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INTRODUCTION

Let f be a function f: R — R and ¢ a root of f, that is, f(¢) = 0. It is well
known that if we take zg close to ¢, and under certain conditions that I will not
explain here, the Newton method

fan)

xn+1=xn—fl(x ) n=20,1,2,...
n

generates a sequence {x,}22 , that converges to ¢. In fact, Newton’s original ideas
on the subject, around 1669, were considerably more complicated. A systematic
study and a simplified version of the method are due to Raphson in 1690, so this it-
eration scheme is also known as the Newton-Raphson method. (Also as the tangent
method, from its geometric interpretation.)

In 1879, Cayley tried to use the method to find complex roots of complex func-
tions f: C — C. If we take zp € C and we iterate

f(za)’
he looked for conditions under which the sequence {z,}52 converges to a root.
In particular, if we denominate the attraction basin of a root ( as the set of all
zo € C such that the method converges to (, he was interested in identifying
the attraction basin for any root. He solved the problem when f is a quadratic
polynomial. For cubic polynomials, after several years of trying, he finally refused
to continue. We now know the fractal nature of the problem and we can understand
that Cayley’s failure to make any real progress at that time was inevitable. For
instance, for f(z) = 23 —1, the Julia set (that is, the points where Newton’s method
fails to converge) has fractional dimension, and it coincides with the frontier of the
attraction basins of the three complex roots e2*7/3 L = 0,1,2. With the aid of
computer generated pictures, we can see nice figures that show the complexity of
these intricate regions. In Figure 1, I show the attraction basins of the three roots
(actually, this picture is well known; for instance, it already appears published in [5]
and, later, [16] and [21]).

The computational aspect of iterative methods is focused in two ways: (a) to
actually find roots of nonlinear equations, studying also the accuracy and stability
of the numerical algorithms; (b) to show the beauty of the pictures that can be
generated with the aid of computers. The first point of view is covered by numerical
analysis. General books on this subject are [9, 13]; and more specialized books

(1) Znal = Zn — n=0,1,2,...,
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on iterative methods are [3, 15, 18]. For the graphical point of view, see, for
instance, [16].
Generally, there are three strategies to obtain pictures by using Newton’s method:

(i) We take a rectangle D C C and we assign a color (or a gray level) to each
point zg € D according to the root at which Newton’s method starting from
zp converges, and we mark the point as black (for instance) if the method
does not converge. In this way, we distinguish the attraction basins by their
colors.

(ii) Instead of assigning the color according to the root reached by the method,
we assign the color according to the number of iterations required to reach
some root with a fixed precision. Again, black is used if the method does
not converge. This lacks mathematical interpretation as regards the Julia
sets, but it also generates nice pictures.

(iii) This is a combination of the two previous strategies. Here, we assign a
color to each attraction basin of a root. But we make the color lighter or
darker according to the number of iterations needed to reach the root with
the fixed precision required. As before, we use black if the method does not
converge. In my opinion, this generates the most beautiful pictures.

All these strategies have been extensively used for polynomials, mainly for poly-
nomials with the form z"™ — 1 whose roots are well known. Of course, many other
families of functions have been studied. We refer the reader to [4, § 6] to find fur-
ther references. For instance, a nice picture appears when we apply the method to
the polynomial (22 —1)(22 +0.16) (due to S. Sutherland, see [17, the cover of issue
no. 2 for a color version]).

Although Newton’s method is the best known, in the literature there are many
other iterative methods devoted to finding roots of nonlinear equations. Thus, the
aim of this paper is the following: using computer experiments, we study some of
these iterative methods for solving f(z) = 0, where f: C — C, and we show the
fractal pictures that they generate (mainly, in the sense described in (iii)). Also,
this allows us to compare the regions of convergence of the methods and their speed.

CONCEPTS RELATED WITH THE SPEED OF CONVERGENCE

Let {z,}52, be a complex sequence. We say that a € [1,00) is the order of
convergence of the sequence if

(2) T e e

n—oo |zn —(l*

where ( is a complex number and C' a nonzero constant; here, if « = 1, we assume
an extra condition C' < 1. Then, the convergence of order « implies that the
sequence {z,}22, converges to ¢ when n — co. (The previous definition for the
order of convergence can be extended under some circumstances; but I will not
worry about that.) Also, it is said that the order of convergence is at least « if the
constant C' in (2) is allowed to be 0, or, the equivalent, if there exists a constant
C' and an index ng such that |z,41 — (| < Clz, — {|* for any n > ng. Many times,
the at least is supposed implicitly. I will do so in this paper.

The order of convergence is used to compare the speed of convergence of se-
quences, understanding the speed as the number of iterations necessary to reach
the limit with a required precision. Suppose that we have two sequences {z,}22
and {z],}72, converging to the same limit ¢, and assume that they have, respec-
tively, orders of convergence o and o/, where a > o'. Then, it is clear that,
asymptotically, the sequence {z,}>2, converges to the limit more quickly (with
less iterations for the same approximation) than the other sequence.
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More refined measures for the speed of convergence are the concepts of informa-
tional efficiency and efficiency index (see [18, § 1.24]). If each iteration requires d
new pieces of information (a “piece of information” typically is any evaluation of
a function or one of its derivatives), then the informational efficiency is ¢ and the
efficiency index is a'/¢, where « is the order of convergence. For the methods that
I are dealing with in this paper, it is easy to derive both the informational efficiency
and the efficiency index from its order. I will do this here for the efficiency index.

The efficiency index is useful because it allows us to avoid artificial accelerations
of an iterative method: for instance, let us suppose that we have an iterative process
Znt1 = ¢(2zn) with order of convergence o and we take a new process z§ = 2o,
Zhi1 = ¢(#(2)). Then, it is clear that the new sequence is merely 2 = zop,

n
but {27}°°, has order of convergence . However, both sequences {z,}52, and

n Sn=0
{2159, have the same efficiency index.

In my opinion, when we have an iterative method z,11 = ¢(z,), the efficiency
index is more suitable than the order of convergence to actually measure the com-
puter time that a method uses to converge. But, as happens in our case, if ¢ is
related with a function f and its derivatives, the efficiency index still has a missing
element: it does not take into account the computational work involved in comput-
ing f, f/,.... To avoid this, a new concept of efficiency is given: the computational
efficiency (see [18, Appendix C]). Suppose that, in a method ¢ related with a func-
tion f, the cost of evaluating ¢ is 6(f) (for instance, in Newton’s method, if the cost
of evaluating f and f’ are, respectively, 0y and 61, we have 6(f) = 6y + 61); then,
the computational efficiency of ¢ relative to f is E(¢, f) = a'/?() where, again, a
is the order of convergence. But it is difficult to clearly establish the value of 0(f)
and, moreover, it can depend on the computer, so the computational efficiency is
not very much used in practice. Thus, in the literature, the most used of these
measures is the order of convergence; however, this is the one that provides least
information about the computer time necessary to find the root with a required
precision.

Finally, let us note that, to ensure the convergence of an iterative method 2,11 =
¢(zn) intended for solving an equation f(z) = 0, it is usually necessary to begin
the method from a point zg close to the solution (. How close depends on ¢ and f.
Usually, the hypothesis of the theorems that guarantee the convergence (I refer the
reader to the references of each method) are hard to check; and, moreover, are too
demanding. So, if we want to solve f(z) = 0, it is common to try a method without
take into account any hypothesis. Of course, this does not guarantee convergence,
but it is possible that we will find a solution (if there is more than one solution, we
also cannot know which solution is going to be found).

Here, we will do some numerical experiments with different functions (simple
and hard to evaluate) that allow us to compare the computational time used. In
addition, we will begin the iterations in different regions of the complex plane. This
will allow us to measure to some extent how demanding the method is regarding
the starting point to find a solution. As the fractal that appears becomes more
complicated, it seems that the method requires more conditions on the initial point.

THE NUMERICAL METHODS

In this section, let us consider some iterative methods z,41 = ¢(z,) for solving
f(2) = 0 for a complex function f: C — C. I only give a brief description and a
few references for them. In all these methods, we take a starting point zp € C. In
no case do I give the hypothesis that ensures convergence and the corresponding
order of convergence.
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e Newton’s method: This is the iterative method (1), the best known and
most used, and can be found in any book on numerical analysis. I have
already commented on it in the introduction. Its order of convergence is 2.

e Newton’s method for multiple roots:

Gl = 2 — f(zn)fl(zn)
i " F'(zn)? = f(za) f" (20)

Actually, Newton’s method has order 2 when the root of f that is found is a
simple root. For a multiple root, its order of convergence is 1. This method
recovers the order 2 for multiple roots. It can be deduced as follows: if f
has a root of multiplicity m > 1 in (, it is easy to check that g(z) = J{,((ZZ))
has a simple root in . Then, we only need to apply the ordinary Newton’s
method to the equation g(z) = 0.

e Convex acceleration of Whittaker’s method [11]:

_ f(zn)
Zn+1 = Zn — 2fl(zn) (2 - Lf(zn))
with .,
=L

Whittaker’s method (also known as the parallel-chord method, from its
geometric interpretation for functions f: R — R, see [15, p. 181]) is a
simplification of Newton’s method in which, to avoid computing the de-
rivative, we make the approximation f’(z) &~ 1/A with A a constant. We
try to choose the parameter A in such a way that F(z) = z — Af(z) is a
contractive function, so a fixed point can be obtained by means of the fixed
point theorem (it is clear that a fixed point for F is a root for f). This is
a method of order 1. The convex acceleration is an order 2 method.
e Double convex acceleration of Whittaker’s method [11]:

_ f(zn) _ . 4+2L¢(2n)
4f'(zn) (2 Lf( 2 2- Lf(zn)(2 - Lf(zn))>

This is a new convex acceleration for the previous iterative process. It has
order 3.
e Halley’s method (see [18, p. 91], [3, p. 247], [9, p. 257], [8]):

f(zn) 2 1

= Zpn — .
! 2L £’ (zn) _ " (zn)
J'(en) (zn) Fza) T 217 (zn)

This was presented in about 1694 by Edmund Halley, who is well known
for first computing the orbit of the Halley comet. It is one of the most
frequently rediscovered iteration functions in the literature. From its geo-
metric interpretation for real functions, it is also known as the method of
tangent hyperbolas. Alternatively, it can be interpreted as applying New-
ton’s method to the equation g(z) = 0 with g(2) = f(2)/1/f'(). Its order
of convergence is 3.
e Chebyshev’s method (see [18, p. 76 and p. 81] or [3, p. 246]):

160 (1 b)),

Zn4+1l = Zn — fl(zn) 9

This is also know as Euler-Chebyshev’s method or, from its geometric in-
terpretation for real functions, the method of tangent parabolas. It has
order 3. (This method and the previous one are probably the best known
order 3 methods for solving nonlinear equations.)

Zn+1 = Zn

Zn4+l = Zn —
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e Convex acceleration of Newton’s method or the super-Halley method [7]:

_ f(zn) 2= Ly(zn) - f(zn) <1+ éLf(Zn) >
2f"(2n) 1 = L (2n) " f'(zn) 1—Lg(zn)

This is an order 3 method. (Note that, in [3, p. 248], it is called Halley-

Werner’s method.)

One group of procedures for solving nonlinear equations are the fixed point
methods, which are devoted to solving F(z) = z. The best known of these methods
is the one that iterates z,41 = F(zy); it is an order 1 method, and needs a strong
hypothesis on F' to converge, namely, it requires F to be a contractive function.

An order 2 method for solving an equation F(z) = z is Stirling’s fixed point
method [3, p. 251 and p. 260]. It starts at a suitable point zy and iterates

Zn+1 = Zn

S A F(zn)
n+1 n 1— F'(F(Zn))
If we want to solve an equation f(z) = 0, we can transform it into a fixed

point equation. To do this, we can take F(z) = z — f(z). It is then clear that
F(z) = z & f(2) = 0, so we can try to use a fixed point method for F. But
this is not the only way: for instance, we can take F'(z) = z — A\f(z) with A # 0
a constant (in this way, the already mentioned Whittaker’s method appears), or
F(z) =z — ¢(2) f(z) with ¢ a nonvanishing function. Also, we can isolate z in the
expression f(z) = 0 in different ways (for instance, if we have 2% — z 4 tan(z) = 0,
we can isolate z3 + tan(z) = z or arctan(z — 23) = z). Of course, this gives many
different fixed point equations F'(z) = z for the the same original equation f(z) = 0.

Furthermore, when we try to solve f(z) = 0 by means of an iterative method
Zn+1 = @(zn), like the ones shown above, and {z, }22 , converges to ¢, it is clear that
¢ is a fixed point for ¢ (requiring that ¢ be a continuous function and taking limits
in zp41 = ¢(2z,)) so, without noticing, we are dealing with fixed point methods.

But it is interesting to check what happens if we merely use the simplest way of
taking F(z) = z — f(z) without worrying about any hypothesis. In this way, we
have

e (Shifted) Stirling’s method:
f(zn)

zZ 1 =Z2Zn — .
T P = fen)
Its order of convergence is 2.

In all the methods that we have seen until now, the function f or its derivatives
are evaluated, in each step of the method, for a single point. There are other
techniques for solving nonlinear equations that require the evaluation of f or its
derivatives at more than one point in each step. These iterative methods are know as
multipoint methods. They are usually employed to increase the order of convergence
without computing more derivatives of the function involved. A general study
of multipoint methods can be found in [18, Ch. 8 and 9]. Let us look at some
multipoint methods.

e Steffensen’s method (see [15, p. 198] or [18, p. 178]):

z 1= 2n —
" " 9(2n)

with g(z) = f(z+f;2;_f(z). This is one of the most simple multipoint
methods. The iterative function is generated by a derivative estimation:
in Newton’s method, for small enough h = f(z), we estimate f'(z) =

f(z+h})b_f(z) = ¢g(z). This avoids computing the derivative of f. This is
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an order 2 method (observe that it preserves the order of convergence of
Newton’s method).
e Midpoint method (see [18, p. 164] or [3, p. 197]):

_ f(zn) '
fl (Zn 2f’(zn))
This is an order 3 method.
e Traub-Ostrowski’s method (see [18, p. 184] or [3, p. 230]):

2f(zn —ulzn)) — f(2n)

with u(z) = J{C,((ZZ)) . Its order of convergence is 4, the highest for the methods
that we are studying.

e Jarratt’s method [12, 2] (for different expressions, see also [3, p. 230 and
p. 234)):

Zp4+1l = Zn —

Zn41 = 2n — u(2n)

J'(zn) = 3f (20 — §U(zn))
_ f(»

where, again, u(z) = P12 This is also an order 4 method.

Zn1l = 2n — gu(zn) +

o Inverse-free Jarratt’s method (see [6] or [3, p. 234]):
3 3
Zn41 = 2n — u(2n) + 4u(zn)h(zn) 1- 2h(zn) ,

= 2u(z) - f(2)

£(2) . Also an order 4 method.

with u(z) = J{,((ZZ)) and h(z) = 7

FRACTAL PICTURES AND COMPARATIVE TABLES

We are going to apply the iterative methods that we have seen in the previous
section to obtain the complex roots of the functions

f(z) = 2> —1 and *(z) = eXp(sian(OZ))(ZS —1).

It is clear that the roots of f* are the same as the roots of f, that is, 1, e27%/3

and e*™/3. But the function f* is much more complicated (i.e., consuming more
computer time) to evaluate. Moreover, the successive derivatives of f are easier
and easier, and this is just the contrary as a general case. This does not happen
with f*. So, f* can be a better test to check the speed of these numerical methods
in a more general way. (Also, note that many of these iterative methods are also
adapted to solve systems of equations or equations in Banach spaces. Here, to
evaluate Fréchet derivatives is, usually, very difficult.)

We take a rectangle D C C and we apply the iterative methods starting in “ev-
ery” zp € D. In practice, we take a grid of 1024 x 1024 points in D and we use these
points as zg. Also, we use two different regions: the rectangle R, = [—2.5,2.5] x
[~2.5,2.5] and a small rectangle near the root €?™/3 (x~ —0.5 + 0.866025i), the
rectangle Ry = [—0.6,—0.4] x [0.75,0.95]. The first rectangle contains the three
roots; the numerical methods starting from a point in R can converge to some of
the roots or, eventually, diverge. However, R is near a root, so it is expected that
any numerical method starting there will always converge to the root.

In all these cases, we use a tolerance ¢ = 1078 and a maximum of 40 iterations.
We denote the three roots as ( = €?™/3 Lk = 0,1,2, and ¢ the iterative method
to be used. Then, we take 2y in the corresponding rectangle and we iterate z,4+; =
@d(zn) up to |z, — (x| < e for k = 0,1 or 2. If we have not obtained the desired
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TABLE 1. Function f and rectangle Rj.

Od Ef NC /P T P/S 1/S

Nw 2 141 0.00267 7.52 1 1 1
NwM 2 1.26 0.00381 7.93 1.17 0.857 0.904
CaWh 2 141 245 189 3.23 0.309 0.778
DcaWh 3 144 0.125 6.5 1.41 0.711 0.615

Ha 3 144 0 4.38 0.901 1.11 0.646

Ch 3 144 0.0492 6.27 1.11 0.902 0.752

CaN/sH 3 144 0 3.82 0.815 1.23 0.623

Stir 2 141 86.6 36.4 4.71 0.212 1.03
Steff 2 141 85 35.7 5.79 0.173 0.820

Mid 3 144 4.62 6.32 1.1 0.911 0.766
Tr-Os 4 1.59 0 3.69 0.696 1.44 0.705

Ja 4 1.59 0 3.69 0.699 1.43 0.702

IfJa 4 1.59 1.62 745 141 0.711 0.705

TABLE 2. Function f and rectangle Rj.
Ord Eff NC I/P T P/S 1/S
Nw 2 141 0 2.97 1 1 1
NwM 2 1.26 0 2.97 1.1 0.910 0.910
CaWh 2 141 0 3.23 139 0.719 0.781
DcaWh 3 1.44 0 2 1.1 0.911 0.613
Ha 3 1.44 0 2 1.03 0.974 0.656
Ch 3 1.44 0 2 0914 1.09 0.737
CaN/sH 3 1.44 0 2 1.06 0.946 0.636
Stir 2 141 0 4.15 1.36 0.733 1.02
Steff 2 141 0 344 142 0.706 0.82
Mid 3 1.44 0 2 0.898 1.11 0.749
Tr-Os 4 1.59 0 196 0.925 1.08 0.714
Ja 4 1.59 0 196 0.928 1.08 0.712
IfJa 4 1.59 0 199 0.969 1.03 0.690

tolerance with 40 iterations, we do not continue and we decide that the iterative
method starting at zy does not converge to any root.

With these results, combining f and f* with R, and Rs we built four tables.
In them, the methods are identified as follows: Nw (Newton), NwM (Newton for
multiple roots), CaWh (convex acceleration of Whittaker), DcaWh (double convex
acceleration of Whittaker), Ha (Halley), Ch (Chebyshev), CaN/sH (convex acceler-
ation of Newton or super-Halley), Stir (Stirling), Steff (Steffensen), Mid (midpoint),
Tr-Os (Traub-Ostrowski), Ja (Jarratt), IfJa (inverse-free Jarratt).

For each of them, we show the following information:

e Ord: Order of convergence.

o Eff: Efficiency index.

NC: No convergent points, as a percentage of the total number of starting
points evaluated (which is 10242 for every method).

I/P: Mean of iterations, measured in iterations/point.

T: Used time in seconds relative to Newton’s method (Newton = 1).

P/S: Speed in points/second relative to Newton’s method (Newton = 1).
I/S: Speed in iterations/second relative to Newton’s method (Newton = 1).
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TABLE 3. Function f* and rectangle Rj.

Od Ef NC I/P T P/S 1/S
Nw 2 141 3.06 8.17 1 1 1

NwM 2 1.26 286 82 1.47 0.681 0.683
CaWh 2 141 332 19.9 3.58 0.279 0.679
DcaWh 3 144 18.1 11 1.88 0.532 0.714
Ha 3 144 0.321 4.48 0.918 1.09 0.597
Ch 3 144 11,5 9.11 1.56 0.641 0.714
CaN/sH 3 144 192 459 0.907 1.10 0.619
Stir 2 141 87.7 36.5 4.04 0.248 1.10
Steff 2 141 845 356 3.39 0.295 1.28
Mid 3 144 561 6.57 1.21 0.824 0.662
Tr-Os 4 159 1.10 4.03 0.677 1.48 0.729
Ja 4 1.59 0965 3.99 0.777 1.29 0.628
IfJa 4 1.59 19 11.2 1.71 0.584 0.797

TABLE 4. Function f* and rectangle R;.

Od Ef NC I/P T P/S 1/

Nw 2 141 0 297 1 1 1
NwM 2 1.26 0 297 1.50 0.666 0.666
CaWh 2 141 0 3.22 1.67 0.599 0.649
DcaWh 3 144 0 2 1.13 0.883 0.594

Ha 3 1.44 0 2 1.10 0.906 0.61

Ch 3 1.44 0 2 1.06 0.944 0.636

CaN/sH 3 144 0 2 1.12 0.895 0.602

Stir 2 141 0 413 138 0.724 1.01
Steff 2 141 0 343 1.06 0945 1.09

Mid 3 1.44 0 2 1.02 0979 0.659
Tr-Os 4 1.59 0 1.96 0.909 1.1 0.727

Ja 4 1.59 0 196 1.04 0.959 0.634

IfJa 4 1.59 0 1.99 1.05 0.955 0.639

To construct the tables, I used a C++ program in a Power Macintosh 8200/120
computer. In the tables, I show the time and speed relative to Newton’s method, so
that this will be approximately the same in any other computer. In our computer,
the absolute values for Newton’s method are the following:

For Table 1, 137.467 sec, 7627.86 pt/sec and 57336.9 it/sec.
For Table 2, 59.1667 sec, 17722.4 pt/sec and 52610.2 it/sec.
For Table 3, 410.683 sec, 2553.25 pt/sec and 20870.6 it/sec.
For Table 4, 150.083 sec, 6986.63 pt/sec and 20737 it/sec.

In any case, a computer programming language that permits dealing with opera-
tions with complex numbers in the same way as for real numbers (such as C++ or
Fortran) is highly recommended.

With respect to our time measurements, it is important to note that, for any
iterative method z,11 = ¢(z,), I have written general procedures applicable to
generic f and its derivatives. That means, for instance, that when I use f*, I do

not simplify any factor in ff:)(,z()z). Also, if a subexpression of (f*)" has already
been computed in f* (say, sin(z)) in the generic procedure to evaluate f, its value
is not used, but computed again, in the procedure that calculates generic f'. If we
were only interested in a particular function f (or if we want a figure in the fastest
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way), it would be possible to modify the procedure that iterates z,1 = ¢(z,) for f,
adapting and simplifying its expression.

Now, let us go back to the other target of this paper: to visually compare the
fractal pictures that appear when we apply different iterative methods for solving
an unique equation f(z) = 0, where f is a complex function.

In Figures 1 to 12, I show the pictures that appear when we apply the iterative
methods to find the roots of the function f(z) = 23 — 1 in the rectangle R,. 1
have used strategy (iii) described in the introduction. Respectively, I assign cyan,
magenta and yellow for the attraction basins of the three roots 1, €27%/3 and e*™*/3,
lighter or darker according to the number of iterations needed to reach the root
with the fixed precision required. I mark with black the points zy € Ry for which
the corresponding iterative method starting in zy does not reach any root with
tolerance 102 in a maximum of 25 iterations.

In the last section of this paper, I show the programs that I have used and similar
ones that allow us to generate both grey scaled or color figures. Of course, it is also
possible to use the function f* or the small rectangle R (or any other function or
rectangle); it will only require small modifications to the programs. This is left for
the interested reader.

Although using an ordinary programming language is typically hundreds of times
faster, to generate the pictures, it is easier if we employ a computer package with
graphics facilities, such us Mathematica, Maple or Matlab. The graphics that I
show here were generated with Mathematica 3.0 (see [20]); in the next section, I
show the programs used to obtain the Figures.

FIGURE 2. Newton’s method for mul-
tiple roots.

FIGURE 1. Newton’s method.

Note that both Traub-Ostrowski’s method and Jarratt’s method for f(z) = 23 —1

generate the iterative function ¢(z) = l'zlzi’fﬁiifgl;ézg. Then, the fractal figure
for both of them is the same (Figure 11), and the same happens for the data of
Tables 1 and 2.

In the tables and in the figures, we only have empirical data. From them, and
according to the indications given in this paper, we can easily judge the behavior
and suitability of any method depending on the circumstances, and which one to
choose if we need to solve an equation. This is good entertainment.

Finally, note that Stirling’s and Steffensen’s methods generate very different
results in two ways. First, they are the most demanding with respect to the initial
point (in the tables, see the percentage of nonconvergent points and, in the figures,
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-2 -1 0 1 2 -2 -1 0 1 2
FIGure 3. Convex acceleration of FIGURE 4. Double convex acceleration
Whittaker’s method. of Whittaker’s method.

F1cURrE 5. Halley’s method. FI1GURE 6. Chebyshev’s method.

see the black color). And, second, in their graphics, the symmetry of angle 27/3
that we can observe in the figures corresponding to the other methods does not
appear (with respect to the symmetry on fractals, see [1]).

MATHEMATICA PROGRAMS TO GET THE GRAPHICS

In this section, I am going to explain how the Figures of this paper were gener-
ated. To do this, I show the Mathematica [20] programs that I have used.

First, we need to define function f and its derivatives. This can be done by using
flz_] := z°3-1,df[z_] := 3*z"2and d2f[z_] := 6%z, but it is faster if we use
the compiled versions

f = Compile[{{z,_Complex}}, z~3-1];
df = Compile[{{z,_Complex}}, 3%z"2];
d2f = Compile[{{z,_Complex}}, 6%z];

Of course, any other function, such us f*(z) = exp(SifO(g))(z?’ — 1), can be used.

If the roots are the same (as happens with f and f*), we only need to change
the previous definitions for £, df and d2f. The figures that appear are somewhat
different.
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FIGURE 7. Convex acceleration of  pyqypp 8. (Shifted) Stirling’s method.
Newton’s method (or super-Halley’s

method).

FIGURE 9. Steffensen’s method. F1cURrRE 10. Midpoint method.

The three complex roots for f are
Do[rootf[k] = N[Exp[2*(k-1)*Pi*I/3]], {k,1,3}]
I use the following procedure that identifies which root has been approximated
with a tolerance of 1073, if any,
rootPosition = Compile[{{z,_Complex}},
Which[Abs[z - rootf[1]] < 10.0°(-3), 3,
Abs[z - rootf[2]] < 10.07(-3), 2,
Abs[z - rootf[3]] < 10.07(-3), 1,
True, 0],
{{rootf[_],_Complex}}
]
We must define the iterative methods, that is, the different z,11 = ¢(z,). For
Newton’s method, this would be
iterNewton = Compile[{{z,_Complex}}, z-f[z]/df [z]]
and, for Halley’s method,
iterHalley = Compile[{{z,_Complex}},
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-2 -1 0 1 2 -2 -1 0 1 2
FIGURE 11. Traub-Ostrowski’s me- FIGURE 12. Inverse-free Jarratt’s me-
thod and Jarratt’s method. thod.

Block[{v = df[z]}, z - 1.0 / (v/f[z] - (d2f[z])/(2.0%v))]
]

(observe that an extra variable v is used to evaluate df [z] once only). The proce-
dure is similar for all the other methods in this paper.

The algorithm that iterates the function iterMethod to see if a root is reached
in a maximum of 1im iterations is the following:

iterAlgorithm[iterMethod_,x_,y_,lim_] :=
Block[{z,ct,r}, z = x + y I; ct = 0; r = rootPosition[z];
While[(r == 0) && (ct < lim),
++ct; z = iterMethod[z]; r = rootPosition[z]
1;
If[Head[r] == Which, r = 0]; (* "Which" unevaluated *)
Return[r]

]

Here, I have take into account that, sometimes, Mathematica is not able to do a
numerical evaluation of z. Then, it cannot assign a value for r in rootPosition.
Instead, it returns an unevaluated Which. Of course, this corresponds to noncon-
vergent points.

We are going to use a limit of 25 iterations and the complex rectangle [—2.5, 2.5] x
[—2.5,2.5]. To do this, I define the following variables:

limIterations = 25;
xxMin = -2.5; xxMax = 2.5; yyMin = -2.5; yyMax = 2.5;

Finally, T define the procedure to paint the figures according the strategy (i)
described in the introduction. White, 33 % grey and 66 % grey are used to identify
the attraction basins of the three roots 1, €2™/3 and e*™*/3. The points for which
the iterative method does not reach any root (with the desired tolerance in the
maximum of iterations) are pictured as black. The variable points means that, to
generate the picture, a points X points grid must be used.

plotFractal[iterMethod_,points_] :=
DensityPlot[iterAlgorithm[iterMethod,x,y,limIterations],
{x, xxMin, xxMax}, {y, yyMin, yyMax},
PlotRange->{0,3}, PlotPoints->points, Mesh->False
1 // Timing
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Note that // Timing at the end allows us to observe the time that Mathematica
employs when plotFractal is used.
Then, a graphic is obtained in this way (the example is a black and white version
of Figure 1):
plotFractal[iterNewton, 256]

When we use the functions that we have defined, overflow and underflow errors
can happen (for instance, in Newton’s method, f’(z) can be null and then we are
dividing by zero, although it is not the only problem). Mathematica informs us of
such circumstances; to avoid it, use the following before calling plotFractal:

0ff [General::ovfl]; 0ff [General: :unfl];
0ff [Infinity::indet]
Also, the previous problems, and some other ones, sometimes force Mathematica

to use a noncompiled version of the functions. Again, Mathematica informs us of
that circumstance; to avoid it, use

0ff [CompiledFunction: :cccx]; 0ff [CompiledFunction::cfn];
0ff [CompiledFunction: :cfcx]; 0ff [CompiledFunction::cfex];
0ff [CompiledFunction: :crcx]; 0ff [CompiledFunction: :ilsm]

Perhaps some other 0ff are usefull according the function £ and the complex rec-
tangle used.

To obtain color figures, I use a slightly different procedure to identify which
root has been approximated; this is so because we also want to know how many
iterations are necessary to reach the root. We use the following trick: in the output,
the integer part corresponds to the root and the fractional part is related to the
number of iterations.

iterColorAlgorithm[iterMethod_,x_,y_,lim_] :=

Block[{z,ct,r}, z = x + y I; ct = 0; r = rootPosition[z];

While[(r == 0) && (ct < 1lim),
++ct; z = iterMethod[z]; r = rootPosition[z]

1;
If[Head[r] == Which, r = 0]; (* "Which" unevaluated *)
Return[N[r+ct/(1im+0.001)]1]

]

To assign the intensity of the color of a point, I take into account the number of
iterations used to reach the root when the iterative method starts at that point. I
use cyan, magenta and yellow for the points that reach, respectively, the roots 1,

e2™/3 and €*™/3; and black for nonconvergent points. To do this, I use

colorLevel = Compile[{{p,_Reall}}, 0.4xFractionalPart [4x*p]]
and

fractalColor[p_] :=
Block[{pp = colorLevel[pl},
Switch[IntegerPart [4*p],
3, CMYKColor[0.6+pp,0.,0.,2%pp],
2, CMYKColor[0.,0.6+pp,0.,2%pp],
1, CMYKColor[0.,0.,0.6+pp,2%pp],
0, CMYKColor[0.,0.,0.,1.]

]
(In the internal behavior of Mathematica, when a function is going to be pictured
with DensityPlot, it is scaled to [0,1]. However, iterColorAlgorithm has a
range of [0, 4]; this is the reason for using 4*p in some places in colorLevel and
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fractalColor. Also, note that colorLevel can be changed to modify the intensity
of the colors; for other graphics, it is a good idea to experiment by changing the
parameters to get nice pictures.)
Finally, a color fractal will be pictured by calling the procedure
plotColorFractal [iterMethod_,points_] :=
DensityPlot[
iterColorAlgorithm[iterMethod,X,y,limIterations],
{x, xxMin, xxMax}, {y, yyMin, yyMax},
PlotRange->{0,4}, PlotPoints->points, Mesh->False,
ColorFunction->fractalColor
1 // Timing
For instance,
plotColorFractal [iterNewton, 256]

is just Figure 1.

FAMILIES OF ITERATIVE METHODS

There are many iterative methods for solving nonlinear equations in which there
a parameter appears, which are usually called families of iterative methods.

One of the best known is the Chebyshev-Halley family

- f(zn) 1 Ly (Zn) >
T () (1 T 21 6L () )

with 3 a real parameter. These are order 3 methods for solving the equation
f(z) = 0. Particular cases are § = 0 (Chebyshev’s method), f = 1/2 (Halley’s
method), and S = 1 (super-Halley’s method). When § — —oco, we get Newton’s
method. This family was studied by Werner in 1980 (see [19]), and can also be
found in [3, p. 219] and [10]. It is interesting to note that any iterative process
given by the expression

Zn+l = Zn — ;((ZT;)) H(Lf(zn))a

where function H satisfies H(0) = 0, H'(0) = 1/2 and |H"(0)| < oo, generates
an order 3 iterative method (see [8]). In this way, the Chebyshev-Halley family
appears by taking H(z) =1+ é 1—151

A multipoint family (see [18, p. 178]) is
9(zn)

and 8 an arbitrary constant (8 = 1 is Steffensen’s

Zn4+l = Zn —

with g(z) = f<2+66f;2;—f<z>
method). Its order of convergence is 2.

An order 4 multipoint family was studied by King [14] (see also [3, p. 230]):

) flzn) + (B =2)f(2n — ulzn))’

where ( is an arbitrary real number and u(z) = J{,((ZZ)). It generalizes Traub-

Zn41 = 2n — u(2n) —

Ostrowski’s method (which is the particular case 8 = 0).
Finally, let us cite another order 4 multipoint family

1+ ﬁh(zn)

3
z =2z, —u(zn) + u(zn)h(z ,
n+1 n ( n) 4 ( n) ( n)1+(g +5)h(2n)
2 3u(2)—f(2)
f'(z) ’
Here, for 8 = 0, we get Jarratt’s method (actually, in [12] a different family appears;

where [ is a parameter and u, h denote u(z) = J{,((ZZ)) and h(z) = d (
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the method that we are calling Jarratt’s method is really a particular case for
both families). Moreover, for = —3/2, we get the so-called inverse-free Jarratt’s
method.

Uniparametric iterative methods offer an interesting graphic possibility: to show
pictures in movement. We take a fixed function and a fixed rectangle, and we rep-
resent the fractal pictures for many values of the parameter. This then generates
a nice moving image that shows the evolution of the fractal images when the pa-
rameter varies. Unfortunately, it is not possible to show moving images in a paper.
To generate them in a computer, we can use small modifications of the Mathe-
matica programs from the previous section, using also the Mathematica commands
Animate or ShowAnimation. Later, it is possible to export these images in Quick-
Time format (so that Mathematica will not be necessary to see them). Of course,
this requires a large quantity of computer time, but computers are becoming faster
and faster, so this is not a very big problem.
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