Commutators and Analytic Dependence of Fourier-Bessel Series on ($0, \infty$)

JoséJ. Guadalupe, M ario Pérez and Juan L. Varona

Abstract. In this paper we study the boundedness of the commutators $\left[b, \mathrm{~S}_{n}\right]$ where b is a BM 0 function and S_{n} denotes the n-th partial sum of the Fourier-Bessel series on $(0, \infty)$. Perturbing the measure by $\exp (2 b)$ we obtain that certain operators related to S_{n} depend analytically on the functional parameter b .

0 Introduction

Let J_{α} be the Bessel function of order $\alpha>-1$. The formula

$$
\int_{0}^{\infty} J_{\alpha+2 n+1}(x) J_{\alpha+2 m+1}(x) \frac{d x}{x}= \begin{cases}0, & \text { if } \mathrm{n} \neq \mathrm{m} \\ 2^{-1}(\alpha+2 n+1)^{-1}, & \text { if } \mathrm{n}=\mathrm{m}\end{cases}
$$

(see [14, XIII.13.41 (7), p. 404] and [14, XIII.13.42 (1), p. 405]) provides an orthonormal system $\left(j_{n}^{\alpha}\right)_{n \geq 0}$ in $L^{2}\left((0, \infty), x^{\alpha} d x\right)$ [$L^{2}\left(x^{\alpha}\right)$, from now on], given by

$$
\mathrm{j}_{\mathrm{n}}^{\alpha}(\mathrm{x})=\sqrt{\alpha+2 \mathrm{n}+1} \mathrm{~J}_{\alpha+2 \mathrm{n}+1}(\sqrt{\mathrm{x}}) \mathrm{x}^{-\alpha / 2-1 / 2}
$$

In this paper we consider the Fourier expansion associated with this orthonormal system, which is usually referred to as theFourier-Bessel series on ($0, \infty$). For any suitable function f and any $\mathrm{n} \geq 0$, the n-th partial sum of this expansion is given by

$$
S_{n} f=\sum_{k=0}^{n} c_{k}(f) j_{k}^{\alpha}, \quad c_{k}(f)=\int_{0}^{\infty} f(t) j_{k}^{\alpha}(t) t^{\alpha} d t
$$

We also consider the commutator of the Fourier-Bessel series on $(0, \infty)$ and the multiplication operator associated to a BMO function; this is defined, for any given $\mathrm{b} \in \mathrm{BMO}$ and $n \geq 0$, as

$$
\left[b, S_{n}\right] f=b S_{n}(f)-S_{n}(b f) .
$$

In the case $\alpha \geq-1 / 2$, one of the authors proved in [13] that the Fourier-Bessel series is bounded in $L^{p}\left(x^{\alpha}\right)$, i.e., there exists some constant $C>0$ (depending on α and p) such that for every $n \geq 0$ and $f \in L^{p}\left(x^{\alpha}\right)$,

$$
\left\|S_{\mathrm{n}} \mathrm{f}\right\|_{{\operatorname{Lp}\left(X^{\alpha}\right)}} \leq \mathrm{C}\|\mathrm{f}\|_{\operatorname{Lp}^{\mathrm{p}}\left(\mathrm{x}^{\alpha}\right)},
$$

[^0]if and only if $\max \{4 / 3,4(\alpha+1) /(2 \alpha+3)\}<\mathrm{p}<\min \{4,4(\alpha+1) /(2 \alpha+1)\}$. In Theorem 1 we will extend this result to the case $\alpha>-1$ and prove the corresponding inequality for the commutator $\left[b, \mathrm{~S}_{\mathrm{n}}\right], \mathrm{b} \in \mathrm{BMO}$.

Regarding the commutator [$b, \mathrm{~S}_{n}$], results of this type are of independent interest and have been widely studied for many classical operators; see [2], [10], [11], [12], [4], for instance.

In our case, the commutator $\left[b, S_{n}\right]$ is closely related to the problem of perturbating the orthonormal system. Given an orthonormal system $\left(\varphi_{n}\right)_{n \geq 0}$ in some $L^{2}(\nu)$ space and a suitable function b (in some sense close to 0), the classical Gram-Schmidt procedure can be applied to $\left(\varphi_{n}\right)_{n \geq 0}$ so as to obtain a new orthonormal system in $L^{2}\left(e^{2 b} d \nu\right)$, which we will refer to as a perturbated system. In this natural way a mapping can be defined that associates a perturbated system (and a perturbated orthogonal expansion) to each (small) function b. For different compact perturbations of orthogonal polynomial systems and further references, see [7], [9], [1].

Let us take the system $\left(\mathrm{j}_{n}^{\alpha}\right)_{n>0}$ in $\mathrm{L}^{2}\left(\mathrm{x}^{\alpha}\right)$ as our starting point. Let $\mathbf{S}_{n}(\mathrm{~b})$ stand for the n-th partial sum operator of the Fourier series associated to the perturbed measure $e^{2 b} x^{\alpha} d x$ in the aforementioned way. Once the boundedness properties of $\mathrm{S}_{\mathrm{n}}=\mathbf{S}_{n}(0)$ have been established, it is interesting to study the mapping $b \mapsto \mathbf{S}_{n}(\mathrm{~b})$. This is not, however, a convenient setting, since each perturbed series $\mathbf{S}_{n}(b)$ acts on a different space $L^{2}\left(e^{2 b} x^{\alpha}\right)$. Instead, we can consider the operators

$$
V_{n}(b)=e^{b} \mathbf{S}_{n}(b) e^{-b} .
$$

Now, each $\mathrm{V}_{\mathrm{n}}(\mathrm{b})$ acts on $\mathrm{L}^{2}\left(\mathrm{x}^{\alpha}\right)$ and its norm coincides with the operator norm of $\mathbf{S}_{\mathrm{n}}(\mathrm{b})$ acting on $L^{2}\left(e^{2 b} x^{\alpha}\right)$. The problem is further simplified if we take the operators

$$
T_{n}(b)=e^{b} \mathbf{S}_{n}(0) e^{-b},
$$

i.e., $T_{n}(b) f=e^{b} S_{n}\left(e^{-b} f\right)$. Indeed, it has been proved in [3] that the family $\left(V_{n}(b)\right)_{n>0}$ depends analytically on b belonging to a neighbourhood of 0 in the complexification of BM 0 whenever the family $\left(T_{n}(b)\right)_{n \geq 0}$ does too.

We will prove in Theorem 2 that the family of operators $\left(T_{n}(b)\right)_{n \geq 0}$ acting on $L^{2}\left(x^{\alpha}\right)$ is uniformly bounded for b belonging to someneighbourhood of 0 in the complexification of BM O. As a consequence (see [3, Propositions 2.1 and 2.3]), the operator-valued mappings $\left(T_{n}\right)_{n \geq 0}$ are uniformly analytic in a neighbourhood of 0 in the complexification of BMO and so are $\left(V_{n}\right)_{n \geq 0}$.

Now, the connection between $\left[\mathrm{b}, \mathrm{S}_{\mathrm{n}}\right]$ and the perturbated Fourier series comes via the Gâteaux differential of T_{n} at 0 in the direction b :

$$
\left.\frac{d}{d z} T_{n}(z b)\right|_{z=0}=\left[b, S_{n}\right] .
$$

In thisway, the uniform analyticity of T_{n} in aneighbourhood of 0 gives the L^{2}-boundedness of $\left[b, S_{n}\right]$.

1 Main Results

If b is a locally Lebesgue integrable function on $(0, \infty)$, the mean of b over an interval I $\subseteq(0, \infty)$ is

$$
b_{1}=\frac{1}{\| \|} \int_{1} b(x) d x .
$$

The function b is said to have bounded mean oscillation on $(0, \infty)$ if

$$
\|b\|_{\text {вмо }}=\sup _{1} \frac{1}{\| \mid} \int_{l}\left|b(x)-b_{l}\right| d x
$$

is finite, where the supremum is taken over all the intervals $\subseteq(0, \infty)$. The space BM O of real-valued functions (modulo constants) having bounded mean oscillation on ($0, \infty$) is a real Banach space with $\|\cdot\|_{\text {вмо }}$ as its norm.

Theorem 1 Let $1<\mathrm{p}<\infty,-1<\alpha$ such that

$$
\begin{cases}4 / 3<\mathrm{p}<4, & \text { if }-1<\alpha<0 ; \\ \frac{4(\alpha+1)}{2 \alpha+3}<\mathrm{p}<\frac{4(\alpha+1)}{2 \alpha+1}, & \text { if } 0 \leq \alpha .\end{cases}
$$

(a) There exists some constant $\mathrm{C}>0$ such that, for every $\mathrm{f} \in \mathrm{L}^{\mathrm{p}}\left(\mathrm{x}^{\alpha}\right)$ and $\mathrm{n} \geq 0$,

$$
\left\|S_{n} f\right\|_{L^{p}\left(X^{a}\right)} \leq C\|f\|_{L^{p}\left(X^{\alpha}\right)} .
$$

(b) If $b \in B M O$, then there exists some constant $C>0$ such that, for every $f \in L^{p}\left(x^{\alpha}\right)$ and $n \geq 0$,

$$
\left\|\left[S_{n}, b\right] f\right\|_{L \mathrm{P}\left(X^{\alpha}\right)} \leq \mathrm{C}\|f\|_{L \mathrm{~L}\left(x^{\alpha}\right)} .
$$

Throughout this paper, we will denote by C a positive constant which is independent of n and f , but may be different in each occurrence, even within the same formula.

Theorem 2 Let $1<\mathrm{p}<\infty,-1<\alpha$ such that

$$
\begin{cases}4 / 3<\mathrm{p}<4, & \text { if }-1<\alpha<0 ; \\ \frac{4(\alpha+1)}{2 \alpha+3}<\mathrm{p}<\frac{4(\alpha+1)}{2 \alpha+1}, & \text { if } 0 \leq \alpha .\end{cases}
$$

Then there exist some $\mathrm{C}, \delta>0$ such that, for all $\mathrm{b} \in \mathrm{BM} \mathrm{O}$ with $\|\mathrm{b}\|_{\text {вмо }}<\delta$,

$$
\sup _{n}\left\|T_{n}(b)\right\|_{L^{p}\left(x^{\alpha}\right) \rightarrow L^{p}\left(x^{\alpha}\right)} \leq C .
$$

The next corollary is just a consequence of Theorem 2 and [3, Prop. 2.3].
Corollary The sequences of operators $\left(T_{n}(b)\right)_{n \geq 0}$ and $\left(V_{n}(b)\right)_{n \geq 0}$, acting on the space $L^{2}\left(x^{\alpha}\right)$, are uniformly analytic in a neighbourhood of 0 in the complexification of BM O .

Some notation and previous results will be necessary. For $1<p<\infty$, we write $p^{\prime}=$ $p /(p-1)$, i.e., $1 / p+1 / p^{\prime}=1$. A weight is a nonnegative Lebesgue measurable function on $(0, \infty)$. The class $A_{p}(0, \infty)\left[A_{p}\right.$, for short $]$ consists of those pairs of weights (u, v) such that, for every subinterval $I \subseteq(0, \infty)$,

$$
\frac{1}{\|\|} \int_{I} u\left(\frac{1}{\| \|} \int_{I} v^{-p^{\prime} / p}\right)^{p / p^{\prime}} \leq C
$$

where C is a positive constant independent of I , and $\| \mid$ denotes the length of I . The A_{p} constant of (u, v) is the smallest constant C satisfying this inequality and will be denoted by $A_{p}(u, v)$. A single weight w is said to belong to A_{p} if $(w, w) \in A_{p}$; in this case we denote the constant by $A_{p}(w)$. We refer the reader to [6] for further details on A_{p} classes.

The Hilbert transform on $(0, \infty)$ will be denoted by H . Fix $1<\mathrm{p}<\infty$; then H is a bounded linear operator on $L^{p}(w)$, for any weight $w \in A_{p}$. The norm of $H: L^{p}(w) \rightarrow$ $L^{p}(w)$ and the A_{p} constant of w depend only one on another, in the sense that given some constant C which verifies the A_{p} condition for w , another constant C_{1} depending only on C can be chosen so that $\|H\| \leq C_{1}$, and viceversa. Therefore, for a sequence $\left(w_{n}\right)_{n \in N}$ uniformly in A_{p}, i.e., with some constant C verifying the A_{p} condition for every w_{n}, the Hilbert transform is uniformly bounded on $L^{p}\left(w_{n}\right), n \in N$. We refer the reader again to [6] for further details.

Also, if (u, v) is a pair of weights such that $C_{1} u \leq w \leq C_{2}$ for some $w \in A_{p}$, we deducethat H is a bounded operator from $\mathrm{L}^{\mathrm{p}}(\mathrm{v})$ into $\mathrm{L}^{\mathrm{p}}(\mathrm{u})$. The existence of such a weight w is equivalent to $\left(\mathrm{u}^{\delta}, \mathrm{v}^{\delta}\right) \in \mathrm{A}_{\mathrm{p}}$ for some $\delta>1$ (see [8]). For short, this is written as $(u, v) \in A_{p}^{\delta}$.

Analogous results hold also with the commutator [b, H], for any b \in BM O (see [2], for instance). Namely, given $b \in B M O$ and $w \in A_{p},[b, H]$ is a bounded operator on $L^{p}(w)$ with a norm that depends only on the BMO-norm of b and the A_{p} constant of w, in the sense above.

2 Proofs

Let us start with some auxiliary results:
Lemma 1 Let u, v, w beweights on $(0,+\infty), \lambda>0$.
(a) $w(x) \in A_{p}$ if and only if $w(\lambda x) \in A_{p}$; both weights have the same A_{p} constant.
(b) $w \in A_{p}$ if and only if $\lambda w \in A_{p}$; both weights have also the same A_{p} constant.
(c) If $u, v \in A_{p}$, then $u+v \in A_{p}$ and $A_{p}(u+v) \leq A_{p}(u)+A_{p}(v)$.
(d) If $u, v \in A_{p}$ and $1 / w=1 / u+1 / v$, then $w \in A_{p}$ and $A_{p}(w) \leq C\left[A_{p}(u)+A_{p}(v)\right]$.

Proof Parts (a) and (b) aretrivial. Part (c) follows easily from the inequality

$$
\left(\frac{1}{\| \mid} \int_{1}(u+v)^{-p^{\prime} / p}\right)^{p / p^{\prime}} \leq \min \left\{\left(\frac{1}{\| \mid} \int_{1} u^{-p^{\prime} / p}\right)^{p / p^{\prime}},\left(\frac{1}{\| \mid} \int_{1} v^{-p^{\prime} / p}\right)^{p / p^{\prime}}\right\} .
$$

Part (d) is a consequence of (c) and the fact that $u \in A_{p} \Leftrightarrow u^{-p^{\prime} / p} \in A_{p^{\prime}}$, with $A_{p^{\prime}}\left(u^{-p^{\prime} / p}\right)=\left[A_{p}(u)\right]^{p^{\prime} / p}$.

The proof of the next lemma is not difficult, but cumbersome, so we omit it. For the weight in (c), observe that $x^{r}\left|x^{1 / 2}-1\right|^{s} \sim x^{r}$ near $0, x^{r}\left|x^{1 / 2}-1\right|^{s} \sim|x-1|^{s}$ near 1 and $x^{r}\left|x^{1 / 2}-1\right|^{s} \sim x^{r+s / 2}$ near ∞, whence the three conditions follow.

Lemma 2 Let $r, s \in R$.

(a) $x^{r} \in A_{p} \Leftrightarrow-1<r<p-1$.
(b) Set $\Phi(x)=x^{r}$ if $x \in(0,1)$ and $\Phi(x)=x^{5}$ if $x \in(1, \infty)$. Then, $\Phi \in A_{p}$ if and only if $-1<r<p-1$ and $-1<s<p-1$.
(c) $\mathrm{x}^{\mathrm{r}}\left|\mathrm{x}^{1 / 2}-1\right|^{\mathrm{s}} \in \mathrm{A}_{\mathrm{p}} \Leftrightarrow-1<\mathrm{r}<\mathrm{p}-1,-1<\mathrm{s}<\mathrm{p}-1$ and $-1<\mathrm{r}+\mathrm{s} / 2<\mathrm{p}-1$.

Lemma 3 Let $\mathrm{n} \in \mathrm{N}, \alpha>-1$. Then

$$
\begin{aligned}
& \sum_{\mathrm{k}=0}^{\mathrm{n}} 2(\alpha+2 \mathrm{k}+1) \mathrm{J}_{\alpha+2 \mathrm{k}+1}(\mathrm{x}) \mathrm{J}_{\alpha+2 \mathrm{k}+1}(\mathrm{t}) \\
& \quad=\frac{\mathrm{xt}}{\mathrm{x}^{2}-\mathrm{t}^{2}}\left[\mathrm{x} \mathrm{~J}_{\alpha+1}(\mathrm{x}) \mathrm{J}_{\alpha}(\mathrm{t})-\mathrm{t} \mathrm{~J}_{\alpha}(\mathrm{x}) \mathrm{J}_{\alpha+1}(\mathrm{t})\right. \\
& \left.\quad+\mathrm{x} \mathrm{~J}_{\alpha+2 \mathrm{n}+2}^{\prime}(\mathrm{x}) \mathrm{J}_{\alpha+2 \mathrm{n}+2}(\mathrm{t})-\mathrm{t} \mathrm{~J}_{\alpha+2 \mathrm{n}+2}(\mathrm{x}) \mathrm{J}_{\alpha+2 \mathrm{n}+2}^{\prime}(\mathrm{t})\right]
\end{aligned}
$$

Proof Using the equality $\mathrm{J}_{\nu-1}(\mathrm{z})+\mathrm{J}_{\nu+1}(\mathrm{z})=\frac{2 \nu}{z} \mathrm{~J}_{\nu}(\mathrm{z})(\sec [14, I I I .3 .2, \mathrm{p} .45])$ to write $\mathrm{J}_{\mu-1}$ and $J_{\mu+2}$ in terms of J_{μ} and $J_{\mu+1}$ proves the formula

$$
\frac{\mathrm{xt}}{\mathrm{x}^{2}-\mathrm{t}^{2}}\left[\mathrm{x} \int_{\mu}(\mathrm{x}) \mathrm{J}_{\mu-1}(\mathrm{t})-\mathrm{t} \mathrm{~J}_{\mu-1}(\mathrm{x}) \mathrm{J}_{\mu}(\mathrm{t})-\mathrm{x} \mathrm{~J}_{\mu+2}(\mathrm{x}) \mathrm{J}_{\mu+1}(\mathrm{t})+\mathrm{t} \mathrm{~J}_{\mu+1}(\mathrm{x}) \mathrm{J}_{\mu+2}(\mathrm{t})\right]=2 \mu \mathrm{~J}_{\mu}(\mathrm{x}) \mathrm{J}_{\mu}(\mathrm{t})
$$

This gives now

$$
\begin{aligned}
& \sum_{\mathrm{k}=0}^{\mathrm{n}} 2(\alpha+2 \mathrm{k}+1) \mathrm{J}_{\alpha+2 \mathrm{k}+1}(\mathrm{x}) \mathrm{J}_{\alpha+2 \mathrm{k}+1}(\mathrm{t}) \\
& =\frac{\mathrm{xt}}{\mathrm{x}^{2}-\mathrm{t}^{2}}\left[\mathrm{x} J_{\alpha+1}(\mathrm{x}) \mathrm{J}_{\alpha}(\mathrm{t})-\mathrm{t} \mathrm{~J}_{\alpha}(\mathrm{x}) \mathrm{J}_{\alpha+1}(\mathrm{t})\right. \\
& \left.\quad-\mathrm{x} J_{\alpha+2 \mathrm{n}+3}(\mathrm{x}) \mathrm{J}_{\alpha+2 \mathrm{n}+2}(\mathrm{t})+\mathrm{t} \mathrm{~J}_{\alpha+2 \mathrm{n}+2}(\mathrm{x}) \mathrm{J}_{\alpha+2 \mathrm{n}+3}(\mathrm{t})\right]
\end{aligned}
$$

Finally, use the formula $\left.z]_{\nu+1}(z)=\nu \int_{\nu}(z)-z\right]_{\nu}^{\prime}(z)$ (see [14, III.3.2, p. 45]) to take out $\int_{\alpha+2 n+3}$.

Proof of Theorem 1 From the definition,

$$
S_{n} f(x)=x^{-\frac{\alpha}{2}-\frac{1}{2}} \int_{0}^{\infty}\left[\sum_{k=0}^{n}(\alpha+2 k+1) J_{\alpha+2 k+1}\left(x^{\frac{1}{2}}\right) J_{\alpha+2 k+1}\left(\mathrm{t}^{\frac{1}{2}}\right)\right] \mathrm{t}^{\frac{\alpha}{2}-\frac{1}{2}} \mathrm{f}(\mathrm{t}) \mathrm{dt}
$$

so that Lemma 3 leads to

$$
S_{n} f=W_{1} f-W_{2} f+W_{3, n} f-W_{4, n} f,
$$

where

$$
\begin{aligned}
& \mathrm{W}_{1} \mathrm{f}(\mathrm{x})=2^{-1} \mathrm{x}^{-\alpha / 2+1 / 2} \mathrm{~J}_{\alpha+1}\left(\mathrm{x}^{1 / 2}\right) \mathrm{H}\left(\mathrm{t}^{\alpha / 2} \mathrm{~J}_{\alpha}\left(\mathrm{t}^{1 / 2}\right) \mathrm{f}(\mathrm{t})\right)(\mathrm{x}), \\
& \mathrm{W}_{2} \mathrm{f}(\mathrm{x})=2^{-1} \mathrm{x}^{-\alpha / 2} \mathrm{~J}_{\alpha}\left(\mathrm{x}^{1 / 2}\right) \mathrm{H}\left(\mathrm{t}^{\alpha / 2+1 / 2} \mathrm{~J}_{\alpha+1}\left(\mathrm{t}^{1 / 2}\right) \mathrm{f}(\mathrm{t})\right)(\mathrm{x}), \\
& \mathrm{W}_{3, \mathrm{n}} \mathrm{f}(\mathrm{x})=2^{-1} \mathrm{x}^{-\alpha / 2+1 / 2} \mathrm{~J}_{\nu}^{\prime}\left(\mathrm{x}^{1 / 2}\right) \mathrm{H}\left(\mathrm{t}^{\alpha / 2} \mathrm{~J}_{\nu}\left(\mathrm{t}^{1 / 2}\right) \mathrm{f}(\mathrm{t})\right)(\mathrm{x}), \\
& \mathrm{W}_{4, \mathrm{n}} \mathrm{f}(\mathrm{x})=2^{-1} \mathrm{X}^{-\alpha / 2} \mathrm{~J}_{\nu}\left(\mathrm{x}^{1 / 2}\right) \mathrm{H}\left(\mathrm{t}^{\alpha / 2+1 / 2} \mathrm{~J}_{\nu}^{\prime}\left(\mathrm{t}^{1 / 2}\right) \mathrm{f}(\mathrm{t})\right)(\mathrm{x})
\end{aligned}
$$

and $\nu=\alpha+2 \mathrm{n}+2$. Thus, we will show that the operators $\mathrm{W}_{1}, \mathrm{~W}_{2}$ are bounded and the operators $\mathrm{W}_{3, \mathrm{n}}, \mathrm{W}_{4, \mathrm{n}}$ are uniformly bounded for $\mathrm{n} \geq 0$. The proof for the commutator $\left[b, S_{n}\right]$ is the same: just put $[b, H$] instead of H.

(I) Boundedness of the 0 perator W_{1}

From the definition, it follows that

$$
\left\|W_{1} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

if and only if

$$
\|H g\|_{L^{p}\left(x^{\alpha-\alpha p / 2+p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{p}\right)} \leq C\|g\|_{L^{p}\left(x^{\alpha-\alpha p} / 2\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{-p}\right)} .
$$

Proving that there is a weight $\Phi \in \mathrm{A}_{\mathrm{p}}$ with

$$
\begin{equation*}
\mathrm{Cx}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 2}\left|\mathrm{~J}_{\alpha+1}\left(\mathrm{x}^{1 / 2}\right)\right|^{\mathrm{p}} \leq \Phi(\mathrm{x}) \leq \mathrm{Cx}^{\alpha-\alpha \mathrm{p} / 2}\left|\mathrm{~J}_{\alpha}\left(\mathrm{x}^{1 / 2}\right)\right|^{-\mathrm{p}} \tag{1}
\end{equation*}
$$

will be enough. According to the bounds

$$
\begin{gathered}
\left|\mathrm{J}_{\alpha}(\mathrm{x})\right| \leq \mathrm{C}_{\alpha} \mathrm{x}^{\alpha}, \quad \mathrm{x} \in(0,1) \\
\left|\mathrm{J}_{\alpha}(\mathrm{x})\right| \leq \mathrm{C}_{\alpha} \mathrm{x}^{-1 / 2}, \quad \mathrm{x} \in(1, \infty)
\end{gathered}
$$

(see, e.g., [14, III. 3.1 (8), p. 40] and [14, VII. 7.21 (1), p. 199]), we have

$$
\begin{gathered}
x^{\alpha-\alpha p / 2+p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{p} \leq \begin{cases}\mathrm{Cx}^{\alpha+p}, & \text { if } \mathrm{x} \in(0,1), \\
\mathrm{Cx}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 4}, & \text { if } \mathrm{x} \in(1, \infty),\end{cases} \\
\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2}\left|\mathrm{~J}_{\alpha}\left(\mathrm{x}^{1 / 2}\right)\right|^{-p} \geq \begin{cases}\mathrm{C}^{\alpha-\alpha p}, & \text { if } \mathrm{x} \in(0,1), \\
\mathrm{C}^{\alpha-\alpha p / 2+p / 4}, & \text { if } \mathrm{x} \in(1, \infty)\end{cases}
\end{gathered}
$$

Let us try

$$
\Phi(x)= \begin{cases}x^{r}, & \text { if } x \in(0,1) \\ x^{\alpha-\alpha p / 2+p / 4}, & \text { if } x \in(1, \infty)\end{cases}
$$

By (b) in Lemma 2, conditions (1) and $\Phi \in A_{p}$ will hold if

$$
\left\{\begin{array}{l}
\alpha-\alpha \mathrm{p} \leq \mathrm{r} \leq \alpha+\mathrm{p} \\
-1<\mathrm{r}<\mathrm{p}-1 \\
-1<\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 4<\mathrm{p}-1
\end{array}\right.
$$

The third line is equivalent to

$$
\frac{2 \alpha-1}{4} \mathrm{p}<\alpha+1, \quad \alpha+1<\frac{2 \alpha+3}{4} \mathrm{p},
$$

and these follow from the hypothesis. For the inequalities involving it suffices

$$
\max \{-1, \alpha-\alpha \mathrm{p}\}<\min \{\mathrm{p}-1, \alpha+\mathrm{p}\} .
$$

It is easy to check that this also holds, whenever $\alpha>-1$ and $\mathrm{p}>1$.

(II) Boundedness of the O perator W_{2}

The proof is entirely similar: we have

$$
\left\|W_{2} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L \rho\left(x^{\alpha}\right)}
$$

if and only if
so that we can prove that there is a weight $\Psi \in A_{p}$ with

$$
\begin{equation*}
\mathrm{C} \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2}\left|\mathrm{~J}_{\alpha}\left(\mathrm{x}^{1 / 2}\right)\right|^{\mathrm{p}} \leq \Psi(\mathrm{x}) \leq \mathrm{C} \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 2}\left|\mathrm{~J}_{\alpha+1}\left(\mathrm{x}^{1 / 2}\right)\right|^{-\mathrm{p}} . \tag{2}
\end{equation*}
$$

Now wehave

$$
\begin{gathered}
x^{\alpha-\alpha p / 2}\left|J_{\alpha}\left(x^{1 / 2}\right)\right|^{p} \leq \begin{cases}C x^{\alpha}, & \text { if } x \in(0,1), \\
C x^{\alpha-\alpha p / 2-p / 4}, & \text { if } x \in(1, \infty),\end{cases} \\
x^{\alpha-\alpha p / 2-p / 2}\left|J_{\alpha+1}\left(x^{1 / 2}\right)\right|^{-p} \geq \begin{cases}C x^{\alpha-\alpha p-p}, & \text { if } x \in(0,1), \\
C x^{\alpha-\alpha p / 2-p / 4,}, & \text { if } x \in(1, \infty) .\end{cases}
\end{gathered}
$$

Setting

$$
\Psi(x)= \begin{cases}x^{r}, & \text { if } x \in(0,1), \\ x^{\alpha-\alpha p / 2-p / 4,}, & \text { if } x \in(1, \infty),\end{cases}
$$

conditions (2) and $\Psi \in A_{p}$ will hold if

$$
\left\{\begin{array}{l}
\alpha-\alpha \mathrm{p}-\mathrm{p} \leq \mathrm{r} \leq \alpha, \\
-1<\mathrm{r}<\mathrm{p}-1, \\
-1<\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 4<\mathrm{p}-1 .
\end{array}\right.
$$

The third line is equivalent to

$$
\frac{2 \alpha+1}{4} \mathrm{p}<\alpha+1, \quad \alpha+1<\frac{2 \alpha+5}{4} \mathrm{p},
$$

and these hold, by the hypothesis. For the inequalities involving r we only need

$$
\max \{-1, \alpha-\alpha \mathrm{p}-\mathrm{p}\}<\min \{\mathrm{p}-1, \alpha\} .
$$

It is easy to check that this also holds, whenever $\alpha>-1$ and $p>1$.
(III) U niform Boundedness of the \mathbf{O} perators $\mathrm{W}_{3, n}$

Here,

$$
\left\|W_{3, n} f\right\|_{L^{\mathrm{P}}\left(x^{\alpha}\right)} \leq \mathrm{C}\|\mathrm{f}\|_{\mathrm{Lp}\left(x^{\alpha}\right)}
$$

if and only if

$$
\|H g\|_{L^{p}\left(x^{\alpha-\alpha p / 2+p / 2 / 2}\left|J_{\nu}^{\prime}\left(x^{1 / 2}\right)\right|^{(p)}\right.} \leq C\|g\|_{L^{p}\left(x^{\alpha-\alpha p / 2} /\left.J_{\nu}\left(x^{1 / 2}\right)\right|^{-p}\right)} .
$$

We make now use of the bounds

$$
\begin{array}{ll}
\left|J_{\nu}(\mathrm{x})\right| \leq \mathrm{Cx}^{-1 / 4}\left[|\mathrm{x}-\nu|+\nu^{1 / 3}\right]^{-1 / 4}, & \nu=\alpha+2 \mathrm{n}+2, \mathrm{x} \in(0, \infty), \\
\left|J_{\nu}^{\prime}(\mathrm{x})\right| \leq \mathrm{Cx}^{-3 / 4}\left[|\mathrm{x}-\nu|+\nu^{1 / 3}\right]^{1 / 4}, & \nu=\alpha+2 \mathrm{n}+2, \mathrm{x} \in(0, \infty),
\end{array}
$$

with some universal constant C. They follow from those in [5], for instance. Therefore,

$$
\begin{gathered}
\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 2}\left|\mathrm{~J}_{\nu}^{\prime}\left(\mathrm{x}^{1 / 2}\right)\right|^{\mathrm{p}} \leq \mathrm{C} \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{\mathrm{p} / 4}, \\
\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2}\left|\mathrm{~J}_{\nu}\left(\mathrm{x}^{1 / 2}\right)\right|^{-\mathrm{p}} \geq \mathrm{C}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{\mathrm{p} / 4} .
\end{gathered}
$$

It will be enough to prove that $\varphi_{\nu} \in A_{p}$ uniformly in n, with

$$
\begin{equation*}
\varphi_{\nu}(\mathrm{x})=\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{\mathrm{p} / 4} . \tag{3}
\end{equation*}
$$

From Lemma 1, we have

$$
\begin{aligned}
\varphi_{\nu}(\mathrm{x}) \in \mathrm{A}_{\mathrm{p}} \text { unif. } & \Leftrightarrow \varphi_{\nu}\left(\nu^{2} \mathrm{x}\right) \in \mathrm{A}_{\mathrm{p}} \text { unif. } \\
& \Leftrightarrow \mathrm{x}^{\alpha-\alpha p / 2+p / 8}\left[\left|\mathrm{x}^{1 / 2}-1\right|+\nu^{-2 / 3}\right]^{p / 4} \in \mathrm{~A}_{p} \text { unif. } \\
& \Leftrightarrow \mathrm{x}^{\alpha-\alpha p / 2+p / 8}\left|\mathrm{x}^{1 / 2}-1\right|^{p / 4}+\nu^{-\mathrm{p} / 6} \mathrm{x}^{\alpha-\alpha p / 2+p / 8} \in \mathrm{~A}_{p} \text { unif., }
\end{aligned}
$$

where the last equivalence follows from

$$
\left[\left|\mathrm{x}^{1 / 2}-1\right|+\nu^{-2 / 3 / 3}\right]^{\mathrm{p} / 4} \sim\left|\mathrm{x}^{1 / 2}-1\right|^{\mathrm{p} / 4}+\nu^{-\mathrm{p} / 6},
$$

i.e., the ratio of both terms is bounded below and above by two positive constants not depending on n or x . Now, again by Lemma 1, proving that $\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8} \in \mathrm{~A}_{\mathrm{p}}$ and $x^{\alpha-\alpha p / 2+p / 8}\left|x^{1 / 2}-1\right|^{p / 4} \in A_{p}$ will suffice. According to Lemma 2,

$$
\begin{aligned}
\begin{cases}\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8} \in \mathrm{~A}_{\mathrm{p}} \\
\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8}\left|\mathrm{x}^{1 / 2}-1\right|^{p / 4} \in \mathrm{~A}_{\mathrm{p}}\end{cases} & \Leftrightarrow\left\{\begin{array}{l}
-1<\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8<\mathrm{p}-1 \\
-1<\mathrm{p} / 4<\mathrm{p}-1 \\
-1<\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 4<\mathrm{p}-1
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
-1<\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8 \\
4 / 3<\mathrm{p} \\
\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 4<\mathrm{p}-1
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
\frac{2 \alpha-1 / 2}{4} \mathrm{p}<\alpha+1<\frac{2 \alpha+3}{4} \mathrm{p} \\
4 / 3<\mathrm{p}
\end{array}\right.
\end{aligned}
$$

and these inequalities follow from the initial conditions.
(IV) U niform Boundedness of the \mathbf{O} perators $\mathrm{W}_{4, n}$

Finally,

$$
\left\|W_{4, n} f\right\|_{L^{p}\left(x^{\alpha}\right)} \leq C\|f\|_{L^{p}\left(x^{\alpha}\right)}
$$

if and only if

$$
\|H g\|_{L^{\mathrm{p}}\left(x^{\alpha-\alpha \mathrm{p} / 2}\left|J_{\nu}\left(x^{1 / 2}\right)\right|^{\mathrm{p}}\right)} \leq \mathrm{C}\|\mathrm{~g}\|_{\mathrm{L}^{\mathrm{p}}\left(x^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 2}\left|J_{\nu}^{\prime}\left(x^{1 / 2}\right)\right|^{-\mathrm{p}}\right)} .
$$

Also,

$$
\begin{gathered}
x^{\alpha-\alpha p / 2}\left|\int_{\nu}\left(x^{1 / 2}\right)\right|^{p} \leq C x^{\alpha-\alpha p / 2-p / 8}\left[\left|x^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-\mathrm{p} / 4}, \\
x^{\alpha-\alpha p / 2-p / 2}\left|J_{\nu}^{\prime}\left(x^{1 / 2}\right)\right|^{-\mathrm{p}} \geq \mathrm{C} x^{\alpha-\alpha p / 2-p / 8}\left[\left|\mathrm{x}^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-\mathrm{p} / 4}
\end{gathered}
$$

so let us put

$$
\begin{equation*}
\psi_{\nu}(\mathrm{x})=\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-\mathrm{p} / 4} \tag{4}
\end{equation*}
$$

and show that $\psi_{\nu} \in \mathrm{A}_{\mathrm{p}}$ uniformly in n . Indeed,

$$
\begin{aligned}
\psi_{\nu}(\mathrm{x}) \in \mathrm{A}_{\mathrm{p}} \text { unif. } & \Leftrightarrow \psi_{\nu}\left(\nu^{2} \mathrm{x}\right) \in \mathrm{A}_{\mathrm{p}} \text { unif. } \\
& \Leftrightarrow \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-1\right|+\nu^{-2 / 3}\right]^{-\mathrm{p} / 4} \in \mathrm{~A}_{\mathrm{p}} \text { unif. }
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-1\right|+\nu^{-2 / 3}\right]^{-\mathrm{p} / 4}\right)^{-1} \\
& \quad \sim \mathrm{X}^{-\alpha+\alpha \mathrm{p} / 2+\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-1\right|^{\mathrm{p} / 4}+\nu^{-\mathrm{p} / 6}\right] \\
& \quad=\left[\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\left|\mathrm{x}^{1 / 2}-1\right|^{-\mathrm{p} / 4}\right]^{-1}+\left[\nu^{\mathrm{p} / 6} \mathrm{X}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\right]^{-1}
\end{aligned}
$$

so that proving that $\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\left|\mathrm{x}^{1 / 2}-1\right|^{-\mathrm{p} / 4} \in \mathrm{~A}_{\mathrm{p}}$ and $\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8} \in \mathrm{~A}_{\mathrm{p}}$ will suffice. But

$$
\begin{aligned}
\left\{\begin{array}{l}
\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8} \in \mathrm{~A}_{\mathrm{p}} \\
\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\left|\mathrm{x}^{1 / 2}-1\right|^{-\mathrm{p} / 4} \in \mathrm{~A}_{\mathrm{p}}
\end{array}\right. & \Leftrightarrow\left\{\begin{array}{l}
-1<\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8<\mathrm{p}-1 \\
-1<-\mathrm{p} / 4<\mathrm{p}-1 \\
-1<\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 4<\mathrm{p}-1
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8<\mathrm{p}-1 \\
\mathrm{p}<4 \\
-1<\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 4
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
\frac{2 \alpha+1}{4} \mathrm{p}<\alpha+1<\frac{2 \alpha+9 / 2}{4} \mathrm{p} \\
\mathrm{p}<4
\end{array}\right.
\end{aligned}
$$

and these inequalities hold by the hypothesis. The proof of Theorem 1 is now complete.

Proof of Theorem 2 For each $n \geq 0$ and $b \in B M O, T_{n}(b): L^{p}\left(x^{\alpha}\right) \rightarrow L^{p}\left(x^{\alpha}\right)$ is bounded if and only if $S_{n}: L^{p}\left(e^{\mathrm{pb}} x^{\alpha}\right) \rightarrow L^{p}\left(e^{\mathrm{pb}} x^{\alpha}\right)$ is bounded, and both operators have the same norm. Thus, we can follow the proof of Theorem 1 and conclude that conditions (1), (2), (3) and (4), i.e.,

$$
\begin{gathered}
\mathrm{C} \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 2}\left|\mathrm{~J}_{\alpha+1}\left(\mathrm{x}^{1 / 2}\right)\right|^{\mathrm{p}} \leq \Phi(\mathrm{x}) \leq \mathrm{C} \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2}\left|\mathrm{~J}_{\alpha}\left(\mathrm{x}^{1 / 2}\right)\right|^{-\mathrm{p}}, \\
\mathrm{C} \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2}\left|\mathrm{~J}_{\alpha}\left(\mathrm{x}^{1 / 2}\right)\right|^{\mathrm{p}} \leq \Psi(\mathrm{x}) \leq \mathrm{C} \mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 2}\left|\mathrm{~J}_{\alpha+1}\left(\mathrm{x}^{1 / 2}\right)\right|^{-\mathrm{p}}, \\
\varphi_{\nu}(\mathrm{x})=\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2+\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{\mathrm{p} / 4}, \\
\psi_{\nu}(\mathrm{x})=\mathrm{x}^{\alpha-\alpha \mathrm{p} / 2-\mathrm{p} / 8}\left[\left|\mathrm{x}^{1 / 2}-\nu\right|+\nu^{1 / 3}\right]^{-\mathrm{p} / 4},
\end{gathered}
$$

are still sufficient, if we require now $\mathrm{e}^{\mathrm{pb}} \Phi, \mathrm{e}^{\mathrm{pb}} \Psi, \mathrm{e}^{\mathrm{pb}} \varphi_{\nu}, \mathrm{e}^{\mathrm{pb}} \psi_{\nu} \in \mathrm{A}_{\mathrm{p}}$ uniformly in ν. The proof of Theorem 1, together with next lemma, finish the proof of Theorem 2.

Lemma 4 Let $1<\mathrm{p}<\infty$. For each $\phi \in \mathrm{A}_{\mathrm{p}}$, there exists some $\delta>0$ such that $\mathrm{e}^{\mathrm{pb}} \phi \in \mathrm{A}_{\mathrm{p}}$ whenever $\mathrm{b} \in \mathrm{BMO}$ with $\|\mathrm{b}\|_{\text {вмо }}<\delta$. M oreover, δ and the A_{p} constant of $\mathrm{e}^{\mathrm{pb}} \phi$ depend only on the A_{p} constant of ϕ.

Remark Again, statements like " δ depends only on the A_{p} constant of ϕ " should be understood as: given a constant $\mathrm{C}>0$ which verifies the A_{p} condition for ϕ, some δ can be chosen depending only on C .

Proof If $\phi \in A_{p}$, there exists some $\varepsilon>1$ such that $\phi^{\varepsilon} \in A_{p}$; moreover, ε and the A_{p} constant of ϕ^{ε} depend only on the A_{p} constant of $\phi[6$, Theorem IV.2.7, p. 399]. Take now $1 / \varepsilon+1 / \varepsilon^{\prime}=1$. There exists some $\delta>0$ such that

$$
\|\mathrm{b}\|_{\text {вмо }}<\delta \Longrightarrow \mathrm{e}^{\mathrm{p} \varepsilon^{\prime} \mathrm{b}} \in \mathrm{~A}_{\mathrm{p}} ;
$$

here, δ and the A_{p} constant of $\mathrm{e}^{\mathrm{p} \varepsilon^{\prime} b}$ depend only on $\varepsilon^{\prime}[6, \mathrm{p} .409]$. This, together with $\phi^{\varepsilon} \in A_{p}$ and Hölder's inequality, imply $\mathrm{e}^{\mathrm{pb}} \phi \in \mathrm{A}_{\mathrm{p}}$ with an A_{p} constant depending only on the A_{p} constant of ϕ.

References

[1] A. I. Aptekarev, A. Branquinho and F. M arcellán, Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation. J. Comput. Appl. M ath. 78(1997), 139-160.
[2] S. Bloom, A commutator theorem and weighted BM O. Trans. Amer. M ath. Soc. 292(1985), 103-122.
[3] R. R. Coifman and M. A. M. Murray, Uniform analyticity of orthogonal projections. Trans. Amer. M ath. Soc. 312(1989), 779-817.
[4] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for H ardy spaces in several variables. Ann. of M ath. 103(1976), 611-635.
[5] A. Córdoba, The disc multiplier. Duke M ath. J. 58(1989), 21-29.
[6] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics. North-H olland, Amsterdam, 1985.
[7] F. M arcellán, J. S. Dehesa and A. Ronveaux, On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. M ath. 30(1990), 203-212.
[8] C. J. Neugebauer, Inserting Ap weights. Proc. Amer. M ath. Soc. 87(1983), 644-648.
[9] P. Nevai and W. Van Assche, Compact perturbations of orthogonal polynomials. Pacific J. M ath. 153(1992), 163-184.
[10] C. Segovia and J. L. Torrea, Vector-valued commutators and applications. Indiana Univ. M ath. J. 38(1989), 959-971.
[11] ,Weighted inequalities for commutators of fractional and singular integrals. Publ. M at. 35(1991), 209235.
[12] \quad, Higher order commutators for vector-valued Calderón-Zygmund operators. Trans. Amer. M ath. Soc. 336(1993), 537-556.
[13] J. L. Varona, Fourier series of functions whose Hankel transform is supported on [0, 1]. Constr. Approx. 10(1994), 65-75.
[14] G. N. Watson, A treatise on the theory of Bessel functions. 2nd edn, Cambridge University Press, Cambridge, 1944 (reprinted 1995).

Dpto. de M atemáticas y Computación
Universidad de La Rioja
26004 Logroño
Spain

Dpto. de M atemáticas y Computación
Universidad deLa Rioja
26004 Logroño
Spain
email: jvarona@dmc.unirioja.es

Dpto. de M atemáticas
Universidad de Zaragoza
50009 Zaragoza
Spain
email: mperez@posta.unizar.es

[^0]: Received by the editors September 24, 1997.
 Research supported by DGES (grant PB96-0120-C03-02) and by UR (grant API-97/B12). AM S subject classification: 42C10.
 Keywords: Fourier-Bessel series, commutators, BM $0, A_{p}$ weights. (C)Canadian M athematical Society 1999.

