COMMUTATORS AND ANALYTIC DEPENDENCE OF FOURIER-BESSEL SERIES ON $(0, \infty)$

José J. Guadalupe, Mario Pérez and Juan L. Varona

Abstract

In this paper we study the boundedness of the commutators $\left[b, S_{n}\right]$ where b is a BMO function and S_{n} denotes the n-th partial sum of the Fourier-Bessel series on $(0, \infty)$. Perturbing the measure by $\exp (2 b)$ we obtain that certain operators related to S_{n} depend analytically on the functional parameter b.

0 . Introduction.

Let J_{α} be the Bessel function of order $\alpha>-1$. The formula

$$
\int_{0}^{\infty} J_{\alpha+2 n+1}(x) J_{\alpha+2 m+1}(x) \frac{d x}{x}= \begin{cases}0, & \text { if } n \neq m \\ 2^{-1}(\alpha+2 n+1)^{-1}, & \text { if } n=m\end{cases}
$$

(see [14, XIII.13.41 (7), p. 404] and [14, XIII.13.42 (1), p. 405]) provides an orthonormal system $\left(j_{n}^{\alpha}\right)_{n \geq 0}$ in $L^{2}\left((0, \infty), x^{\alpha} d x\right)\left[L^{2}\left(x^{\alpha}\right)\right.$, from now on], given by

$$
j_{n}^{\alpha}(x)=\sqrt{\alpha+2 n+1} J_{\alpha+2 n+1}(\sqrt{x}) x^{-\alpha / 2-1 / 2} .
$$

In this paper we consider the Fourier expansion associated with this orthonormal system, which is usually referred to as the Fourier-Bessel series on $(0, \infty)$. For any suitable function f and any $n \geq 0$, the n-th partial sum of this expansion is given by

$$
S_{n} f=\sum_{k=0}^{n} c_{k}(f) j_{k}^{\alpha}, \quad c_{k}(f)=\int_{0}^{\infty} f(t) j_{k}^{\alpha}(t) t^{\alpha} d t
$$

We also consider the commutator of the Fourier-Bessel series on $(0, \infty)$ and the multiplication operator associated to a BMO function; this is defined, for any given $b \in \mathrm{BMO}$ and $n \geq 0$, as

$$
\left[b, S_{n}\right] f=b S_{n}(f)-S_{n}(b f)
$$

In the case $\alpha \geq-1 / 2$, one of the authors proved in [13] that the Fourier-Bessel series is bounded in $L^{p}\left(x^{\alpha}\right)$, i.e., there exists some constant $C>0$ (depending on α and p) such that for every $n \geq 0$ and every $f \in L^{p}\left(x^{\alpha}\right)$,

$$
\left\|S_{n} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

[^0]if and only if $\max \{4 / 3,4(\alpha+1) /(2 \alpha+3)\}<p<\min \{4,4(\alpha+1) /(2 \alpha+1)\}$. In Theorem 1 we will extend this result to the case $\alpha>-1$ and prove the corresponding inequality for the commutator $\left[b, S_{n}\right], b \in \mathrm{BMO}$.

Regarding the commutator $\left[b, S_{n}\right]$, results of this type are of independent interest and have been widely studied for many classical operators; see $[2,10,11,12,4]$, for instance.

In our case, the commutator $\left[b, S_{n}\right]$ is closely related to the problem of perturbating the orthonormal system. Given an orthonormal system $\left(\varphi_{n}\right)_{n \geq 0}$ in some $L^{2}(\nu)$ space and a suitable function b (in some sense close to 0), the classical GramSchmidt procedure can be applied to $\left(\varphi_{n}\right)_{n \geq 0}$ so as to obtain a new orthonormal system in $L^{2}\left(e^{2 b} d \nu\right)$, which we will refer to as a perturbated system. In this natural way a mapping can be defined that associates a perturbated system (and a perturbated orthogonal expansion) to each (small) function b. For different compact perturbations of orthogonal polynomial systems and further references, see [7, 9, 1].

Let us take the system $\left(j_{n}^{\alpha}\right)_{n \geq 0}$ in $L^{2}\left(x^{\alpha}\right)$ as our starting point. Let $\mathbf{S}_{n}(b)$ stand for the n-th partial sum operator of the Fourier series associated to the perturbed measure $e^{2 b} x^{\alpha} d x$ in the aforementioned way. Once the boundedness properties of $S_{n}=\mathbf{S}_{n}(0)$ have been established, it is interesting to study the mapping $b \mapsto \mathbf{S}_{n}(b)$. This is not, however, a convenient setting, since each perturbed series $\mathbf{S}_{n}(b)$ acts on a different space $L^{2}\left(e^{2 b} x^{\alpha}\right)$. Instead, we can consider the operators

$$
V_{n}(b)=e^{b} \mathbf{S}_{n}(b) e^{-b}
$$

Now, each $V_{n}(b)$ acts on $L^{2}\left(x^{\alpha}\right)$ and its norm coincides with the operator norm of $\mathbf{S}_{n}(b)$ acting on $L^{2}\left(e^{2 b} x^{\alpha}\right)$. The problem is further simplified if we take the operators

$$
T_{n}(b)=e^{b} \mathbf{S}_{n}(0) e^{-b}
$$

i.e., $T_{n}(b) f=e^{b} S_{n}\left(e^{-b} f\right)$. Indeed, it has been proved in [3] that the family $\left(V_{n}(b)\right)_{n \geq 0}$ depends analytically on b belonging to a neighbourhood of 0 in the complexification of BMO whenever the family $\left(T_{n}(b)\right)_{n \geq 0}$ does too.

We will prove in Theorem 2 that the family of operators $\left(T_{n}(b)\right)_{n \geq 0}$ acting on $L^{2}\left(x^{\alpha}\right)$ is uniformly bounded for b belonging to some neighbourhood of 0 in the complexification of BMO. As a consequence (see [3, Propositions 2.1 and 2.3]), the operator-valued mappings $\left(T_{n}\right)_{n \geq 0}$ are uniformly analytic in a neighbourhood of 0 in the complexification of BMO and so are $\left(V_{n}\right)_{n \geq 0}$.

Now, the connection between $\left[b, S_{n}\right]$ and the perturbated Fourier series comes via the Gâteaux differential of T_{n} at 0 in the direction b :

$$
\left.\frac{d}{d z} T_{n}(z b)\right|_{z=0}=\left[b, S_{n}\right] .
$$

In this way, the uniform analyticity of T_{n} in a neighbourhood of 0 gives the L^{2} boundedness of $\left[b, S_{n}\right]$.

1. Main results.

If b is a locally Lebesgue-integrable function on $(0, \infty)$, the mean of b on an interval $I \subseteq(0, \infty)$ is

$$
b_{I}=\frac{1}{|I|} \int_{I} b(x) d x
$$

The function b is said to have bounded mean oscillation on $(0, \infty)$ if

$$
\|b\|_{\mathrm{BMO}}=\sup _{I} \frac{1}{|I|} \int_{I}\left|b(x)-b_{I}\right| d x
$$

is finite, where the supremum is taken over all the intervals $I \subseteq(0, \infty)$. The space BMO of real-valued functions (modulo constants) having bounded mean oscillation on $(0, \infty)$ is a real Banach space with $\|\cdot\|_{\text {BMO }}$ as its norm.
Theorem 1. Let $1<p<\infty,-1<\alpha$ such that

$$
\begin{cases}4 / 3<p<4, & \text { if }-1<\alpha<0 \\ \frac{4(\alpha+1)}{2 \alpha+3}<p<\frac{4(\alpha+1)}{2 \alpha+1}, & \text { if } 0 \leq \alpha\end{cases}
$$

(a) There exists some constant $C>0$ such that, for every $f \in L^{p}\left(x^{\alpha}\right)$ and $n \geq 0$,

$$
\left\|S_{n} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

(b) If $b \in \mathrm{BMO}$, then there exists some constant $C>0$ such that, for every $f \in L^{p}\left(x^{\alpha}\right)$ and $n \geq 0$,

$$
\left\|\left[S_{n}, b\right] f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

Throughout this paper, we will denote by C a positive constant which is independent of n and f, but may be different in each occurrence, even within the same formula.

Theorem 2. Let $1<p<\infty,-1<\alpha$ such that

$$
\begin{cases}4 / 3<p<4, & \text { if }-1<\alpha<0 \\ \frac{4(\alpha+1)}{2 \alpha+3}<p<\frac{4(\alpha+1)}{2 \alpha+1}, & \text { if } 0 \leq \alpha\end{cases}
$$

Then there exist some $C, \delta>0$ such that, for all $b \in \mathrm{BMO}$ with $\|b\|_{\mathrm{BMO}}<\delta$,

$$
\sup _{n}\left\|T_{n}(b)\right\|_{L^{p}\left(x^{\alpha}\right) \rightarrow L^{p}\left(x^{\alpha}\right)} \leq C .
$$

The next corollary is just a consequence of Theorem 2 and [3, Prop. 2.3].
Corollary. The sequences of operators $\left(T_{n}(b)\right)_{n \geq 0}$ and $\left(V_{n}(b)\right)_{n \geq 0}$, acting on the space $L^{2}\left(x^{\alpha}\right)$, are uniformly analytic in a neighbourhood of 0 in the complexification of BMO.

Some notation and previous results will be necessary. For $1<p<\infty$, we write $p^{\prime}=p /(p-1)$, i.e., $1 / p+1 / p^{\prime}=1$. A weight is a nonnegative Lebesgue-measurable function on $(0, \infty)$. The class $A_{p}(0, \infty)\left[A_{p}\right.$, for short] consists of those pairs of weights (u, v) such that, for every subinterval $I \subseteq(0, \infty)$,

$$
\frac{1}{|I|} \int_{I} u\left(\frac{1}{|I|} \int_{I} v^{-p^{\prime} / p}\right)^{p / p^{\prime}} \leq C
$$

where C is a positive constant independent of I, and $|I|$ denotes the length of I. The A_{p} constant of (u, v) is the least constant C verifying this inequality and will be denoted by $A_{p}(u, v)$. A single weight w is said to belong to A_{p} if $(w, w) \in A_{p}$; in this case we denote the constant by $A_{p}(w)$. We refer the reader to [6] for further details on A_{p} classes.

The Hilbert transform on $(0, \infty)$ will be denoted by H. Fix $1<p<\infty$; then H is a bounded linear operator on $L^{p}(w)$, for any weight $w \in A_{p}$. The norm of $H: L^{p}(w) \longrightarrow L^{p}(w)$ and the A_{p} constant of w depend only one on another, in the sense that given some constant C which verifies the A_{p} condition for w, another constant C_{1} depending only on C can be chosen so that $\|H\| \leq C_{1}$, and viceversa. Therefore, for a sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ uniformly in A_{p}, i.e., with some constant C verifying the A_{p} condition for every w_{n}, the Hilbert transform is uniformly bounded on $L^{p}\left(w_{n}\right), n \in \mathbb{N}$. We refer the reader again to [6] for further details.

Also, if (u, v) is a pair of weights such that $C_{1} u \leq w \leq C_{2} v$ for some $w \in A_{p}$, we deduce that H is a bounded operator from $L^{p}(v)$ into $L^{p}(u)$. The existence of such a weight w is equivalent to $\left(u^{\delta}, v^{\delta}\right) \in A_{p}$ for some $\delta>1$ (see [8]). For short, this is written as $(u, v) \in A_{p}^{\delta}$.

Analogous results hold also with the commutator $[b, H]$, for any $b \in$ BMO (see [2], for instance). Namely, given $b \in \mathrm{BMO}$ and $w \in A_{p},[b, H]$ is a bounded operator on $L^{p}(w)$ with a norm that depends only on the BMO-norm of b and the A_{p} constant of w, in the sense above.

2. Proofs.

Let us start with some auxiliary results:
Lemma 1. Let u, v, w be weights on $(0,+\infty), \lambda>0$.
(a) $w(x) \in A_{p}$ if and only if $w(\lambda x) \in A_{p}$; both weights have the same A_{p} constant.
(b) $w \in A_{p}$ if and only if $\lambda w \in A_{p}$; both weights have also the same A_{p} constant.
(c) If $u, v \in A_{p}$, then $u+v \in A_{p}$ and $A_{p}(u+v) \leq A_{p}(u)+A_{p}(v)$.
(d) If $u, v \in A_{p}$ and $1 / w=1 / u+1 / v$, then $w \in A_{p}$ and $A_{p}(w) \leq C\left[A_{p}(u)+\right.$ $\left.A_{p}(v)\right]$.
Proof. Parts (a) and (b) are trivial. Part (c) follows easily from the inequality

$$
\left(\frac{1}{|I|} \int_{I}(u+v)^{-p^{\prime} / p}\right)^{p / p^{\prime}} \leq \min \left\{\left(\frac{1}{|I|} \int_{I} u^{-p^{\prime} / p}\right)^{p / p^{\prime}},\left(\frac{1}{|I|} \int_{I} v^{-p^{\prime} / p}\right)^{p / p^{\prime}}\right\}
$$

Part (d) is a consequence of (c) and the fact that $u \in A_{p} \Longleftrightarrow u^{-p^{\prime} / p} \in A_{p^{\prime}}$, with $A_{p^{\prime}}\left(u^{-p^{\prime} / p}\right)=\left[A_{p}(u)\right]^{p^{\prime} / p}$.

The proof of the next lemma is not difficult, but cumbersome, so we omit it. For the weight in (c), observe that $x^{r}\left|x^{1 / 2}-1\right|^{s} \sim x^{r}$ near $0, x^{r}\left|x^{1 / 2}-1\right|^{s} \sim|x-1|^{s}$ near 1 and $x^{r}\left|x^{1 / 2}-1\right|^{s} \sim x^{r+s / 2}$ near ∞, whence the three conditions follow.
Lemma 2. Let $r, s \in \mathbb{R}$.
(a) $x^{r} \in A_{p} \Longleftrightarrow-1<r<p-1$.
(b) Set $\Phi(x)=x^{r}$ if $x \in(0,1)$ and $\Phi(x)=x^{s}$ if $x \in(1, \infty)$. Then, $\Phi \in A_{p}$ if and only if $-1<r<p-1$ and $-1<s<p-1$.
(c) $x^{r}\left|x^{1 / 2}-1\right|^{s} \in A_{p} \Longleftrightarrow-1<r<p-1,-1<s<p-1$ and $-1<$ $r+s / 2<p-1$.

Lemma 3. Let $n \in \mathbb{N}, \alpha>-1$. Then

$$
\begin{aligned}
\sum_{k=0}^{n} 2(\alpha+2 k+1) & J_{\alpha+2 k+1}(x) J_{\alpha+2 k+1}(t) \\
=\frac{x t}{x^{2}-t^{2}} & {\left[x J_{\alpha+1}(x) J_{\alpha}(t)-t J_{\alpha}(x) J_{\alpha+1}(t)\right.} \\
& \left.\quad+x J_{\alpha+2 n+2}^{\prime}(x) J_{\alpha+2 n+2}(t)-t J_{\alpha+2 n+2}(x) J_{\alpha+2 n+2}^{\prime}(t)\right]
\end{aligned}
$$

Proof. Using the equality $J_{\nu-1}(z)+J_{\nu+1}(z)=\frac{2 \nu}{z} J_{\nu}(z)$ (see [14, III.3.2, p. 45]) to express $J_{\mu-1}$ and $J_{\mu+2}$ in terms of J_{μ} and $J_{\mu+1}$ proves the formula

$$
\begin{gathered}
\frac{x t}{x^{2}-t^{2}}\left[x J_{\mu}(x) J_{\mu-1}(t)-t J_{\mu-1}(x) J_{\mu}(t)-x J_{\mu+2}(x) J_{\mu+1}(t)+t J_{\mu+1}(x) J_{\mu+2}(t)\right] \\
=2 \mu J_{\mu}(x) J_{\mu}(t)
\end{gathered}
$$

This gives now

$$
\left.\begin{array}{l}
\sum_{k=0}^{n} 2(\alpha+2 k+1) J_{\alpha+2 k+1}(x) J_{\alpha+2 k+1}(t) \\
=\frac{x t}{x^{2}-t^{2}}[
\end{array} \quad x J_{\alpha+1}(x) J_{\alpha}(t)-t J_{\alpha}(x) J_{\alpha+1}(t)\right] .
$$

Finally, use the formula $z J_{\nu+1}(z)=\nu J_{\nu}(z)-z J_{\nu}^{\prime}(z)$ (see [14, III.3.2, p. 45]) to take out $J_{\alpha+2 n+3}$.
Proof of Theorem 1. From the definition,

$$
S_{n} f(x)=x^{-\frac{\alpha}{2}-\frac{1}{2}} \int_{0}^{\infty}\left[\sum_{k=0}^{n}(\alpha+2 k+1) J_{\alpha+2 k+1}\left(x^{\frac{1}{2}}\right) J_{\alpha+2 k+1}\left(t^{\frac{1}{2}}\right)\right] t^{\frac{\alpha}{2}-\frac{1}{2}} f(t) d t
$$

so that Lemma 3 leads to

$$
S_{n} f=W_{1} f-W_{2} f+W_{3, n} f-W_{4, n} f
$$

where

$$
\begin{aligned}
W_{1} f(x) & =2^{-1} x^{-\alpha / 2+1 / 2} J_{\alpha+1}\left(x^{1 / 2}\right) H\left(t^{\alpha / 2} J_{\alpha}\left(t^{1 / 2}\right) f(t)\right)(x), \\
W_{2} f(x) & =2^{-1} x^{-\alpha / 2} J_{\alpha}\left(x^{1 / 2}\right) H\left(t^{\alpha / 2+1 / 2} J_{\alpha+1}\left(t^{1 / 2}\right) f(t)\right)(x), \\
W_{3, n} f(x) & =2^{-1} x^{-\alpha / 2+1 / 2} J_{\nu}^{\prime}\left(x^{1 / 2}\right) H\left(t^{\alpha / 2} J_{\nu}\left(t^{1 / 2}\right) f(t)\right)(x), \\
W_{4, n} f(x) & =2^{-1} x^{-\alpha / 2} J_{\nu}\left(x^{1 / 2}\right) H\left(t^{\alpha / 2+1 / 2} J_{\nu}^{\prime}\left(t^{1 / 2}\right) f(t)\right)(x)
\end{aligned}
$$

and $\nu=\alpha+2 n+2$. Thus, we will show that the operators W_{1}, W_{2} are bounded and the operators $W_{3, n}, W_{4, n}$ are uniformly bounded for $n \geq 0$. The proof for the commutator $\left[b, S_{n}\right]$ is the same: just put $[b, H]$ instead of H.
(I) Boundedness of the operator W_{1}. From the definition, it follows that

$$
\left\|W_{1} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

if and only if

$$
\|H g\|_{L^{p}\left(x^{\alpha-\alpha p / 2+p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{p}\right)} \leq C\|g\|_{L^{p}\left(x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{-p}\right)} .
$$

Proving that there is a weight $\Phi \in A_{p}$ with

$$
\begin{equation*}
C x^{\alpha-\alpha p / 2+p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{p} \leq \Phi(x) \leq C x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{-p} \tag{1}
\end{equation*}
$$

will be enough. According to the bounds

$$
\begin{aligned}
& \left|J_{\alpha}(x)\right| \leq C_{\alpha} x^{\alpha}, \quad x \in(0,1) \\
& \left|J_{\alpha}(x)\right| \leq C_{\alpha} x^{-1 / 2}, \quad x \in(1, \infty)
\end{aligned}
$$

(see, e.g., [14, III.3.1 (8), p. 40] and [14, VII.7.21 (1), p. 199]), we have

$$
\begin{array}{r}
x^{\alpha-\alpha p / 2+p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{p} \leq \begin{cases}C x^{\alpha+p}, & \text { if } x \in(0,1), \\
C x^{\alpha-\alpha p / 2+p / 4}, & \text { if } x \in(1, \infty),\end{cases} \\
x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{-p} \geq \begin{cases}C x^{\alpha-\alpha p}, & \text { if } x \in(0,1), \\
C x^{\alpha-\alpha p / 2+p / 4}, & \text { if } x \in(1, \infty)\end{cases}
\end{array}
$$

Let us try

$$
\Phi(x)= \begin{cases}x^{r}, & \text { if } x \in(0,1) \\ x^{\alpha-\alpha p / 2+p / 4}, & \text { if } x \in(1, \infty)\end{cases}
$$

By (b) in Lemma 2, conditions (1) and $\Phi \in A_{p}$ will hold if

$$
\left\{\begin{array}{l}
\alpha-\alpha p \leq r \leq \alpha+p \\
-1<r<p-1 \\
-1<\alpha-\alpha p / 2+p / 4<p-1
\end{array}\right.
$$

The third line is equivalent to

$$
\frac{2 \alpha-1}{4} p<\alpha+1, \quad \alpha+1<\frac{2 \alpha+3}{4} p
$$

and these hold, by the hypothesis. For the inequalities involving r it suffices

$$
\max \{-1, \alpha-\alpha p\}<\min \{p-1, \alpha+p\} .
$$

It is easy to check that this also holds, whenever $\alpha>-1$ and $p>1$.
(II) Boundedness of the operator W_{2}. The proof is entirely similar: we have

$$
\left\|W_{2} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

if and only if

$$
\|H g\|_{L^{p}\left(x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{p}\right)} \leq C\|g\|_{L^{p}\left(x^{\alpha-\alpha p / 2-p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{-p}\right)}
$$

so that we can prove that there is a weight $\Psi \in A_{p}$ with

$$
\begin{equation*}
C x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{p} \leq \Psi(x) \leq C x^{\alpha-\alpha p / 2-p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{-p} . \tag{2}
\end{equation*}
$$

Now we have

$$
\begin{gathered}
x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{p} \leq \begin{cases}C x^{\alpha}, & \text { if } x \in(0,1), \\
C x^{\alpha-\alpha p / 2-p / 4}, & \text { if } x \in(1, \infty),\end{cases} \\
x^{\alpha-\alpha p / 2-p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{-p} \geq \begin{cases}C x^{\alpha-\alpha p-p}, & \text { if } x \in(0,1), \\
C x^{\alpha-\alpha p / 2-p / 4}, & \text { if } x \in(1, \infty) .\end{cases}
\end{gathered}
$$

Setting

$$
\Psi(x)= \begin{cases}x^{r}, & \text { if } x \in(0,1), \\ x^{\alpha-\alpha p / 2-p / 4}, & \text { if } x \in(1, \infty),\end{cases}
$$

conditions (2) and $\Psi \in A_{p}$ will hold if

$$
\left\{\begin{array}{l}
\alpha-\alpha p-p \leq r \leq \alpha \\
-1<r<p-1 \\
-1<\alpha-\alpha p / 2-p / 4<p-1
\end{array}\right.
$$

The third line is equivalent to

$$
\frac{2 \alpha+1}{4} p<\alpha+1, \quad \alpha+1<\frac{2 \alpha+5}{4} p,
$$

and these hold, by the hypothesis. For the inequalities involving r we only need

$$
\max \{-1, \alpha-\alpha p-p\}<\min \{p-1, \alpha\} .
$$

It is easy to check that this also holds, whenever $\alpha>-1$ and $p>1$.
(III) Uniform boundedness of the operators $W_{3, n}$. Here,

$$
\left\|W_{3, n} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

if and only if

$$
\|H g\|_{L^{p}\left(x^{\alpha-\alpha p / 2+p / 2}\left|J_{\nu}^{\prime}\left(x^{1 / 2}\right)\right|^{p}\right)} \leq C\|g\|_{L^{p}\left(x^{\alpha-\alpha p / 2}\left|J_{\nu}\left(x^{1 / 2}\right)\right|^{-p}\right)} .
$$

We make now use of the bounds

$$
\begin{aligned}
& \left|J_{\nu}(x)\right| \leq C x^{-1 / 4}\left[|x-\nu|+\nu^{1 / 3}\right]^{-1 / 4}, \quad \nu=\alpha+2 n+2, x \in(0, \infty), \\
& \left|J_{\nu}^{\prime}(x)\right| \leq C x^{-3 / 4}\left[|x-\nu|+\nu^{1 / 3}\right]^{1 / 4}, \quad \nu=\alpha+2 n+2, x \in(0, \infty)
\end{aligned}
$$

with some universal constant C. They follow from those of [5], for instance. Therefore,

$$
\begin{aligned}
x^{\alpha-\alpha p / 2+p / 2}\left|J_{\nu}^{\prime}\left(x^{1 / 2}\right)\right|^{p} & \leq C x^{\alpha-\alpha p / 2+p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{p / 4} \\
x^{\alpha-\alpha p / 2}\left|J_{\nu}\left(x^{1 / 2}\right)\right|^{-p} & \geq C x^{\alpha-\alpha p / 2+p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{p / 4}
\end{aligned}
$$

It will suffice to prove that $\varphi_{\nu} \in A_{p}$ uniformly in n, with

$$
\begin{equation*}
\varphi_{\nu}(x)=x^{\alpha-\alpha p / 2+p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{p / 4} \tag{3}
\end{equation*}
$$

From Lemma 1, we have

$$
\begin{aligned}
\varphi_{\nu}(x) \in A_{p} \text { unif. } & \Longleftrightarrow \varphi_{\nu}\left(\nu^{2} x\right) \in A_{p} \text { unif. } \\
& \Longleftrightarrow x^{\alpha-\alpha p / 2+p / 8}\left[\left|x^{1 / 2}-1\right|+\nu^{-2 / 3}\right]^{p / 4} \in A_{p} \text { unif. } \\
& \Longleftrightarrow x^{\alpha-\alpha p / 2+p / 8}\left|x^{1 / 2}-1\right|^{p / 4}+\nu^{-p / 6} x^{\alpha-\alpha p / 2+p / 8} \in A_{p} \text { unif., }
\end{aligned}
$$

where the last equivalence follows from

$$
\left[\left|x^{1 / 2}-1\right|+\nu^{-2 / 3}\right]^{p / 4} \sim\left|x^{1 / 2}-1\right|^{p / 4}+\nu^{-p / 6}
$$

i.e., the ratio of both terms is bounded below and above by two positive constants not depending on n or x. Now, again by Lemma 1, proving that $x^{\alpha-\alpha p / 2+p / 8} \in A_{p}$ and $x^{\alpha-\alpha p / 2+p / 8}\left|x^{1 / 2}-1\right|^{p / 4} \in A_{p}$ will suffice. According to Lemma 2,

$$
\begin{aligned}
\left\{\begin{array}{l}
x^{\alpha-\alpha p / 2+p / 8} \in A_{p} \\
x^{\alpha-\alpha p / 2+p / 8}\left|x^{1 / 2}-1\right|^{p / 4} \in A_{p}
\end{array}\right. & \Longleftrightarrow\left\{\begin{array}{l}
-1<\alpha-\alpha p / 2+p / 8<p-1 \\
-1<p / 4<p-1 \\
-1<\alpha-\alpha p / 2+p / 4<p-1
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
-1<\alpha-\alpha p / 2+p / 8 \\
4 / 3<p \\
\alpha-\alpha p / 2+p / 4<p-1
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
\frac{2 \alpha-1 / 2}{4} p<\alpha+1<\frac{2 \alpha+3}{4} p \\
4 / 3<p
\end{array}\right.
\end{aligned}
$$

and these inequalities follow from the initial conditions.
(IV) Uniform boundedness of the operators $W_{4, n}$. Finally,

$$
\left\|W_{4, n} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

if and only if

$$
\|H g\|_{L^{p}\left(x^{\alpha-\alpha p / 2}\left|J_{\nu}\left(x^{1 / 2}\right)\right|^{p}\right)} \leq C\|g\|_{L^{p}\left(x^{\alpha-\alpha p / 2-p / 2}\left|J_{\nu}^{\prime}\left(x^{1 / 2}\right)\right|^{-p}\right)} .
$$

Also,

$$
\begin{aligned}
& x^{\alpha-\alpha p / 2}\left|J_{\nu}\left(x^{1 / 2}\right)\right|^{p} \leq C x^{\alpha-\alpha p / 2-p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-p / 4}, \\
& x^{\alpha-\alpha p / 2-p / 2}\left|J_{\nu}^{\prime}\left(x^{1 / 2}\right)\right|^{-p} \geq C x^{\alpha-\alpha p / 2-p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-p / 4}
\end{aligned}
$$

so let us put

$$
\begin{equation*}
\psi_{\nu}(x)=x^{\alpha-\alpha p / 2-p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-p / 4} \tag{4}
\end{equation*}
$$

and show that $\psi_{\nu} \in A_{p}$ uniformly in n. Indeed,

$$
\begin{aligned}
\psi_{\nu}(x) \in A_{p} \text { unif. } & \Longleftrightarrow \psi_{\nu}\left(\nu^{2} x\right) \in A_{p} \text { unif. } \\
& \Longleftrightarrow x^{\alpha-\alpha p / 2-p / 8}\left[\left|x^{1 / 2}-1\right|+\nu^{-2 / 3}\right]^{-p / 4} \in A_{p} \text { unif. }
\end{aligned}
$$

and

$$
\begin{aligned}
\left(x^{\alpha-\alpha p / 2-p / 8}\right. & {\left.\left[\left|x^{1 / 2}-1\right|+\nu^{-2 / 3}\right]^{-p / 4}\right)^{-1} } \\
& \sim x^{-\alpha+\alpha p / 2+p / 8}\left[\left|x^{1 / 2}-1\right|^{p / 4}+\nu^{-p / 6}\right] \\
& =\left[x^{\alpha-\alpha p / 2-p / 8}\left|x^{1 / 2}-1\right|^{-p / 4}\right]^{-1}+\left[\nu^{p / 6} x^{\alpha-\alpha p / 2-p / 8}\right]^{-1}
\end{aligned}
$$

so that proving that $x^{\alpha-\alpha p / 2-p / 8}\left|x^{1 / 2}-1\right|^{-p / 4} \in A_{p}$ and $x^{\alpha-\alpha p / 2-p / 8} \in A_{p}$ will suffice. But

$$
\begin{aligned}
\left\{\begin{array}{l}
x^{\alpha-\alpha p / 2-p / 8} \in A_{p} \\
x^{\alpha-\alpha p / 2-p / 8}\left|x^{1 / 2}-1\right|^{-p / 4} \in A_{p}
\end{array}\right. & \Longleftrightarrow\left\{\begin{array}{l}
-1<\alpha-\alpha p / 2-p / 8<p-1 \\
-1<-p / 4<p-1 \\
-1<\alpha-\alpha p / 2-p / 4<p-1
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
\alpha-\alpha p / 2-p / 8<p-1 \\
p<4 \\
-1<\alpha-\alpha p / 2-p / 4
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
\frac{2 \alpha+1}{4} p<\alpha+1<\frac{2 \alpha+9 / 2}{4} p \\
p<4
\end{array}\right.
\end{aligned}
$$

and these inequalities hold by the hypothesis. The proof of Theorem 1 is now complete.

Proof of Theorem 2. For each $n \geq 0$ and $b \in \mathrm{BMO}, T_{n}(b): L^{p}\left(x^{\alpha}\right) \longrightarrow L^{p}\left(x^{\alpha}\right)$ is bounded if and only if $S_{n}: L^{p}\left(e^{p b} x^{\alpha}\right) \longrightarrow L^{p}\left(e^{p b} x^{\alpha}\right)$ is bounded, and both operators have the same norm. Thus, we can follow the proof of Theorem 1 and conclude that conditions (1), (2), (3) and (4), i.e.,

$$
\begin{aligned}
C x^{\alpha-\alpha p / 2+p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{p} \leq \Phi(x) & \leq C x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{-p} \\
C x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{p} \leq \Psi(x) & \leq C x^{\alpha-\alpha p / 2-p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{-p} \\
\varphi_{\nu}(x) & =x^{\alpha-\alpha p / 2+p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{p / 4} \\
\psi_{\nu}(x) & =x^{\alpha-\alpha p / 2-p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-p / 4},
\end{aligned}
$$

are still sufficient, if we require now $e^{p b} \Phi, e^{p b} \Psi, e^{p b} \varphi_{\nu}, e^{p b} \psi_{\nu} \in A_{p}$ uniformly in ν. The proof of Theorem 1, together with next lemma, finish the proof of Theorem 2.

Lemma 4. Let $1<p<\infty$. For each $\phi \in A_{p}$, there exists some $\delta>0$ such that $e^{p b} \phi \in A_{p}$ whenever $b \in \mathrm{BMO}$ with $\|b\|_{\mathrm{BMO}}<\delta$. Moreover, δ and the A_{p} constant of $e^{p b} \phi$ depend only on the A_{p} constant of ϕ.
Remark. Again, statements like " δ depends only on the A_{p} constant of ϕ " should be understood as: given a constant $C>0$ which verifies the A_{p} condition for ϕ, some δ can be chosen depending only on C.
Proof. If $\phi \in A_{p}$, there exists some $\varepsilon>1$ such that $\phi^{\varepsilon} \in A_{p}$; moreover, ε and the A_{p} constant of ϕ^{ε} depend only on the A_{p} constant of ϕ [6, Theorem IV.2.7, p. 399]. Take now $1 / \varepsilon+1 / \varepsilon^{\prime}=1$. There exists some $\delta>0$ such that

$$
\|b\|_{\mathrm{BMO}}<\delta \Longrightarrow e^{p \varepsilon^{\prime} b} \in A_{p}
$$

here, δ and the A_{p} constant of $e^{p \varepsilon^{\prime} b}$ depend only on $\varepsilon^{\prime}[6$, p. 409]. This, together with $\phi^{\varepsilon} \in A_{p}$ and Hölder's inequality, imply $e^{p b} \phi \in A_{p}$ with an A_{p} constant depending only on the A_{p} constant of ϕ.

References

1. A. I. Aptekarev, A. Branquinho and F. Marcellán, Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation, J. Comput. Appl. Math. 78 (1997), 139-160.
2. S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), 103-122.
3. R. R. Coifman and M. A. M. Murray, Uniform analyticity of orthogonal projections, Trans. Amer. Math. Soc. 312 (1989), 779-817.
4. R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
5. A. Córdoba, The disc multiplier, Duke Math. J. 58 (1989), 21-29.
6. J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
7. F. Marcellán, J. S. Dehesa and A. Ronveaux, On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math. 30 (1990), 203-212.
8. C. J. Neugebauer, Inserting A_{p} weights, Proc. Amer. Math. Soc. 87 (1983), 644-648.
9. P. Nevai and W. Van Assche, Compact perturbations of orthogonal polynomials, Pacific J. Math. 153 (1992), 163-184.
10. C. Segovia and J. L. Torrea, Vector-valued commutators and applications, Indiana Univ. Math. J. 38 (1989), 959-971.
11. \qquad , Weighted inequalities for commutators of fractional and singular integrals, Publicacions Matemàtiques 35 (1991), 209-235.
12. \qquad , Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Amer. Math. Soc. 336 (1993), 537-556.
13. J. L. Varona, Fourier series of functions whose Hankel transform is supported on $[0,1]$, Constr. Approx. 10 (1994), 65-75.
14. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944 (reprinted 1995).

José J. Guadalupe. Dpto. de Matemáticas y Computación. Universidad de La Rioja. 26004 Logroño. Spain.

Mario Pérez. Dpto. de Matemáticas. Universidad de Zaragoza. 50009 Zaragoza. Spain.

E-mail address: mperez@posta.unizar.es
Juan L. Varona. Dpto. de Matemáticas y Computación. Universidad de La Rioja. 26004 Logroño. Spain.

E-mail address: jvarona@dmc.unirioja.es

[^0]: 1991 Mathematics Subject Classification. Primary 42C10.
 Key words and phrases. Fourier-Bessel series, commutators, BMO, A_{p} weights.
 Research supported by DGICYT and by UR.
 THIS PAPER HAS BEEN PUBLISHED IN: Canad. Math. Bull. 42 (1999), 198-208.

