JUAN L. VARONA

Graphic and Numerical
Comparison Between

terative Methods

Dedicated to the memory of José J. Guadalupe (“Chicho”), my Ph.D. Advisor

et f be a function f: R— R and { a root of f, that is, f({) = 0. It is well known that if we

take xq close to ¢, and under certain conditions that I will not explain here, the Newton

method

_ J(@y)
S (@)

Tpt+1 = Ty ,m=012 ...

generates a sequence {x,};=o that converges to {. In fact,
Newton’s original ideas on the subject, around 1669, were
considerably more complicated. A systematic study and a
simplified version of the method are due to Raphson in
1690, so this iteration scheme is also known as the New-
ton-Raphson method. (It has also been described as the tan-
gent method, from its geometric interpretation.)

In 1879, Cayley tried to use the method to find complex
roots of complex functions f: C — C. If we take 2y € C and
we iterate

zn+1:zn_f,(z)7n:0;1)2y-": (1)
n,

he looked for conditions under which the sequence {2,},,—¢
converges to a root. In particular, if we denominate the at-
traction basin of a root ¢ as the set of all 25 € C such that
the method converges to {, he was interested in identify-
ing the attraction basin for any root. He solved the prob-
lem when f'is a quadratic polynomial. For cubic polynomi-
als, after several years of trying, he finally declined to
continue. We now know the fractal nature of the problem

and we can understand that Cayley’s failure to make any
real progress at that time was inevitable. For instance, for
f(2) = 2% — 1, the Julia set—the set of points where New-
ton’s method fails to converge—has fractional dimension,
and it coincides with the frontier of the attraction basins
of the three complex roots €273 | = 0, 1, 2. With the aid
of computer-generated graphics, we can show the com-
plexity of these intricate regions. In Figure 1, for example,
I show the attraction basins of the three roots (actually,
this picture is well known; for instance, it already appears
published in [5] and, later, [16] and [21]).

There are two motives for studying convergence of itera-
tive methods: (a) to find roots of nonlinear equations, and to
know the accuracy and stability of the numerical algorithms;
(b) to show the beauty of the graphics that can be generated
with the aid of computers. The first point of view is numeri-
cal analysis. General books on this subject are [9, 13]; more
specialized books on iterative methods are [3, 15, 18]. For the
esthetic graphical point of view, see, for instance, [16].

Generally, there are three strategies to obtain graphics
from Newton’s method:

(i) We take a rectangle D C C and we assign a color (or
a gray level) to each point 29 € D according to the root
at which Newton’s method starting from 2z converges;

© 2002 SPRINGER-VERLAG NEW YORK, VOLUME 24, NUMBER 1, 2002 37

—— ——
Figure 1. Newton’s method.

and we mark the point as black (for instance) if the
method does not converge. In this way, we distinguish
the attraction basins by their colors.

(ii) Instead of assigning the color according to the root
reached by the method, we assign the color according
to the number of iterations required to reach some
root with a fixed precision. Again, black is used if the
method does not converge. This does not single out
the Julia sets, but it does generate nice pictures.

(iii) This is a combination of the two previous strategies.
Here, we assign a color to each attraction basin of a
root. But we make the color lighter or darker accord-
ing to the number of iterations needed to reach the
root with the fixed precision required. As before, we
use black if the method does not converge. In my opin-
ion, this generates the most beautiful pictures.

All these strategies have been extensively used for poly-
nomials, mainly for polynomials of the form 2" — 1 whose
roots are well known. Of course, many other families of
functions have been studied. See [4, § 6] for further refer-
ences. For instance, a nice picture appears when we apply
the method to the polynomial (22 — 1)(22 + 0.16) (due to
S. Sutherland, see the cover illustration of [17]).

o2 -1 0 1 2
Figure 4. Double convex acceleration of
Whittaker’s method.

38 THE MATHEMATICAL INTELLIGENCER

Figure 2. Newton’s method for multiple roots.

Figure 5. Halley’s method.

Figure 3. Convex acceleration of Whittaker’s
method.

Although Newton’s method is the best known, in the lit-
erature there are many other iterative methods devoted to
finding roots of nonlinear equations. Thus, my aim in this
article is to study some of these iterative methods for solv-
ing f(2) = 0, where f: C — C, and to show the fractal pic-
tures that they generate (mainly, in the sense described in
(iii)). Not to neglect numerical analysis, I will compare the
regions of convergence of the methods and their speeds.

Concepts Related to the Speed of Convergence
Let {2,}7-0 be a complex sequence. We say that o € [1, ©)
is the order of convergence of the sequence if

. ‘zn+1 - ﬂ
lim ¥V

n—o 12y — da

=G, @)

where { is a complex number and C a nonzero constant;
here, if « = 1, we assume an extra condition |C| < 1. Then,
the convergence of order « implies that the sequence
[2n)n=0 converges to £ when n — . (The definition of the
order of convergence can be extended under some cir-
cumstances; but I will not worry about that.) Also, it is said
that the order of convergence is at least « if the constant
C in (2) is allowed to be 0, or, the equivalent, if there ex-
ists a constant C and an index ng such that |z,+; — ¢ <

) -1 0 1
Figure 6. Chebyshev’s method.

Figure 7. Convex acceleration of Newton’s
method (or super-Halley’s method).

C|z, — |~ for any n = ny. Many times, the “at least” is left
tacit. I will do so in this article.

The order of convergence is used to compare the speed
of convergence of sequences, understanding the speed as
the number of iterations necessary to reach the limit with
a required precision. Suppose that we have two sequences
{2n)n=0 and {2z}, }=o converging to the same limit {, and as-
sume that they have, re-
spectively, orders of con-
vergence « and ', where
a > o'. Then, it is clear
that, asymptotically, the
sequence |2,ln=o0 con-
verges to its limit more
quickly (with fewer iterations for the same approximation)
than the other sequence.

More refined measures for the speed of convergence are
the concepts of informational efficiency and efficiency in-
dex (see [18, § 1.24]). If each iteration requires d new pieces
of information (a “piece of information” typically is any
evaluation of a function or one of its derivatives), then the

informational efficiency is 5 and the efficiency index is a'/¢,

Figure 10. Midpoint method.
Jarratt’s method.

Figure 8. (Shifted) Stirling’s method.

The order of convergence is
used to compare the speed of
convergence of sequences.

Figure 11. Traub-Ostrowski’s method and

Figure 9. Steffensen’s method.

where « is the order of convergence. For the methods that
I am dealing with here, it is easy to derive both the infor-
mational efficiency and the efficiency index from the or-
der. I will do this here for the efficiency index.

The efficiency index is useful because it allows us to
avoid artificial accelerations of an iterative method. For in-
stance, let us suppose that we have an iterative process
Zn+1 = ¢(2,) with order of
convergence « and we
take a new process 2p =
20, Zn+1 = $(d(2)). Then
it is clear that the new se-
quence is merely 2, = 23,
but {2)}n=0 has order of
convergence o®. However, both sequences {2,}n-o0 and
{2n}m=0 have the same efficiency index.

In my opinion, when we have an iterative method z,,+1 =
&(z,), the efficiency index is more suitable than the order
of convergence to measure the computer time that a
method uses to converge. But, as happens in our case, if ¢
involves a function f and its derivatives, the efficiency in-
dex still has a missing element: it does not take into ac-

T — 1

Figure 12. Inverse-free Jarratt’s method.

VOLUME 24, NUMBER 1, 2002 39

count the computational work involved in computing f, f,
.... To avoid this, a new concept of efficiency is given: the
computational efficiency (see [18, Appendix C]). Suppose
that, in a method ¢ related with a function f, the cost of
evaluating ¢ is 6(f) (for instance, in Newton’s method, if
the cost of evaluating f and f’ are respectively 6, and 6y,
we have 6(f) = 6y + 6y); then, the computational efficiency
of ¢ relative to fis E(¢, f) = aV#S) where, again, « is the
order of convergence. But it is difficult to establish the
value of 6(f); moreover, it can depend on the computer,
so the computational efficiency is not very much used in
practice. In the literature, the most used of these measures
is the order of convergence; however, this is the one that
provides least information about the computer time nec-
essary to find the root with a required precision.

Finally, note that, to ensure the convergence of an iter-
ative method 2,1 = ¢(z,) intended for solving an equation
f(z) = 0, it is usually necessary to begin the method from
a point 2y close to the solution {. How close depends on ¢
and f. Usually the hypotheses of the theorems that guar-
antee the convergence (I will give references for each
method) are hard to check; and, moreover, are too de-
manding. So, if we want to solve f{(2) = 0, it is common to
try a method without taking into account any hypothesis.
Of course, this does not guarantee convergence, but it is
possible that we will find a solution (if there is more than
one solution, we also cannot know which solution is going
to be found).

Here, I will do some numerical experiments with differ-
ent functions (simple and hard to evaluate) that allow com-
parisons of the computational time used. In addition, I will
begin the iterations in different regions of the complex
plane. This will allow us to measure to some extent how
demanding the method is regarding the starting point to
find a solution. As the fractal that appears becomes more
complicated, it seems that the method requires more con-
ditions on the initial point.

The Numerical Methods

In this section, let us consider some iterative methods
Zn+1 = &(z,) for solving f(2) = 0 for a complex function
f:C— C. 1only give a brief description and a few refer-
ences. In all these methods, we take a starting point 2o € C.

¢ Newton’s method: This is the iterative method (1), the
best known and most used, and can be found in any book
on numerical analysis. I have already commented on it
in the introduction. Its order of convergence is 2.

¢ Newton’s method for multiple roots:

DD
Tl — fe ")

Actually, Newton’s method has order 2 when the root of f
that is found is a simple root. For a multiple root, its order
of convergence is 1. This method recovers the order 2 for
multiple roots. It can be deduced as follows: if f has a root
of multiplicity m =1 at ¢, it is easy to check that g(z) =

2n+1 = Rn

40 THE MATHEMATICAL INTELLIGENCER

f,(é)) has a simple root at {. Then, we only need to apply the

ordinary Newton’s method to the equation g(z) = 0.

Convex acceleration of Whittaker’s method [11]:

Zp+l1 T 2n — zf,(zn) (2 - Lf(zn))
with
SRR
&=

Whittaker’'s method (also known as the parallel-chord
method, from its geometric interpretation for functions
f:R— R, see [15, p. 181]) is a simplification of Newton's
method in which, to avoid computing the derivative, we
make the approximation f'(2) = 1/A with A a constant.
We try to choose the parameter A in such a way that
F(2) = z — M(2) is a contractive function, and so will
have a fixed point (it is clear that a fixed point for F is
a root for f). This is a method of order 1. The convex ac-
celeration is an order 2 method.

Double convex acceleration of Whittaker’'s method [11]:

 few
4" (2

2+l = 2n <2 — Li{(zn)

N 4 + 2L¢(zy)
2 — Lp(2)(2 — Le(22)))

This is a new convex acceleration for the previous iter-
ative process. It has order 3.

Halley’s method (see [18, p. 91], [3, p. 247], [9, p. 257], [8]):

J(zn) 2 1

- =% =T
S'®n) 2—Le(ze) " fw £
M)~ U@

Zn+1 = Rn

This was presented in about 1694 by Edmund Halley,
who is well known for first computing the orbit of the
comet that carries his name. It is one of the most fre-
quently rediscovered iterative functions in the literature.
From its geometric interpretation for real functions, it is
also known as the method of tangent hyperbolas. Alter-
natively, it can be interpreted as applying Newton's
method to the equation g(2) = 0 with g(2) = f(z)/Vf'(2).
Its order of convergence is 3.

Chebyshev’s method (see [18, p. 76 and p. 81] or [3, p. 246]):

This is also known as Euler-Chebyshev’s method or, from
its geometric interpretation for real functions, the
method of tangent parabolas. It has order 3. (This method
and the previous one are probably the best-known order
3 methods for solving nonlinear equations.)

fn+1 = R

Convex acceleration of Newton’s method, or the super-
Halley method [7]:

Sz 2 Le(z)
2f' @) 1= Ly(zn) 1
~ f2n) (3L (20)
T e T T L)

This is an order 3 method. (Note that, in [3, p. 248], it is
called Halley-Werner’'s method.)

Fn+l1 = Rn

One group of procedures for solving nonlinear equations
are the fixed-point methods, methods for solving F(2) = z.
The best-known of these methods is the one that iterates
2n+1 = F(zy); it is an order 1 method and needs a strong
hypothesis on F to converge; that is, it requires F to be a
contractive function.

An order 2 method for solving an equation F(2) = 2 is
Stirling’s fixed-point method [3, p. 251 and p. 260]. It starts
at a suitable point 23 and iterates

Pl = 2y — zn_F(zn)]
" 1= F(FRw)

If we want to solve an equation f(z) = 0, we can trans-
form it into a fixed-point equation. To do this, we can take
F(z) = z — f(2). Itis then clear that F(2) = 2z © f(2) = 0, s0
we can try to use a fixed-point method for F. But this is not
the only way: for instance, we can take F(2) = 2z — Af(2)
with A # 0 a constant (one example is Whittaker’s method,
already mentioned), or F(2) = 2z — ¢(2)f(2) with ¢ a non-
vanishing function. Also, we can isolate 2 in the expression
f(2) = 0in different ways (for instance, if we have 23 — z +
tan(z) = 0, we can isolate 23 + tan(z) = z or arctan(z —
2%) = 2). This gives many different fixed-point equations
F(2) = z for the same original equation f(z) = 0.

Furthermore, when we try to solve f(z) = 0 by means of
an iterative method z,+; = ¢(2,), like the ones shown
above, and {2,,}5,~=¢ converges to Z, it is clear that { is a fixed
point for ¢ (upon requiring that ¢ be a continuous func-
tion and taking limits in 2,+; = ¢(2,)). So, without notic-
ing, we are dealing with fixed-point methods.

But it is interesting to check what happens if we merely
use F(z) = z — f(z) without worrying about any hypothe-
sis. In this way, we have

¢ (Shifted) Stirling’s method:

S
S'@n — S(2r) ’

Its order of convergence is 2.

Zn+1 = Rn

In all the methods that we have seen until now, the
function f and its derivatives are evaluated, in each step
of the method, for a single point. There are other tech-
niques for solving nonlinear equations that require the
evaluation of f or its derivatives at more than one point
in each step. These iterative methods are known as mul-
tipoint methods. They are usually employed to increase
the order of convergence without computing more deriv-
atives of the function involved. A general study of multi-

point methods can be found in [18, Ch. 8 and 9]. Let us
look at some of them.

o Steffensen’s method (see [15, p. 198] or [18, p. 178}):

o= S(@n)

+1 =2 —

" " 9(2n)

with g(z) = ﬂz_ﬂ;(z%_—f@ This is one of the simplest mul-

tipoint methods. The iterative function is generated by a
derivative estimation: we insert in Newton’s method, for
small enough k = f(2), the estimate f'(2) =~ ﬂz*—"’)b‘ﬂ-zl =
g(2). This avoids computing the derivative of f. This is an
order 2 method (observe that it preserves the order of
convergence of Newton’s method).

* Midpoint method (see [18, p. 164] or [3, p. 197]):
Szn)

O A YR
d (z” 2f'(zn)>

This is an order 3 method.
e Traub-Ostrowski’s method (see [18, p. 184] or [3, p. 230]):

S2n — uzn)) — f2n)
2f(2n — u(zn)) — f(Rn)

Zp+1 = 2 — U(Zn)

with u(2) = Jf((zz)) Its order of convergence is 4, the high-

est for the methods that we are studying.

¢ Jarratt’s method [12, 2] (for different expressions, see
also [3, p. 230 and p. 234]):

F'@n) = 3 (2n — 2u(2n))

where, again, u(z) = f((zz)) This is also an order 4 method.

1
Zn+1 = Rn — Eu(zn) +

¢ Inverse-free Jarratt’'s method (see [6] or [3, p. 234]):

Zni1 = 20 = U(zn) + qu(@h(zn) (1 - %h(zn)>,

. f2) S'&-5u@) - 1@
with u(2) = 55 and h(2) = —55——

der 4 method.

. Also an or-

Fractal Pictures and Comparative Tables
I will now apply the iterative methods that we have seen
in the previous section to obtain the complex roots of the
functions

sin(2)

f(z) = 2% — 1 and j*(2) = exp (W) @ - 1.
It is clear that the roots of f* are the same as the roots of
f, that is, 1, €2™3 and e*™/3, But the function f* takes much
more computer time to evaluate. Moreover, the successive
derivatives of f are easier and easier, contrary to the gen-
eral case. This does not happen with f*. So, f* can be a
better test of the speed of these numerical methods in gen-

VOLUME 24, NUMBER 1, 2002 41

Table 1. Function f and rectangle R,

Table 3. Function f* and rectangle R,

Ord Eff NC e T P/S /s Ord Eff NC /P T P/S /s
Nw 2 1.41 0.00267 7.52 1 1 1 Nw 2 1.41 3.06 8.17 1 1 1
NwM 2 1.26 0.00381 7.93 1.17 0.857 0.904 NwM 2 1.26 2.86 8.2 1.47 0.681 0.683
Cawh 2 1.41 24.5 18.9 3.23 0.309 0.778 Cawh 2 1.41 33.2 19.9 3.58 0.279 0.679
DcaWh 3 1.44 0.125 6.5 1.41 0.711 0.615 Dcawh 3 1.44 18.1 11 1.88 0.532 0.714
Ha 3 1.44 0 4.38 0.901 111 0.646 Ha 3 1.44 0.321 4.48 0.918 1.09 0.597
Ch 3 1.44 0.0492 6.27 1.1 0.902 0.752 Ch 3 1.44 1.5 9.1 1.56 0.641 0.714
CaN/sH 3 1.44 0 3.82 0.815 1.238 0.623 CaN/sH 3 1.44 1.92 4.59 0.907 1.10 0619
Stir 2 141 86.6 36.4 4.71 0.212 1.03 Stir 2 1.41 87.7 36.5 4.04 0.248 1.10
Steff 2 1.41 85 35.7 5.79 0.173 0.820 Steff 2 1.41 84.5 35.6 3.39 0.295 1.28
Mid 3 1.44 4.62 6.32 1.1 0.911 0.766 Mid 3 1.44 5.61 6.57 1.21 0.824 0.662
Tr-Os 4 1.69 0 3.69 0.696 1.44 0.705 Tr-Os 4 1.59 1.10 4.03 0.677 1.48 0.729
Ja 4 1.59 0 3.69 0.699 1.43 0.702 Ja 4 1.59 0.965 3.99 0.777 1.29 0.628
ifJa 4 1.59 1.62 7.45 1.41 0.711 0.705 ifJa 4 1.59 19 1.2 1.71 0.584 0.797

eral. (Note that many of these iterative methods are also
adapted to solve systems of equations or equations in Ba-
nach spaces. Here, to evaluate Fréchet derivatives is, usu-
ally, very difficult.)

I take a rectangle D C C and I apply the iterative meth-
ods starting in “every” 2y € D. In practice, I will take a grid
of 1024 X 1024 points in D as zy. Also, I will use two dif-
ferent regions: the rectangle B, = [—2.5, 2.5] X [—2.5, 2.5]
and a small rectangle near the root e2™3 (=~ —05 +
0.8660257), the rectangle R = [—0.6, —0.4] X [0.75, 0.95].
The first rectangle contains the three roots; the numerical
methods starting from a point in R, can converge to some
of the roots, or perhaps diverge. However, R, is near a root,
so it is expected that any numerical method starting there
will always converge to the root.

In all these cases, 1 use a tolerance € = 10~8 and a max-
imum of 40 iterations. The three roots are denoted by ¢, =
e?kmhR |k = (, 1,2, and ¢ is the iterative method to be used.
Then, I take 2y in the corresponding rectangle and iterate
Zn+1= PER) up to |z, — &| < efork = 0, 1 or 2. If we have
not obtained the desired tolerance with 40 iterations, I do
not continue, but declare that the iterative method starting
at 2o has failed to converge to any root.

Table 2. Function f and rectangle R,

With these results, combining f and f* with R, and R,
I compiled four tables. In them, the methods are identified
as follows: Nw (Newton), NwM (Newton for multiple
roots), CaWh (convex acceleration of Whittaker), DcaWh
(double convex acceleration of Whittaker), Ha (Halley), Ch
(Chebyshev), CaN/sH (convex acceleration of Newton or
super-Halley), Stir (Stirling), Steff (Steffensen), Mid (mid-
point), Tr-Os (Traub-Ostrowski), Ja (Jarratt), IfJa (inverse-
free Jarratt).

For each of them, I show the following information:

® Ord: Order of convergence.

¢ Eff: Efficiency index.

* NC: Nonconvergent points, as a percentage of the total
number of starting points evaluated (which is 10242 for
every method).

¢ I/P: Mean of iterations, measured in iterations/point.

e T: Used time in seconds relative to Newton’s method

(Newton = 1).
¢ P/S: Speed in points/second relative to Newton’s method
(Newton = 1).

e I/S: Speed in iterations/second relative to Newton's
method (Newton = 1).

Table 4. Function f* and rectangle R,

Oord Eff NC /P T P/S /S Ord Eff NC /P T P/S /s
Nw 2 1.41 0 2.97 1 1 1 Nw 2 1.41 0 2.97 1 1 1
NwM 2 1.26 0 2.97 1.1 0.910 0.910 NwM 2 1.26 0 2.97 1.50 0.666 0.666
GCawh 2 1.41 0 3.23 1.39 0.719 0.781 Cawh 2 1.41 0 3.22 1.67 0.599 0.649
Dcawh 3 1.44 0 2 1.1 0911 0.613 DcaWh 3 1.44 0 2 1.13 0.883 0.594
Ha 3 1.44 0 2 1.03 0.974 0656 . Ha 3 1.44 0 2 1.10 0.906 0.61
Ch 3 1.44 0 2 0.914 1.09 0.737 Ch 3 1.44 0 2 1.06 0.944 0.636
CaN/sH 3 1.44 0 2 1.06 0.946 0.636 CaN/sH 3 1.44 0 2 1.12 0.895 0.602
Stir 2 1.41 0 4.15 1.36 0.733 1.02 Stir 2 1.41 0 4.13 1.38 0.724 1.01
Steff 2 1.41 0 3.44 1.42 0.706 0.82 Steff 2 1.41 0 3.43 1.06 0.945 1.09
Mid 3 1.44 0 2 0.898 1.1 0.749 Mid 3 1.44 0 2 1.02 0.979 0.659
Tr-Os 4 1.59 0 1.96 0.925 1.08 0.714 Tr-Os 4 1.59 0 1.96 0.909 11 0.727
Ja 4 1.69 0 1.96 0.928 1.08 0.712 Ja 4 1.59 0 1.96 1.04 0.959 0.634
IfJa 4 1.59 0 1.99 0.969 1.03 0.690 IfJa 4 1.59 0 1.99 1.06 0.955 0.639

42 THE MATHEMATICAL INTELLIGENGER

To construct the tables, I used a C++ program in a
Power Macintosh 8200/120 computer. In the tables, I show
the time and speed relative to Newton’s method, so that
this will be approximately the same in any other computer.
In our computer, the absolute values for Newton’s method
are the following:

e For Table 1, 137.467 sec, 7627.86 pt/sec and 57336.9 it/sec.
e For Table 2, 59.1667 sec, 17722.4 pt/sec and 52610.2 it/sec.
¢ For Table 3, 410.683 sec, 25653.25 pt/sec and 20870.6 it/sec.
¢ For Table 4, 150.083 sec, 6986.63 pt/sec and 20737 it/sec.

In any case, a computer programming language that per-
mits dealing with operations with complex numbers in the
same way as for real numbers (such as C++ or Fortran)
is highly recommended.

With respect to the time measurements, it is important
to note that, for each iterative method 2,,+1 = ¢(2,), have
written general procedures applicable to generic f and its
derivatives. That means, for instance, that when I use f*, 1
do not simplify any factor in %% Also, if a subexpression
of (f*)' has already been computed in f* (say, sin(2)) in
the generic procedure to evaluate f, its value is not used,
but computed again, in the procedure that calculates
generic f’. If we were interested only in a particular func-
tion f (or if we wanted a figure in the fastest way), it would
be possible to modify the procedure that iterates z,.; =
&(z,,) for f, adapting and simplifying its expression.

Now, let us go back to the other target of this paper: to
compare the fractal pictures that appear when we apply
different iterative methods for solving the same equation
f(2) = 0, where fis a complex function.

Figures 1 to 12 show the pictures that appear when we
apply the iterative methods to find the roots of the func-
tion f(z) = 2° — 1 in the rectangle R;. I have used strategy
(iii) described in the introduction. Respectively, I assign
cyan, magenta, and yellow for the attraction basins of the
three roots 1, e2™/3, and e*"/3, lighter or darker according
to the number of iterations needed to reach the root with
the fixed precision required. I mark with black the points
29 € Ry, for which the corresponding iterative method start-
ing in 2y does not reach any root with tolerance 1073 in a
maximum of 25 iterations.

In the final section of this article, I show the programs
that I have used and similar ones that allow us to generate
both gray-scaled and color figures. Of course, it is also pos-
sible to use the function f* or the small rectangle R, (or
any other function or rectangle); this will only require small
modifications to the programs.

Although an ordinary programming language is typically
hundreds of times faster, to generate the pictures it is eas-
ier if we employ a computer package with graphics facili-
ties, such us Mathematica, Maple, or Matlab. The graphics
that I show here were generated with Mathematica 3.0 (see
[20]); in the next section, I show the programs used to ob-
tain the figures.

Note that both Traub-Ostrowski’s method and Jarratt’s
method for f(2) = 2% — 1 lead to the iterative function

1+1223+542%+ 142°
“ei+i+as - Hence the fractal figure for both

$(2) =
of them is the same (Figure 11), and the same happens for
the data of Tables 1 and 2.

The tables and the figures provide empirical data. From
them, and the indications given here, we can guess the be-
havior and suitability of any method depending on the cir-
cumstances. This is good entertainment.

Stirling’s and Steffensen’s methods are a case apart.
First, they are the most demanding with respect to the ini-
tial point (in the tables, see the percentage of nonconver-
gent points; in the figures, see the black areas). And, sec-
ond, in their graphics, the symmetry of angle 27/3 that we
observe in the other methods does not appear (with respect
to symmetry of fractals, see [1]).

Mathematica Programs to Get the Graphics
In this section, I explain how the figures in this article were
generated. To do this, I show the Mathematica [20] pro-

grams used.

First, we need to define function f and its derivatives.
This can be done by wusing £[z_] :=2z"3-1,
df[z_] :=3*z72 and d2flz_] := 6*z, butitis faster
if we use the compiled versions

f=Compile[{{z,_Complex}}, z73-1];
df =Compile[{{z,_Complex}}, 3*z"21;
d2f =Compile[{{z,_Complex}}, 6*z];

Of course, any other function, such as f*(2)=
(sin(z) 3
expl e) (2° — 1), can be used.

The three complex roots of f are

Dol[root[k] =N[Exp[2* (k-1)*P1*I/3]1],
{k, 1, 3}]

I use the following procedure which identifies which
root has been approximated with a tolerance of 10~3, if any.

rootPosition =Compile[{{z, _Complex}},
Which{aAbs[z - root[1l]1]< 10.0"(-3), 3,
Abs[z -rootf[2]] <10.0"(-3), 2,
Abs[z -rootf[3]]1<10.0~(-3), 1,
True, 0],
{{rootf[_], _Complex}}
]

We must define the iterative methods, that is, the dif-
ferent 2,11 = ¢(2,). For Newton’s method, this would be

iterNewton = Compile[{{z,_Complex}},
z-f(z]/df[z]]

and, for Halley’s method,

iterHalley = Compile[{{z,_Complex}},
Block[{v=df[z]l}, z-1.0/ (v/flz]
- (d2£[z]1)/(2.0%v))]
]

(observe that an extra variable v is used so as to evaluate
df [z] once only). The procedure is similar for all the other
methods in this paper.

VOLUME 24, NUMBER 1, 2002 43

The algorithm that iterates the function iterMethod to
see if a root is reached in a maximum of 1im iterations is
the following:

iterAlgorithm[iterMethod ,x_,vy_,lim] :=
Block[{z,ct,r}, z=x+y I; ct=0;
r = rootPosition[z];
While[(r == 0) && {ct<lim},
++ct; z=1iterMethod(z];
r =rootPosition[z]
1;
If[Head[r] = Which,

= =0];
(* “Which”

unevaluated *)
Return [r]

]

Here, I have taken into account that sometimes Mathe-
matica is not able to do a numerical evaluation of z. Then
it cannot assign a value for r in rootPosition. Instead,
it returns an unevaluated Which. Of course, this corre-
sponds to nonconvergent points.

We are going to use a limit of 25 iterations and the com-
plex rectangle [—2.5, 2.5] X [—2.5, 2.5]. To do this, I define
the following variables:

limIterations =25;
xxMin=-2.5;
yyMin=-2.5;

xxMax = 2.5;
yyMax=2.5;

Finally, I define the procedure to paint the figures ac-
cording to strategy (i) described in the introduction. White,
33% gray and 66% gray are used to identify the attraction
basins of the three roots 1, €273 and ¢*™3, The points for
which the iterative method does not reach any root (with
the desired tolerance in the maximum of iterations) are pic-
tured as black. The variable points means that, to gener-
ate the picture, a points X points grid must be used.

plotFractal[iterMethod_, points_] :=

DensityPlot[iterAlgorithm[iterMethod,
X,y,limIterations],
{x, xxMin, =xxMax}, {y, yyMin, yyMax},
PlotRange — {0,3}, PlotPoints — points,
Mesh — False

1 // Timing

Note that // Timing at the end allows us to observe the
time that Mathematica employs when plotFractal is
used.

Then a graphic is obtained in this way (the example is
a black-and-white version of Figure 1):

plotFractal [iterNewton, 256]

When we use the functions that have been defined, over-
flow and underflow errors can happen (for instance, in
Newton’s method, f'(2) can be null and then we are divid-
ing by zero, although that is not the only problem). Math-
ematica informs us of such circumstances; to avoid it, use
the following before calling plotFractal:

Off [General::ovfl]; Off[General::unfl];

Off[Infinity::indet]

44 THE MATHEMATICAL INTELLIGENCER

Also, the previous problems, and some others, sometimes
force Mathematica to use a noncompiled version of the
functions. Again, Mathematica informs us of that circum-
stance; to avoid it, use

Off [CompiledFunction: :cccx];

Off [CompiledFunction: :cfn];
Off [CompiledFunction: :cfcx];
Off [CompiledFunction: :cfex];
Off [CompiledFunction: ::crcx];
Off[CompiledFunction: :ilsm]

Perhaps some other Of £ are useful depending on the func-
tion f and the complex rectangle used.

To obtain color graphics, I use a slightly different pro-
cedure to identify which root has been approximated; this
is done because we also want to know how many iterations
are necessary to reach the root. I use the following trick:
in the output, the integer part corresponds to the root and
the fractional part is related to the number of iterations.

iterColorAlgorithm[iterMethod_,
X_,y_,1lim_] :=
Block [{z,ct,r},
r =rootPosition[z];
While[(r == 0) && {(ct<lim),
++ct; z=1iterMethod([z];
r =rootPosition([z]
1;
If[Head[r] == Which, r=0];
(* “Which” unevaluated *)
Return[N[r+ct/ (1im+00.001)11]
1

z=x+y I; ct=0;

To assign the intensity of the color of a point, I take into
account the number of iterations used to reach the root
when the iterative method starts at that point. I use cyan,
magenta, and yellow for the points that reach, respectively,
the roots 1, e2™/3 and ¢*3; and black for nonconvergent
points. To do this, I use

colorLevel =Compile[{{p,_Real}},
0.4*FractionalPart([4*pl]

and

fractalColor(p_] :=
Block[{pp =colorLevel(p]},
Switch[IntegerPart[4*p],
3, CMYKColor[0.6+pp,0.,0.,2*%ppl,
2, CMYKColor{0.,0.6+pp,0.,2*ppl],
1, CMYKColor[0.,0.,0.6+pp,2*pp],
0, CMYKColor([0.,0.,0.,1.1

]

(In the internal behavior of Mathematica, when a function
is going to be pictured with DensityPlot, it is scaled to
[0, 1]. However, iterColorAlgorithm has a range of
[0, 4]; this is the reason for using 4*p in some places in

colorLevel and fractalColor. Also, note that col-
orLevel can be changed to modify the intensity of the col-
ors; for other graphics, it is a good idea to experiment by
changing the parameters to get nice pictures.)

Finally, a color fractal will be pictured by calling the pro-
cedure

plotColorFractal [iterMethod_,points_] :=
DensityPlot |
iterColorAlgorithm[iterMethod, x,vy,
limIterations],
{x, xxMin, xxMax}, {y, yyMin, yyMax},
PlotRange — {0, 4},
PlotPoints — points, Mesh — False,
ColorFunction-» fractalColor
1 // Timing

For instance,

plotColorFractal [iterNewton, 256]

is just Figure 1.

Families of Iterative Methods
There are many iterative methods for solving nonlinear
equations in which a parameter appears; one speaks of
JSamilies of iterative methods.

One of the best-known is the Chebyshev-Halley family

e 1 L
= w2 T AL)

with S a real parameter. These are order 3 methods for solv-
ing the equation f(z) = 0. Particular cases are B=10
(Chebyshev’s method), 8 = 1/2 (Halley’s method), and 8 =
1 (super-Halley’s method). When 8 — —o, we get Newton’s
method. This family was studied by W. Werner in 1980 (see
[19]), and can also be found in (3, p. 219] and [10]. It is in-
teresting to note that any iterative process given by the ex-
pression

_ J(zn)
S'(zn)
where function H satisfies H(0) =0, H'(0) = 1/2 and

H ”(O)\ < o, generates an order 3 iterative method (see [8]).
'lI‘he Chebyshev-Halley family appears by taking H(x) = 1 +

21— Bx
A multipoint family (see [18, p. 178]) is

@
9(2n)

H(L{zn)),

Fn+1 = Rn

An+1 = %n

. Sz + Bf2) - fiz)
with 9(2) = — @

(B = 1is Steffensen’s method). Its order of convergence is 2.
An order 4 multipoint family was studied by King [14]
(see also [3, p. 230]):

and B an arbitrary constant

Zp+1 = 2p — U(Zy)
S)

J(zn) + Bz — w(zn)
f2) + (B = 2) fzn — w(22))’

where B is an arbitrary real number and u(z) = ;(2). Traub-

Ostrowski's method is the particular case 8 = 0.
Finally, here is another order 4 multipoint family:

1+ Bh(2yn)
1+ C+Bhizn)

Zna1 = 2y — W) + 2u(Z,)h(2,)

where B is a parameter and u, k denote u(2) = J{((zz)) and

nz) = fi—%gﬂ Here, for 8 = 0, we get Jarratt’s method
(actually, in [12] a different family appears; the method that
I am calling Jarratt’s method is a particular case of both
families). For 8 = —3/2, we get the so-called inverse-free
Jarratt’s method.

Uniparametric iterative methods offer an interesting
graphic possibility: to show pictures in movement. We take
a fixed function and a fixed rectangle, and we represent
the fractal pictures for many values of the parameter. This
then generates a nice moving image that shows the evolu-
tion of the fractal images when the parameter varies. Un-
fortunately, it is not possible to show moving images on pa-
per. To generate them in a computer, one can use small
modifications of the Mathematica programs from the pre-
vious section, using also the Mathematica commands An-
imate or ShowAnimation. Later, it is possible to export
these images in Quick-Time format (so that Mathematica
will not be necessary for seeing them). Of course, this re-
quires a large quantity of computer time, but as computers
become faster and faster this is less of a problem.

JUAN L. VARONA
Departamento de Mateméaticas y Computacion

Universidad de La Rioja
26004 Logrofio
Spain
e-mail: jvarona@dmc.uniricja.es

Juan L. Varona is a native of La Rioja, a region of Spain known
hitherto mostly for its wines. He studied mathematics at
Zaragoza, and went on for his Ph.D. at Cantabria, also in
Spain. His research is mainly in Fourier analysis, but also in
computational number theory. One of his more “serious” hob-
bies is developing tools for writing Spanish in TeX/LaTeX.

VOLUME 24, NUMBER 1, 2002 45

REFERENCES

1. C. Alexander, |. Giblin, and D. Newton, Symmetry groups on frac-
tals, The Mathematical Intelligencer 14 (1992), no. 2, 32-38.

2. I. K. Argyros, D. Chen, and Q. Qian, The Jarratt method in Banach
space setting, J. Comput. Appl. Math. 51 (1994), 103-106.

3. I. K. Argyros and F. Szidarovszky, The Theory and Applications of
Iteration Methods, CRC Press, Boca Raton, FL, 1993.

4. W. Bergweiler, Iteration of meromorphic functions, Bull. Am. Math.
Soc. (N. S.) 29 (1993), 151-188.

5. P. Blanchard, Complex analytic dynamics on the Riemann sphere,
Bull. Am. Math. Soc. (N. S.) 11 (1984), 85-141.

6. J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernandez, and M. A.
Salanova, The application of an inverse-free Jarratt-type approxi-
mation to nonlinear integral equations of Hammerstein-type, Com-
put. Math. Appl. 36 (1998), 9-20.

7. J. A, Ezquerro and M. A. Hernandez, On a convex acceleration of
Newton’s method, J. Optim. Theory Appl. 100 (1999), 311-326.

8. W. Gander, On Halley’s iteration method, Am. Math. Monthly 92
(1985), 131-134.

9. W. Gautschi, Numerical Analysis: An Introduction, Birkhduser,
Boston, 1997.

10. J. M. Gutiérrez and M. A. Hernandez, A family of Chebyshev-

Halley type methods in Banach spaces, Bull. Austral. Math. Soc.
55 (1997), 113-130.
11. M. A. Hernandez, An acceleration procedure of the Whittaker

Bjen Engguist
V«'Eﬂd Sx'h:l‘d'

thematics
Mat limited -

2001
and

b Beyond

12.

13.

14,

15.

18.

19.

20.

21.

THE MATH BOOK OF THE NEW MILLENNIUM!

B. Engquist, University of California, Los Angeles and
Wilfried Schmid, Harvard University, Cambridge, MA (eds.)

Mathematics Unlimited
2001 and Beyond

method by means of convexity, Zb. Rad. Prirod.-Mat. Fak. Ser.
Mat. 20 (1990), 27-38.

P. Jarratt, Some fourth order multipoint iterative methods for solv-
ing equations, Math. Comp. 20 (1966), 434-437.

D. Kincaid and W. Cheney, Numerical Analysis: Matheratics of Sci-
entific Computing, 2nd ed., Brooks/Cole, Pacific Grove, CA, 1996.
R. F. King, A family of fourth order methods for nonlinear equa-
tions, SIAM J. Numer. Anal. 10 (1973), 876-879.

J. M. Ortega and W. C. Rheinboldt, lterative Solution of Nonlinear
Equations in Several Variables, Monographs Textbooks Comput.
Sci. Appl. Math., Academic Press, New York, 1970.

. H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-

Verlag, New York, 1986.

. M. Shub, Mysteries of mathematics and computation, The Math-

ematical Intelligencer 16 (1994), no. 2, 10-15.

J. F. Traub, lterative Methods for the Solution of Equations, Pren-
tice-Hall, Englewood Cliffs, NJ, 1964.

W. Werner, Some improvements of classical iterative methods for the
solution of nonlinear equations, in Numerical Solution of Nonlinear
Equations (Proc., Bremen, 1980), E. L. Allgower, K. Glashoff and H.
0. Peitgen, eds., Lecture Notes in Math. 878 (1981), 427-440.

S. Wolfram, The Mathematica Book, 3rd ed., Wolfram Media/Cam-
bridge University Press, 1996.

J. W. Neuberger, The Mathematical intelligencer, 21(1999), no. 3,
18-23.

This is a book guaranteed to delight
the reader. It not only depicts the
state of mathematics at the end of
the century, but is also full of
remarkable insights into its future development
as we enter a new millennium. True to its title, the book extends
beyond the spectrum of mathematics to include contributions from
other related sciences. You will enjoy reading the many stimulating
contributions and gain insights into the astounding progress of math-
ematics and the perspectives for its future. One of the editors, Bjérn
Engquist, is a world-renowned researcher in computational science
and engineering. The second editor, Wilfried Schmid, is a distinguished
mathematician at Harvard University. Likewise, the authors are all
foremost mathematicians and scientists, and their biographies and
photographs appear at the end of the book. Unique in both form
and content, this is a “must-read” for every mathematician and sci-
entist and, in particular, for graduates still choosing their specialty.

Order Today!

Call: 1-800-SPRINGER + Fax: (201)-348-4505
Visit: http://www.springer-ny.com

Contents: Antman, S.: Nonlinear Continuum Physics. « Babuska,
I./Tinsley Oden,]J.: Computational Mechanics: Where is it Going?

* Bailey, D.H./Borwein J.M.: Experimental Mathematics: Recent
Developments and Future Outlook. ¢ Darmon, H.: p-adic L-func-
tions. * Faltings, G.: Diophantine Equations. * Farin, G.: SHAPE.

* Jorgensen,]J./Lang, S.: The Heat Kernel All Over the Place.

« Kliippelberg, C.: Developments in Insurance Mathematics.

¢ Koblitz, N.: Cryptography. * Marsden,]./Cendra, H./Ratiu,

T.: Geometric Mechanics, Lagrangian Reduction and Nonholonomic
Systems. ¢ Roy, M.-E.: Four Problems in Real Algebraic Geometry.

= Serre, D.: Systems of Conservation Laws: A Challenge for the
XXIst Century. = Spencer,].: Discrete Probability. * van der Geer,
G.: Error Correcting Codes and Curves Over Finite Fields. = von Storch,
H./von Storch, J.-S., and Miiller, P: Noise in Climate Models ... And
many more.

2001/1236 PP, 253 ILLUS./HARDCOVER/$44.95/I1SBN 3-540-66913-2

Springer ———

WWW.Springer-ny.com

Promotion #52560

46 THE MATHEMATICAL INTELLIGENCER

