < 1− 1/p+ (α+ 1/2) (≤ if p = 1) we have

(23)
∫ 2ν/3

0

(
wa,b(x)

∫ 2ν/3

0

|K1
ν (x, y)f(y)| dy

)p

dx ≤ C

∫ 2ν/3

0

|f(y)wA,B(y)|p dy,

for ν ≥ α, while, assuming in addition b ≤ B, for ν ≥ α we have
(24)∫ ∞

ν/2

(
wa,b(x)

∫ ∞

ν/2

χD(x, y)|K1
ν (x, y)f(y)| dy

)p

dx ≤ C

∫ ∞

ν/2

|f(y)wA,B(y)|p dy,

where D = {(x, y) : |x− y| ≤ 1}.
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Proof. Proving (23) use the bound on |K1
ν (x, y)| from Lemma 1 and consider p = 1

first. Then split the integration regions [0, 2ν/3] in the double integral using 2/3 as
breakpoints and change the order of integration to end up with four integrals to be
estimated by a constant multiple of either

∫ 2/3

0
|f(y)|yA dy or

∫ 2ν/3

2/3
|f(y)|yB dy. If

the y-region of integration is [0, 2/3], then merely replace yν+1/2 by yA (using the
assumption A ≤ α+ 1/2) and note that the integrals∫ 2/3

0

xa+ν+1/2 dx,

∫ 2ν/3

2/3

xb+ν+1/2 dx,

when multiplied by (Γ(ν + 2)2ν)−2 give bounded functions of ν ≥ α. If the y-
region of integration is [2/3, 2ν/3] then, for large values of ν say, replace yν+1/2 by
(2ν/3)ν+1/2−ByB and, in the case of the x-integration over [2/3, 2ν/3], note that

1
(Γ(ν + 2)2ν)2

(2
3
ν
)ν+1/2−B

∫ 2ν/3

2/3

xb+ν+1/2 dx

is a bounded function of large ν (note that the possible growth of xb−B−2 is compen-
sated by the decay of (e/3)ν). The remaining case of the x-integration over [0, 2/3]
is similar (and easier). In the case 1 < p <∞ apply the analogous argument using
Hölder’s inequality in appropriate places (cf. also the proof of Lemma 2.1 in [7]).
Consider now p = ∞. It is then sufficient to show that, for ν ≥ α, the quantities

1
(Γ(ν + 2)2ν)2

sup
0<x<2/3

[
xa+ν+1/2

∫ 2ν/3

0

yν+1/2|f(y)| dy
]

and
1

(Γ(ν + 2)2ν)2
sup

2/3<x<2ν/3

[
xb+ν+1/2

∫ 2ν/3

0

yν+1/2|f(y)| dy
]

are bounded by a constant (independent of ν ≥ α) multiplied by the sum

sup
0<y<2/3

yA|f(y)|+ sup
2/3<y<2ν/3

yB |f(y)|.

This is easily done by using the assumptions a ≥ −(α+1/2) and A < 1+(α+1/2).
Proving (24) use Lemma 1 and note that only ν ≥ 1 may be considered. Let

p = 1. It is sufficient to show that∫ ∞

ν/2

xb

∫ ∞

ν/2

χ[0,1](|x− y|)|f(y)| dy dx ≤ C

∫ ∞

ν/2

|f(y)| yB dy

with C independent of ν ≥ 1. The inequality immediately follows by changing the
order of integration, noting that for y ≥ ν/2 and ν ≥ 1∫ ∞

ν/2

xbχ[0,1](|x− y|) dx ≤ Cyb,

and using b ≤ B. Consider now the case 1 < p ≤ ∞. By using b ≤ B it is easily
seen that (24) is implied by∫ ∞

ν/2

(∫ x+1

x−1

|χ[ν/2,∞](y)g(y)| dy
)p

dx ≤ C

∫ ∞

ν/2

|g(y)|p dy,

where ν ≥ 1. This, in order, follows from the well-known standard norm inequality
for the maximal function since, for x ≥ ν/2 and ν ≥ 1,∫ x+1

x−1

|χ[ν/2,∞](y)g(y)| dy ≤ CM(χ[ν/2,∞]g)(x).

�
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Lemma 2. Let α > −1. There exists a constant C independent of ν ≥ α such that
for |x− y| ≥ 1 and x, y ≥ 5ν/4,

(25) |K1
ν (x, y)| ≤ C|x− y|−2.

Proof. Using (13) gives

(26) |K1
ν (x, y)| ≤ 2|u|−2

(
|2ν2 − v||F1|+

2v
|u|

(x|F2|+ y|F3|) + 2xy|F4|
)
.

Since |Fi| ≤ C on x, y ≥ ν, see (15)–(18), the conclusion then follows by noting
that each of the terms, |2ν2− (x2 +y2)|, v, xy, when divided by (x+y)2 is bounded
on the indicated range of x and y. �

Proposition 2. Let α > −1, 1 ≤ p ≤ ∞, b ≤ B, b < 2 − 1/p (≤ if p = ∞), and
B > −1− 1/p (≥ if p = 1). Then, for ν ≥ α,
(27)∫ ∞

5ν/4

(
wa,b(x)

∫ ∞

5ν/4

χDc(x, y)|K1
ν (x, y)f(y)| dy

)p

dx ≤ C

∫ ∞

5ν/4

|f(y)wA,B(y)|p dy,

where Dc = {(x, y) : |x− y| ≥ 1}.

Proof. Consider first p = 1. Then (27) reduces to showing that∫ ∞

5ν/4

∫ ∞

5ν/4

χ[1,∞)(|x− y|)xby−B |g(y)|
|x− y|2

dy dx ≤ C

∫ ∞

2ν

|g(y)| dy

and this is a consequence of (this time b < 1 is used)

sup
ν≥α

sup
y≥5ν/4

[
y−B

∫ ∞

5ν/4

xbχ[1,∞)(|x− y|) 1
|x− y|2

dx

]
<∞.

In the case p = ∞, (27) reduces to showing that

sup
x≥5ν/4

[
xb

∫ ∞

5ν/4

χDc(x, y)
|g(y)|
|x− y|2

y−B dy

]
≤ C sup

y≥5ν/4

|g(y)|

and this easily follows by noting that (B > −1 is used)

sup
ν≥α

sup
x≥5ν/4

[
xb

∫ ∞

2ν

χ[1,∞)(|x− y|) 1
yB |x− y|2

dy

]
<∞.

Consider now the case 1 < p < ∞. We decompose the y-range in [5ν/4, x/2],
[x/2, 2x] and [2x,∞). Then,∫ ∞

5ν/4

(
wa,b(x)

∫ x/2

5ν/4

χDc(x, y)|K1
ν (x, y)f(y)| dy

)p

dx

≤ C

∫ ∞

5ν/4

(
xb−2

∫ x

5ν/4

|f(y)| dy
)p

dx,

and an application of Hölder’s inequality shows that the last expression is bounded
by the right side of (27). Similarly,∫ ∞

5ν/4

(
wa,b(x)

∫ ∞

2x

χDc(x, y)|K1
ν (x, y)f(y)| dy

)p

dx ≤ C

∫ ∞

5ν/4

(
xb

∫ ∞

x

|f(y)|
y2

dy

)p

dx

and again Hölder’s inequality does the job. Proving∫ ∞

5ν/4

(
wa,b(x)

∫ 2x

x/2

χDc(x, y)|K1
ν (x, y)f(y)| dy

)p

dx ≤ C

∫ ∞

5ν/4

|wA,B(x)f(x)|p dx
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reduces to showing that∫ ∞

5ν/4

xp(b−B)

(∫ 2x

x/2

χ[1,∞](|x− y|) |g(y)|
|x− y|2

dy

)p

dx ≤ C

∫ ∞

5ν/4

|g(x)|p dx.

By the assumption b ≤ B, we obtain∫ ∞

5ν/4

xp(b−B)

(∫ 2x

x/2

χ[1,∞](|x− y|) |g(y)|
|x− y|2

dy

)p

dx

≤ C

∫ ∞

5ν/4

( ∞∑
k=1

∫
|x−y|∼2k

|g(y)|
|x− y|2

χ[5ν/4,∞](y) dy

)p

dx

≤ C

∫ ∞

5ν/4

( ∞∑
k=1

2−2k

∫
|x−y|∼2k

|g(y)|χ[5ν/4,∞](y) dy

)p

dx

≤ C

∫ ∞

5ν/4

M(χ[5ν/4,∞)g)(x)p dx.

Using the fact that M is a bounded operator on Lp for 1 < p < ∞, we conclude
the proof of Proposition 2. �

Lemma 3. There exists a constant C independent of ν ≥ 1 such that for |x−y| ≥ 1
and ν/2 ≤ x, y ≤ 3ν/2,

(28) |K1
ν (x, y)| ≤ C|x− y|−2

((
|ν − x|+ ν1/3

|ν − y|+ ν1/3

)1/4

+
(
|ν − y|+ ν1/3

|ν − x|+ ν1/3

)1/4
)
.

Proof. Applying (19) and (20) to (26) leads to

(29) |K1
ν (x, y)| ≤ CΦν(x)Φν(y)|u|−2

(
|2ν2 − v|+ v

|u|
(|ν2 − x2|+ x4/3)1/2

+
v

|u|
(|ν2 − y2|+ y4/3)1/2 + (|ν2 − x2|+ x4/3)1/2(|ν2 − y2|+ y4/3)1/2

)
.

Then the estimates for Φν on the range (ν/2, 3ν/2) give

|K1
ν (x, y)| ≤ C|x− y|−2(|ν − x|+ ν1/3)−1/4(|ν − y|+ ν1/3)−1/4ν−3/2

×
(
ν
[
|ν − x|+ |ν − y|

]
+ ν3/2

[
(|ν − x|+ ν1/3)1/2 + (|ν − y|+ ν1/3)1/2

]
+ ν
(
|ν − x|+ ν1/3

)1/2(|ν − y|+ ν1/3
)1/2

)
.

A careful analysis then shows that each of the three resulting summands is bounded
by the right side of (28). �

Proposition 3. Let α ≥ 1, 1 ≤ p ≤ ∞, and b ≤ B. Then, for ν ≥ α,
(30)∫ 3ν/2

ν/2

(
wa,b(x)

∫ 3ν/2

ν/2

χDc(x, y)|K1
ν (x, y)f(y)| dy

)p

dx ≤ C

∫ 3ν/2

ν/2

|f(y)wA,B(y)|p dy.

Proof. By using (28) and the assumption b ≤ B, (30) will follow from

(31)
(∫ 3ν/2

ν/2

(∫ 3ν/2

ν/2

χDc(x, y)
|f(y)|
|x− y|2

(
|ν − x|+ ν1/3

|ν − y|+ ν1/3

)1/4

dy

)p

dx

)1/p

≤ C

(∫ 3ν/2

ν/2

|f(y)|p dy
)1/p
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and an analogous inequality with the second term from the right side of (28) in-
volved. Since in the latter case the argument is completely similar to what we
present below we do not repeat it. The change of variables X = ν−1/3(x − ν),
Y = ν−1/3(y− ν), shows that the left side of (31) equals ν−1/3+1/(3p) multiplied by(∫ ν2/3/2

−ν2/3/2

(∫ ν2/3/2

−ν2/3/2

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
|X − Y |2

(
1 + |X|
1 + |Y |

)1/4

dY

)p

dX

)1/p

,

with F (Y ) = f(Y ν1/3+ν). By symmetry, it is now enough to majorize the quantity(∫ ν2/3/2

0

(∫ ν2/3/2

−ν2/3/2

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
|X − Y |2

(
1 + |X|
1 + |Y |

)1/4

dY

)p

dX

)1/p

by ν1/3−1/(3p) times the right side of (31). We decompose the Y -range into five
intervals [−ν2/3/2,−X], [−X, 0], [0, X/2], [X/2, 2X] and [2X, ν2/3/2] (the extreme
intervals may be void, the second one may reduce to [−ν2/3/2, 0]) and denote the
resulting double integrals by Ii, i = 1, . . . , 5. We will focus on proving that

(32) Ii ≤ Cν1/3−1/(3p)

(∫ 3ν/2

ν/2

|f(y)|p dy
)1/p

, i = 1, . . . , 5.

Let i = 1. If Y ∈ [−ν2/3/2,−X] then |X − Y |−2 ≤ C|Y |−2, the change of variable
Y = −T and Hölder’s inequality produce the following bound of I1:(∫ ν2/3/2

0

(∫ −X

−ν2/3/2

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
|X − Y |2

(
1 + |X|
1 + |Y |

)1/4

dY

)p

dX

)1/p

≤ C

(∫ ν2/3/2

0

(∫ ν2/3/2

X

χ{X+T>ν−1/3}(X,T )
|F (−T )|
T 2

(
1 +X

1 + T

)1/4

dT

)p

dX

)1/p

≤ C

(∫ ν2/3/2

0

(∫ ν2/3/2

max{X,ν−1/3−X}

|F (−T )|
T 2

dT

)p

dX

)1/p

≤ Cν−1/(3p)

(∫ ν2/3/2

0

(∫ ν2/3/2

max{X,2ν−1/3−X}
T−2p′ dT

)p/p′

dX

)1/p

×
(∫ 3ν/2

ν/2

|f(y)|p dy
)1/p

.

This proves (32) for i = 1 since(∫ ν2/3/2

0

(∫ ν2/3/2

max{X,ν−1/3−X}
T−2p′ dT

)p/p′

dX

)1/p

≤ Cν1/3.

Let i = 2. If Y ∈ [−X, 0] then |X−Y |−2 ≤ C|X|−2, the change of variable Y = −T
and Hölder’s inequality similarly show that I2 is bounded by ν−1/(3p) multiplied by
the product of

(33)
(∫ ν2/3/2

0

X−2p

(∫ X

max{0,ν−1/3−X}

(
1 +X

1 + T

)p′/4

dT

)p/p′

dX

)1/p

and the right side of (31). This completes the proof of (32) for i = 2 once we note
that (33) is O(ν1/3). Consider the case i = 3. Then I3 equals(∫ ν2/3/2

ν−1/3

(∫ X/2

0

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
|X − Y |2

(
1 +X

1 + Y

)1/4

dY

)p

dX

)1/p
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and we further split the X-range onto [ν−1/3, 1] and [1, ν2/3/2] denoting the result-
ing double integrals by I31 and I32. Then

I31 ≤ C

(∫ 1

ν−1/3

(∫ min{X/2,X−ν−1/3}

0

|F (Y )|
X2

dY

)p

dX

)1/p

≤ C

[(∫ 2ν−1/3

ν−1/3

(∫ X−ν−1/3

0

|F (Y )|
X2

dY

)p

dX

)1/p

+
(∫ 1

2ν−1/3

(∫ X/2

0

|F (Y )|
X2

dY

)p

dX

)1/p]
≤ Cν−1/(3p)

[(∫ 2ν−1/3

ν−1/3
X−2p(X − ν−1/3)p/p′ dX

)1/p

+
(∫ 1

2ν−1/3
Xp(1/p′−2) dX

)1/p](∫ 3ν/2

ν/2

|f(y)|p dy
)1/p

where, in the last line, Hölder’s inequality was used. Now, the bound(∫ 2ν−1/3

ν−1/3
X−2p(X − ν−1/3)p/p′dX

)1/p

+
(∫ 1

2ν−1/3
Xp(1/p′−2) dX

)1/p

≤ Cν1/3

shows (32) for I31. Similarly, using Hölder’s inequality again, we majorize I32 by
ν−1/(3p) times the product of

(34)
(∫ ν2/3/2

1

X−7p/4

(∫ X

0

(1 + Y )−p′/4 dY

)p/p′

dX

)1/p

and the right side of (31). Thus (32) follows for I32, hence also for I3, since (34) is
O(ν1/3). Consider the case i = 4. Then I4 equals(∫ ν2/3/2

0

(∫ 2X

X/2

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
|X − Y |2

(
1 +X

1 + Y

)1/4

dY

)p

dX

)1/p

and we further bound it by

C

(∫ ν2/3/2

0

(∫ 2X

X/2

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
|X − Y |2

dY

)p

dX

)1/p

≤ C

(∫ ν2/3/2

0

( ∞∑
k=k1

∫
|X−Y |∼2k

|χ[0,ν2/3/2](Y )F (Y )|
|X − Y |2

dY

)p

dX

)1/p

≤ C

(∫ ν2/3/2

0

( ∞∑
k=k1

2−2k

∫
|X−Y |∼2k

|χ[0,ν2/3/2](Y )F (Y )| dY
)p

dX

)1/p

≤ C

(∫ ν2/3/2

0

( ∞∑
k=k1

2−kM(χ[0,ν2/3/2]F )(X)
)p

dX

)1/p

≤ Cν1/3

(∫ ν2/3/2

0

M(χ[0,ν2/3/2]F )(X)p dX

)1/p

with k1 = [−(log2 ν)/3] − 1. Using the fact that M is a bounded operator on Lp

we finish the proof of (32) for i = 4. Consider the case i = 5. Then I5 equals(∫ ν2/3/2

0

(∫ ν2/3/2

2X

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
|X − Y |2

(
1 +X

1 + Y

)1/4

dY

)p

dX

)1/p
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and is easily seen to be bounded by a constant multiplied by the sum of

I51 =
(∫ 1

0

(∫ ν2/3/2

2X

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
Y 2

dY

)p

dX

)1/p

and

I52 =
(∫ ν2/3/2

1

(∫ ν2/3/2

2X

χ{|X−Y |>ν−1/3}(X,Y )
|F (Y )|
Y 2

dY

)p

dX

)1/p

.

Using Hölder’s inequality and the estimate(∫ 1

0

(∫ ν2/3/2

max{X+ν−1/3,2X}
Y −2 dY

)p/p′

dX

)1/p

≤ Cν1/3

(decompose the X-range into [0, ν−1/3] and [ν−1/3, 1]) shows that

I51 ≤ C

(∫ 1

0

(∫ ν2/3/2

max{X+ν−1/3,2X}

|F (Y )|
Y 2

dY

)p

dX

)1/p

≤ Cν1/3−1/(3p)

(∫ 3ν/2

ν/2

|f(y)|p dy
)1/p

.

Similarly, the estimate(∫ ν2/3/2

1

(∫ ν2/3/2

2X

Y −2p′ dY

)p/p′

dX

)1/p

≤ Cν1/3

and Hölder’s inequality produce

I52 ≤ C

(∫ ν2/3/2

1

(∫ 3ν2/3

2X

Y −2p′ dY

)p/p′

dX

)1/p(∫ ν2/3/2

−ν2/3/2

|F (Y )|p dY
)1/p

≤ Cν1/3−1/(3p)

(∫ 3ν/2

ν/2

|f(y)|p dy
)1/p

.

This finishes the proof of (32) for i = 5 hence the proposition. �

Lemma 4. Let
R1 = [2ν/3,∞)× [0, ν/2], R2 = [3ν/2,∞)× [ν/2, 5ν/4],
R3 = [0, ν/2]× [2ν/3,∞), R4 = [ν/2, 5ν/4]× [3ν/2,∞).

Then there exists a constant C independent of ν > −1 such that

|K1
ν (x, y)χRi

(x, y)| ≤ C
Φν(x)Φν(y)
|x− y|2

, i = 1, 2, 3, 4.

Proof. We discuss the case ν ≥ 1 only (if ν < 1 our argument also applies but
the right side of (29) must be suitably modified). It is sufficient to check that the
expression in parentheses on the right side of (29) divided by (x + y)2 is bounded
by a constant. In R1, x ≤ x + y ≤ 7x/4 and x/4 ≤ x − y ≤ x, therefore v/|u| is
bounded. Also each of the terms (|ν2 − x2|+ x4/3)1/2, (|ν2 − y2|+ y4/3)1/2, when
divided by x+ y is bounded. Finally, |2ν2 − (x2 + y2)| when divided by (x+ y)2 is
bounded. Similar analysis holds for i = 2, 3, 4. �

Proposition 4. Let α > −1, 1 ≤ p ≤ ∞ and a,A, b,B satisfy the assumptions (3)
and (4) of Theorem 1. Assume also that

b ≤


B + 1 + 1/2− 2/(3p), if 1 ≤ p < 4/3,
B + 1, if 4/3 ≤ p ≤ 4, (< if p = 4/3 or p = 4),
B + 1− 1/6 + 2/(3p), if 4 < p ≤ ∞.
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Then, for ν ≥ α,
(35)∫ ∞

0

(
wa,b(x)

∫ ∞

0

χRi(x, y)|K1
ν (x, y)f(y)| dy

)p

dx ≤ C

∫ ∞

0

|f(y)wA,B(y)|p dy,

where Ri, i = 1, . . . , 4, are as in Lemma 4.

Proof. Denote the left side of the inequality to be proved raised to the 1/p th power
(with the usual interpretation when p = ∞) by Fi = Fi(a, b, p, ν; f). Consider first
the case i = 1. Using the bound from Lemma 4 and Hölder’s inequality gives

F1 =
(∫ ∞

0

(
wa,b(x)

∫ ∞

0

χR1(x, y)|K1
ν (x, y)f(y)| dy

)p

dx

)1/p

≤ C

(∫ ∞

2ν/3

(
xb

∫ ν/2

0

|f(y)|Φν(x)Φν(y)
|x− y|2

dy

)p

dx

)1/p

≤ C

(∫ ∞

2ν/3

(
xb−2Φν(x)

∫ ν/2

0

|f(y)|Φν(y) dy
)p

dx

)1/p

≤ C‖χ(2ν/3,∞)(x)xb−2Φν(x)‖p · ‖χ(0,ν/2)(y)wA,B(y)−1Φν(y)‖p′ · ‖f(y)wA,B(y)‖p.

The product of the first two terms following the last C above is a continuous
function of ν ∈ [α,∞). It is therefore sufficient to consider large ν’s; analogous
remark applies when analysing Fi, i = 2, 3, 4. Thus, from now on we assume ν to
be large and write ν in place of ν. Then we have

‖χ(0,ν/2)(y)wA,B(y)−1Φν(y)‖p′(36)

≤ Cmax{‖χ(0,1)(y)y−AΦν(y)‖p′ , ‖χ(1,ν/2)(y)y−BΦν(y)‖p′}

≤ C2−νΓ(ν + 1)−1(ν/2)−B+ν+1/2,

where, to assure the convergence of the integral on [0, 1] the condition A < 1 −
1/p+ (α+ 1/2) was used (A ≤ α+ 1/2 when p = 1). Moreover,

(37) ‖χ(2ν/3,∞)(x)xb−2Φν(x)‖p ≤ Cνb−2+1/p


1, if p < 4,
(log ν)1/4, if p = 4,
ν1/6−2/(3p), if p > 4.

This is obtained by splitting the integration onto (2ν/3, 2ν) and (2ν,∞), using the
assumption b < 2− 1/p (b ≤ 2 when p = ∞) and then by inspection. We conclude
the analysis by noting that the product of majorants in (36) and (37) produces a
bounded function of ν ≥ 1.

In the case i = 2, to get the required bound we proceed as in the case just
discussed majorizing F2 by a constant times

‖χ(3ν/2,∞)(x)xb−2‖p · ‖χ(ν/2,5ν/4)(y)wA,B(y)−1Φν(y)‖p′ · ‖f(y)wA,B(y)‖p.

Again, we claim that the product of the first two terms above is a bounded function
of ν ≥ 1. This is because ‖χ(3ν/2,∞)(x)xb−2‖p = O(νb−2+1/p) and

‖χ(ν/2,5ν/4)(y)wA,B(y)−1Φν(y)‖p′ ≤ Cν−B+1−1/p


ν−1/2+2/(3p), if p < 4/3,
(log ν)1/4, if p = 4/3,
1, if p > 4/3.

Now, considering separately the cases p < 4/3, p = 4/3, p > 4/3 and using appro-
priate assumptions on the relation between b and B proves the claim.

Consider the case i = 3. This time we bound F3 by a constant times

‖χ(0,ν/2)(x)wa,b(x)Φν(x)‖p · ‖χ(2ν/3,∞)(y)y−(B+2)Φν(y)‖p′ · ‖f(y)wA,B(y)‖p.
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Similarly to (36) (the assumption a > −1/p− (α+1/2), with a ≥ −(α+1/2) when
p = ∞, is used), we obtain the estimate

‖χ(0,ν/2)(x)wa,b(x)Φν(x)‖p ≤ C2−νΓ(ν + 1)−1(ν/2)b+ν+1/2.

Moreover,

‖χ(2ν/3,∞)(y)y−(B+2)Φν(y)‖p′ ≤ Cν−B−1−1/p


ν−1/2+2/(3p), if p < 4/3,
(log ν)1/4, if p = 4/3,
1, if p > 4/3.

This is easily seen by splitting the integration onto (2ν/3, 2ν) and (2ν,∞), using the
relevant assumption and then by inspection. Combining these two bounds shows
that the product of the first two terms majorizing F3 is a bounded function of
ν ≥ 1.

Finally, consider i = 4. Then F4 is bounded by a constant times

‖χ(ν/2,5ν/4)(x)xbΦν(x)‖p · ‖χ(3ν/2,∞)(y)y−(B+2)‖p′ · ‖f(y)wA,B(y)‖p.

Here we use ‖χ(3ν/2,∞)(y)y−(B+2)‖p′ = O(ν−B−1−1/p) (the assumption B > −1−
1/p, B ≥ −2 when p = 1, is applied) and (37) with b instead of b − 2 (to be
precise with (ν/2, 5ν/4) in place of (2ν/3,∞)). Then, considering separately the
cases p < 4/3, p = 4/3, p > 4/3 and using appropriate assumptions on the relation
between b and B shows that the product of the two relevant terms is a bounded
function of ν ≥ 1. �

4. Proof of Theorem 1

We start with the proof of sufficiency in Theorem 1. If α < 1 and ν ∈ [α, 1],
then (2) is a consequence of the estimates contained in Propositions 1, 2 and 4. If
α ≥ 1 and ν ∈ [α,∞), then we use the estimates from Propositions 1–4 (note that
the regions that appear there cover the quarter plane (0,∞) × (0,∞)). Checking
the required assumptions shows that (3), (4) and (5) were used.

We now pass to the necessity. Checking of (3) relies on the asymptotics of
K1

α(x, y) at (0, 0). Indeed, to check the necessity of the first condition in (3) note
that for a sufficiently small ε = ε(α) we have Jα(s) ≥ Csα for 0 < s < ε. Hence,
for x, y ∈ (0, ε), K1

α(x, y) ≥ C(xy)α+1/2. Take f = χ(ε/2,ε); then, for x ∈ (0, ε),

S1
αf(x) =

∫ ∞

0

K1
α(x, y)f(y) dy ≥ Cxα+1/2

∫ ε

ε/2

yα+1/2 dy ≥ Cxα+1/2.

Thus, (here and later on an appropriate interpretation is needed if p = ∞), by (2),(∫ ε

0

x(α+1/2+a)p dx

)1/p

≤ C

(∫ ε

0

|S1
αf(x)xa(1 + x)b−a|p dx

)1/p

≤ C

(∫ ε

ε/2

|xA(1 + x)B−A|p dx
)1/p

<∞.

In consequence, a > −1/p− (α+ 1/2) (≥ if p = ∞) follows.
To verify the necessity of the second part of (3) define the function f by

f(x) =


x−1−A/(− log x)2, if p = 1,
x−1/p−A/(− log x), if 1 < p <∞,

x−A, if p = ∞,
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for 0 < x < ε and f(x) = 0 otherwise, and consider in (2) the sequence of functions
fn(x) = f(x)χ(ε/n,ε)(x). Then, supn≥1 ‖fn(x)xA(1 + x)B−A‖p < ∞ and, for 0 <
x < ε,

S1
αfn(x) =

∫ ∞

0

K1
α(x, y)fn(y) dy ≥ Cxα+1/2

∫ ε

ε/n

yα+1/2f(y) dy.

Thus, to keep ‖S1
αfn(x)xa(1 + x)b−a‖p uniformly bounded (with respect to n) re-

quires α+ 1/2−A− 1/p > −1 (≥ if p = 1), the second part of (3).
To check the necessity of the first condition in (4) choose a sufficiently small ε

such that Jα(y) > 0 for 0 < y < ε and take f = χ(ε/2,ε). Then, S1
αf(x) is the sum

of

(38) 2
∫ ε

ε/2

2α2 − (x2 + y2)
(x2 − y2)2

y1/2Jα(y) dy · x1/2Jα(x),

(39) −4x
∫ ε

ε/2

x2 + y2

(x2 − y2)3
y1/2Jα(y) dy · x1/2J ′α(x),

(40) 4
∫ ε

ε/2

y(x2 + y2)
(x2 − y2)3

y1/2J ′α(y) dy · x1/2Jα(x),

(41) −4x
∫ ε

ε/2

y

(x2 − y2)2
y1/2J ′α(y) dy · x1/2J ′α(x).

Since
x1/2Jα(x) = (2/π)1/2 cos

(
x− απ

2
− π

4

)
+O(x−1), x ≥ 1,

and
J ′α(x) =

α

x
Jα(x)− Jα+1(x),

hence
x1/2J ′α(x) = (2/π)1/2 sin

(
x− απ

2
− π

4

)
+O(x−1), x ≥ 1.

Let g and h, 4 < g < h < ∞, be such that x1/2Jα(x) ≥ 1/
√

2π for x ∈ X =
∪∞j=0(g+ 2πj, h+ 2πj). Then, for x ∈ X, the absolute values of (39), (40) and (41)
are less than Cx−3, while the (negative) value of (38) is less than −Cx−2. Thus,
for large values of x ∈ X, the sum of absolute values of (39), (40) and (41) is less
than the half of the absolute value of (38). Therefore, it is possible to choose g so
large that the former statement remains valid for all x ∈ X. Hence, with such a
choice of g, for x ∈ X, |S1

αf(x)| ≥ Cx−2, and using (2) produces(∫
X

x(b−2)p dx

)1/p

≤ C

(∫
X

|S1
αf(x)xa(1 + x)b−a|p dx

)1/p

≤ C

(∫ ε

ε/2

|f(x)xA(1 + x)B−A|p dx
)1/p

<∞.

In consequence, b < 2− 1/p (≤ if p = ∞) follows.
To check the necessity of the second condition in (4), define the function f by

f(x) =


x−1−B/(log x)2, if p = 1,
x−1/p−B/(log x), if 1 < p <∞,

x−B , if p = ∞,

for x ≥ 2 and f(x) = 0 otherwise. Then choose an interval (g, h), 1 < g < h <∞,
such that Jα(x) < 0 and J ′α(x) > 0 for x ∈ (g, h). In addition, choose G and H,
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2 max{g, α} < G < H < ∞ in such a way that y1/2Jα(y) ≥ 1/
√

2π and J ′α(y) ≤ 0
for y ∈ Y = ∪∞j=0(G + 2πj,H + 2πj). Consider in (2) the sequence of functions
fn(x) = f(x)χYn(x), Yn = Y ∩ (2, n). Then, supn≥1 ‖fn(x)xA(1 + x)B−A‖p < ∞
and S1

αfn(x) is the sum of

I1(n, x) = 2
∫

Yn

f(y)
2α2 − (x2 + y2)

(x2 − y2)2
y1/2Jα(y) dy · x1/2Jα(x),

I2(n, x) = −4x
∫

Yn

f(y)
x2 + y2

(x2 − y2)3
y1/2Jα(y) dy · x1/2J ′α(x),

I3(n, x) = 4
∫

Yn

f(y)
y(x2 + y2)
(x2 − y2)3

y1/2J ′α(y) dy · x1/2Jα(x),

I4(n, x) = −4x
∫

Yn

f(y)
y

(x2 − y2)2
y1/2J ′α(y) dy · x1/2J ′α(x).

The choice of f , (g, h) and Y shows that for x ∈ (g, h), I1(n, x), I2(n, x) and
I4(n, x) are positive while I3(n, x) in negative. Thus I1(n, x) + I3(n, x) ≤ S1

αfn(x).
Moreover,

0 <
∫

Yn

f(y)
y2

dy ·
(
−x1/2Jα(x)

)
≤ CI1(n, x)

and

|I3(n, x)| ≤ C

∫
Yn

f(y)
y3

dy ·
(
−x1/2Jα(x)

)
.

The last estimate shows thatGmight be chosen so large that |I3(n, x)| ≤ 10−2I1(n, x)
for x ∈ (g, h). With such a choice of G,∫

Yn

f(y)
y2

dy ·
(
−x1/2Jα(x)

)
≤ CS1

αfn(x)

and then multiplication of both sides by xb and x-integration over (g, h) produces∫
Yn

f(y)
y2

dy ·
(∫ h

g

∣∣Jα(x)x(b+1/2)
∣∣p dx)1/p

≤ C

(∫ h

g

|S1
αfn(y)yb|p dy

)1/p

≤ C‖fn(x)xA(1 + x)B−A‖p.

Thus, uniform boundedness (with respect to n) of the integrals
∫

Yn
f(y)y−2 dy now

requires B > −1− 1/p (≥ if p = 1), the second part of (4).
Proving the necessity of (5) note that for R > 0, K1

α,R(x, y) = RK1
α,1(xR, yR),

hence S1
α,Rf(x) = S1

α,1fR(xR), where fR(y) = f(y/R). Then, applying (2) (where
R = 1 is assumed) to a nontrivial function f ∈ C∞c (0,∞) produces

‖S1
α,Rf(x)xa(R−1 + x)b−a‖p ≤ CRB−b‖f(x)xA(R−1 + x)B−A)‖p

≤ CRB−b‖f(x)xB‖p(42)

if B −A ≤ 0 or with the last term replaced by ‖f(x)xA(1 + x)B−A‖p if B −A > 0
and R > 1. But

(43) lim
R→∞

S1
α,Rf(x) = f(x), x > 0,

hence by (42), (43) and Fatou’s lemma for p <∞ or trivially for p = ∞ we have

(44) ‖f(x)xb‖p ≤ C‖f(x)xB‖p lim inf
R→∞

RB−b

if B − A ≤ 0 or analogous inequality with xB replaced by xA(1 + x)B−A when
B − A > 0. In any case, this implies b ≤ B. To verify (43), fix x > 0 and
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f ∈ C∞c (0,∞) and use S1
ν,Rf(x) = Hν(m1

R · Hνf)(x) to write

S1
ν,Rf(x) =

∫ ∞

0

(xy)1/2Jα(xy)
(
1−

( y
R

)2)
+
Hαf(y) dy.

Then, (43) follows by an application of the dominated convergence theorem and
the inversion formula for the Hankel transform Hα once we note that∫ ∞

0

(xy)1/2|Jα(xy)||Hαf(y)| dy <∞.

The above is a consequence of Hαf(y) = O(yα+1/2), y → 0+, which in turn follows
from (6) and Hαf(y) = O(y−2), the latter easily implied by (22). This finishes the
proof of the necessity of (5), hence the theorem.
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