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Commutators and Analytic Dependence
of Fourier-Bessel Series on (0,∞)

José J. Guadalupe, Mario Pérez and Juan L. Varona

Abstract. In this paper we study the boundedness of the commutators [b, Sn] where b is a BMO function and
Sn denotes the n-th partial sum of the Fourier-Bessel series on (0,∞). Perturbing the measure by exp(2b) we
obtain that certain operators related to Sn depend analytically on the functional parameter b.

0 Introduction

Let Jα be the Bessel function of order α > −1. The formula

∫ ∞
0

Jα+2n+1(x) Jα+2m+1(x)
dx

x
=

{
0, if n 6= m

2−1(α + 2n + 1)−1, if n = m

(see [14, XIII.13.41 (7), p. 404] and [14, XIII.13.42 (1), p. 405]) provides an orthonormal
system ( jαn )n≥0 in L2

(
(0,∞), xαdx

)
[L2(xα), from now on], given by

jαn (x) =
√
α + 2n + 1 Jα+2n+1(

√
x) x−α/2−1/2.

In this paper we consider the Fourier expansion associated with this orthonormal system,
which is usually referred to as the Fourier-Bessel series on (0,∞). For any suitable function
f and any n ≥ 0, the n-th partial sum of this expansion is given by

Sn f =
n∑

k=0

ck( f ) jαk , ck( f ) =

∫ ∞
0

f (t) jαk (t)tα dt.

We also consider the commutator of the Fourier-Bessel series on (0,∞) and the multipli-
cation operator associated to a BMO function; this is defined, for any given b ∈ BMO and
n ≥ 0, as

[b, Sn] f = bSn( f )− Sn(b f ).

In the case α ≥ −1/2, one of the authors proved in [13] that the Fourier-Bessel series is
bounded in Lp(xα), i.e., there exists some constant C > 0 (depending on α and p) such
that for every n ≥ 0 and f ∈ Lp(xα),

‖Sn f ‖Lp(xα) ≤ C‖ f ‖Lp(xα),

Received by the editors September 24, 1997.
Research supported by DGES (grant PB96-0120-C03-02) and by UR (grant API-97/B12).
AMS subject classification: 42C10.
Keywords: Fourier-Bessel series, commutators, BMO, Ap weights.
c©Canadian Mathematical Society 1999.

198



Commutators and analytic dependence 199

if and only if max{4/3, 4(α+1)/(2α+3)} < p < min{4, 4(α+1)/(2α+1)}. In Theorem 1
we will extend this result to the case α > −1 and prove the corresponding inequality for
the commutator [b, Sn], b ∈ BMO.

Regarding the commutator [b, Sn], results of this type are of independent interest and
have been widely studied for many classical operators; see [2], [10], [11], [12], [4], for
instance.

In our case, the commutator [b, Sn] is closely related to the problem of perturbating the
orthonormal system. Given an orthonormal system (ϕn)n≥0 in some L2(ν) space and a
suitable function b (in some sense close to 0), the classical Gram-Schmidt procedure can
be applied to (ϕn)n≥0 so as to obtain a new orthonormal system in L2(e2bdν), which we
will refer to as a perturbated system. In this natural way a mapping can be defined that
associates a perturbated system (and a perturbated orthogonal expansion) to each (small)
function b. For different compact perturbations of orthogonal polynomial systems and
further references, see [7], [9], [1].

Let us take the system ( jαn )n≥0 in L2(xα) as our starting point. Let Sn(b) stand for the
n-th partial sum operator of the Fourier series associated to the perturbed measure e2bxαdx
in the aforementioned way. Once the boundedness properties of Sn = Sn(0) have been
established, it is interesting to study the mapping b 7→ Sn(b). This is not, however, a
convenient setting, since each perturbed series Sn(b) acts on a different space L2(e2bxα).
Instead, we can consider the operators

Vn(b) = ebSn(b)e−b.

Now, each Vn(b) acts on L2(xα) and its norm coincides with the operator norm of Sn(b)
acting on L2(e2bxα). The problem is further simplified if we take the operators

Tn(b) = ebSn(0)e−b,

i.e., Tn(b) f = ebSn(e−b f ). Indeed, it has been proved in [3] that the family
(
Vn(b)

)
n≥0

depends analytically on b belonging to a neighbourhood of 0 in the complexification of
BMO whenever the family

(
Tn(b)

)
n≥0

does too.

We will prove in Theorem 2 that the family of operators
(
Tn(b)

)
n≥0

acting on L2(xα) is

uniformly bounded for b belonging to some neighbourhood of 0 in the complexification of
BMO. As a consequence (see [3, Propositions 2.1 and 2.3]), the operator-valued mappings
(Tn)n≥0 are uniformly analytic in a neighbourhood of 0 in the complexification of BMO
and so are (Vn)n≥0.

Now, the connection between [b, Sn] and the perturbated Fourier series comes via the
Gâteaux differential of Tn at 0 in the direction b:

d

dz
Tn(zb)|z=0 = [b, Sn].

In this way, the uniform analyticity of Tn in a neighbourhood of 0 gives the L2-boundedness
of [b, Sn].
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1 Main Results

If b is a locally Lebesgue-integrable function on (0,∞), the mean of b over an interval
I ⊆ (0,∞) is

bI =
1

|I|

∫
I

b(x) dx.

The function b is said to have bounded mean oscillation on (0,∞) if

‖b‖BMO = sup
I

1

|I|

∫
I
|b(x)− bI | dx

is finite, where the supremum is taken over all the intervals I ⊆ (0,∞). The space BMO of
real-valued functions (modulo constants) having bounded mean oscillation on (0,∞) is a
real Banach space with ‖ · ‖BMO as its norm.

Theorem 1 Let 1 < p <∞,−1 < α such that




4/3 < p < 4, if−1 < α < 0;
4(α + 1)

2α + 3
< p <

4(α + 1)

2α + 1
, if 0 ≤ α.

(a) There exists some constant C > 0 such that, for every f ∈ Lp(xα) and n ≥ 0,

‖Sn f ‖Lp(xα) ≤ C‖ f ‖Lp(xα).

(b) If b ∈ BMO, then there exists some constant C > 0 such that, for every f ∈ Lp(xα) and
n ≥ 0,

‖[Sn, b] f ‖Lp(xα) ≤ C‖ f ‖Lp(xα).

Throughout this paper, we will denote by C a positive constant which is independent of
n and f , but may be different in each occurrence, even within the same formula.

Theorem 2 Let 1 < p <∞,−1 < α such that




4/3 < p < 4, if−1 < α < 0;
4(α + 1)

2α + 3
< p <

4(α + 1)

2α + 1
, if 0 ≤ α.

Then there exist some C, δ > 0 such that, for all b ∈ BMO with ‖b‖BMO < δ,

sup
n
‖Tn(b)‖Lp (xα)→Lp (xα) ≤ C.

The next corollary is just a consequence of Theorem 2 and [3, Prop. 2.3].

Corollary The sequences of operators
(
Tn(b)

)
n≥0

and
(
Vn(b)

)
n≥0

, acting on the space

L2(xα), are uniformly analytic in a neighbourhood of 0 in the complexification of BMO.
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Some notation and previous results will be necessary. For 1 < p < ∞, we write p ′ =
p/(p − 1), i.e., 1/p + 1/p ′ = 1. A weight is a nonnegative Lebesgue-measurable function
on (0,∞). The class Ap(0,∞) [Ap, for short] consists of those pairs of weights (u, v) such
that, for every subinterval I ⊆ (0,∞),

1

|I|

∫
I

u

(
1

|I|

∫
I

v−p ′/p

)p/p ′

≤ C,

where C is a positive constant independent of I, and |I| denotes the length of I. The Ap

constant of (u, v) is the smallest constant C satisfying this inequality and will be denoted
by Ap(u, v). A single weight w is said to belong to Ap if (w,w) ∈ Ap; in this case we denote
the constant by Ap(w). We refer the reader to [6] for further details on Ap classes.

The Hilbert transform on (0,∞) will be denoted by H. Fix 1 < p < ∞; then H is
a bounded linear operator on Lp(w), for any weight w ∈ Ap. The norm of H : Lp(w) →
Lp(w) and the Ap constant of w depend only one on another, in the sense that given some
constant C which verifies the Ap condition for w, another constant C1 depending only on
C can be chosen so that ‖H‖ ≤ C1, and viceversa. Therefore, for a sequence (wn)n∈N

uniformly in Ap, i.e., with some constant C verifying the Ap condition for every wn, the
Hilbert transform is uniformly bounded on Lp(wn), n ∈ N. We refer the reader again to [6]
for further details.

Also, if (u, v) is a pair of weights such that C1u ≤ w ≤ C2v for some w ∈ Ap, we
deduce that H is a bounded operator from Lp(v) into Lp(u). The existence of such a weight
w is equivalent to (uδ, vδ) ∈ Ap for some δ > 1 (see [8]). For short, this is written as
(u, v) ∈ Aδ

p.
Analogous results hold also with the commutator [b,H], for any b ∈ BMO (see [2], for

instance). Namely, given b ∈ BMO and w ∈ Ap, [b,H] is a bounded operator on Lp(w)
with a norm that depends only on the BMO-norm of b and the Ap constant of w, in the
sense above.

2 Proofs

Let us start with some auxiliary results:

Lemma 1 Let u, v, w be weights on (0,+∞), λ > 0.

(a) w(x) ∈ Ap if and only if w(λx) ∈ Ap; both weights have the same Ap constant.
(b) w ∈ Ap if and only if λw ∈ Ap; both weights have also the same Ap constant.
(c) If u, v ∈ Ap, then u + v ∈ Ap and Ap(u + v) ≤ Ap(u) + Ap(v).
(d) If u, v ∈ Ap and 1/w = 1/u + 1/v, then w ∈ Ap and Ap(w) ≤ C[Ap(u) + Ap(v)].

Proof Parts (a) and (b) are trivial. Part (c) follows easily from the inequality

(
1

|I|

∫
I
(u + v)−p ′/p

)p/p ′

≤ min

{(
1

|I|

∫
I

u−p ′/p

)p/p ′

,

(
1

|I|

∫
I

v−p ′/p

)p/p ′
}
.

Part (d) is a consequence of (c) and the fact that u ∈ Ap ⇔ u−p ′/p ∈ Ap ′ , with

Ap ′(u−p ′/p) = [Ap(u)]p ′/p.
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The proof of the next lemma is not difficult, but cumbersome, so we omit it. For the
weight in (c), observe that xr|x1/2 − 1|s ∼ xr near 0, xr|x1/2 − 1|s ∼ |x − 1|s near 1 and
xr|x1/2 − 1|s ∼ xr+s/2 near∞, whence the three conditions follow.

Lemma 2 Let r, s ∈ R.

(a) xr ∈ Ap ⇔ −1 < r < p − 1.
(b) Set Φ(x) = xr if x ∈ (0, 1) and Φ(x) = xs if x ∈ (1,∞). Then, Φ ∈ Ap if and only if
−1 < r < p − 1 and−1 < s < p − 1.

(c) xr|x1/2 − 1|s ∈ Ap ⇔ −1 < r < p − 1, −1 < s < p − 1 and−1 < r + s/2 < p − 1.

Lemma 3 Let n ∈ N, α > −1. Then

n∑
k=0

2(α + 2k + 1) Jα+2k+1(x) Jα+2k+1(t)

=
xt

x2 − t2

[
x Jα+1(x) Jα(t)− t Jα(x) Jα+1(t)

+ x J ′α+2n+2(x) Jα+2n+2(t)− t Jα+2n+2(x) J ′α+2n+2(t)
]
.

Proof Using the equality Jν−1(z) + Jν+1(z) = 2ν
z Jν(z) (see [14, III.3.2, p. 45]) to write Jµ−1

and Jµ+2 in terms of Jµ and Jµ+1 proves the formula

xt

x2 − t2

[
x Jµ(x) Jµ−1(t)−t Jµ−1(x) Jµ(t)−x Jµ+2(x) Jµ+1(t)+t Jµ+1(x) Jµ+2(t)

]
= 2µ Jµ(x) Jµ(t).

This gives now

n∑
k=0

2(α + 2k + 1) Jα+2k+1(x) Jα+2k+1(t)

=
xt

x2 − t2

[
x Jα+1(x) Jα(t)− t Jα(x) Jα+1(t)

− x Jα+2n+3(x) Jα+2n+2(t) + t Jα+2n+2(x) Jα+2n+3(t)
]
.

Finally, use the formula z Jν+1(z) = ν Jν(z) − z J ′ν(z) (see [14, III.3.2, p. 45]) to take out
Jα+2n+3.

Proof of Theorem 1 From the definition,

Sn f (x) = x−
α
2−

1
2

∫ ∞
0

[ n∑
k=0

(α + 2k + 1) Jα+2k+1(x
1
2 ) Jα+2k+1(t

1
2 )
]
t
α
2−

1
2 f (t) dt

so that Lemma 3 leads to

Sn f =W1 f −W2 f + W3,n f −W4,n f ,
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where

W1 f (x) = 2−1x−α/2+1/2 Jα+1(x1/2)H
(
tα/2 Jα(t1/2) f (t)

)
(x),

W2 f (x) = 2−1x−α/2 Jα(x1/2)H
(
tα/2+1/2 Jα+1(t1/2) f (t)

)
(x),

W3,n f (x) = 2−1x−α/2+1/2 J ′ν(x1/2)H
(
tα/2 Jν(t1/2) f (t)

)
(x),

W4,n f (x) = 2−1x−α/2 Jν(x1/2)H
(
tα/2+1/2 J ′ν(t1/2) f (t)

)
(x)

and ν = α + 2n + 2. Thus, we will show that the operators W1, W2 are bounded and the
operators W3,n, W4,n are uniformly bounded for n ≥ 0. The proof for the commutator
[b, Sn] is the same: just put [b,H] instead of H.

(I) Boundedness of the Operator W1

From the definition, it follows that

‖W1 f ‖Lp(xα) ≤ C‖ f ‖Lp(xα)

if and only if
‖Hg‖Lp (xα−αp/2+p/2| Jα+1(x1/2)|p) ≤ C‖g‖Lp(xα−αp/2| Jα(x1/2)|−p).

Proving that there is a weight Φ ∈ Ap with

Cxα−αp/2+p/2| Jα+1(x1/2)|p ≤ Φ(x) ≤ Cxα−αp/2| Jα(x1/2)|−p(1)

will be enough. According to the bounds

| Jα(x)| ≤ Cαxα, x ∈ (0, 1),

| Jα(x)| ≤ Cαx−1/2, x ∈ (1,∞)

(see, e.g., [14, III.3.1 (8), p. 40] and [14, VII.7.21 (1), p. 199]), we have

xα−αp/2+p/2| Jα+1(x1/2)|p ≤

{
Cxα+p, if x ∈ (0, 1),

Cxα−αp/2+p/4, if x ∈ (1,∞),

xα−αp/2| Jα(x1/2)|−p ≥

{
Cxα−αp, if x ∈ (0, 1),

Cxα−αp/2+p/4, if x ∈ (1,∞).

Let us try

Φ(x) =

{
xr, if x ∈ (0, 1),

xα−αp/2+p/4, if x ∈ (1,∞).

By (b) in Lemma 2, conditions (1) and Φ ∈ Ap will hold if

α− αp ≤ r ≤ α + p,

−1 < r < p − 1,

−1 < α− αp/2 + p/4 < p − 1.
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The third line is equivalent to

2α− 1

4
p < α + 1, α + 1 <

2α + 3

4
p,

and these follow from the hypothesis. For the inequalities involving r it suffices

max{−1, α− αp} < min{p − 1, α + p}.

It is easy to check that this also holds, whenever α > −1 and p > 1.

(II) Boundedness of the Operator W2

The proof is entirely similar: we have

‖W2 f ‖Lp(xα) ≤ C‖ f ‖Lp(xα)

if and only if
‖Hg‖Lp (xα−αp/2| Jα(x1/2)|p) ≤ C‖g‖Lp (xα−αp/2−p/2| Jα+1(x1/2)|−p )

so that we can prove that there is a weightΨ ∈ Ap with

Cxα−αp/2| Jα(x1/2)|p ≤ Ψ(x) ≤ Cxα−αp/2−p/2| Jα+1(x1/2)|−p.(2)

Now we have

xα−αp/2| Jα(x1/2)|p ≤

{
Cxα, if x ∈ (0, 1),

Cxα−αp/2−p/4, if x ∈ (1,∞),

xα−αp/2−p/2| Jα+1(x1/2)|−p ≥

{
Cxα−αp−p, if x ∈ (0, 1),

Cxα−αp/2−p/4, if x ∈ (1,∞).

Setting

Ψ(x) =

{
xr, if x ∈ (0, 1),

xα−αp/2−p/4, if x ∈ (1,∞),

conditions (2) andΨ ∈ Ap will hold if

α− αp − p ≤ r ≤ α,

−1 < r < p − 1,

−1 < α− αp/2− p/4 < p − 1.

The third line is equivalent to

2α + 1

4
p < α + 1, α + 1 <

2α + 5

4
p,

and these hold, by the hypothesis. For the inequalities involving r we only need

max{−1, α− αp − p} < min{p − 1, α}.

It is easy to check that this also holds, whenever α > −1 and p > 1.
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(III) Uniform Boundedness of the Operators W3,n

Here,
‖W3,n f ‖Lp(xα) ≤ C‖ f ‖Lp(xα)

if and only if
‖Hg‖Lp (xα−αp/2+p/2| J ′ν (x1/2)|p) ≤ C‖g‖Lp(xα−αp/2| Jν (x1/2)|−p).

We make now use of the bounds

| Jν(x)| ≤ Cx−1/4
[
|x − ν| + ν1/3

]−1/4
, ν = α + 2n + 2, x ∈ (0,∞),

| J ′ν(x)| ≤ Cx−3/4
[
|x − ν| + ν1/3

]1/4
, ν = α + 2n + 2, x ∈ (0,∞),

with some universal constant C . They follow from those in [5], for instance. Therefore,

xα−αp/2+p/2| J ′ν(x1/2)|p ≤ Cxα−αp/2+p/8
[
|x1/2 − ν| + ν1/3

]p/4
,

xα−αp/2| Jν(x1/2)|−p ≥ Cxα−αp/2+p/8
[
|x1/2 − ν| + ν1/3

]p/4
.

It will be enough to prove that ϕν ∈ Ap uniformly in n, with

ϕν(x) = xα−αp/2+p/8
[
|x1/2 − ν| + ν1/3

]p/4
.(3)

From Lemma 1, we have

ϕν(x) ∈ Ap unif.⇔ ϕν(ν2x) ∈ Ap unif.

⇔ xα−αp/2+p/8
[
|x1/2 − 1| + ν−2/3

]p/4
∈ Ap unif.

⇔ xα−αp/2+p/8|x1/2 − 1|p/4 + ν−p/6xα−αp/2+p/8 ∈ Ap unif.,

where the last equivalence follows from[
|x1/2 − 1| + ν−2/3

]p/4
∼ |x1/2 − 1|p/4 + ν−p/6,

i.e., the ratio of both terms is bounded below and above by two positive constants not de-
pending on n or x. Now, again by Lemma 1, proving that xα−αp/2+p/8 ∈ Ap and
xα−αp/2+p/8|x1/2 − 1|p/4 ∈ Ap will suffice. According to Lemma 2,

{
xα−αp/2+p/8 ∈ Ap

xα−αp/2+p/8|x1/2 − 1|p/4 ∈ Ap
⇔



−1 < α− αp/2 + p/8 < p − 1

−1 < p/4 < p − 1

−1 < α− αp/2 + p/4 < p − 1

⇔



−1 < α− αp/2 + p/8

4/3 < p

α− αp/2 + p/4 < p − 1

⇔

{
2α−1/2

4 p < α + 1 < 2α+3
4 p

4/3 < p

and these inequalities follow from the initial conditions.
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(IV) Uniform Boundedness of the Operators W4,n

Finally,
‖W4,n f ‖Lp (xα) ≤ C‖ f ‖Lp (xα)

if and only if
‖Hg‖Lp (xα−αp/2| Jν (x1/2)|p ) ≤ C‖g‖Lp (xα−αp/2−p/2| J ′ν (x1/2)|−p).

Also,

xα−αp/2| Jν(x1/2)|p ≤ Cxα−αp/2−p/8
[
|x1/2 − ν| + ν1/3

]−p/4
,

xα−αp/2−p/2| J ′ν(x1/2)|−p ≥ Cxα−αp/2−p/8
[
|x1/2 − ν| + ν1/3

]−p/4

so let us put

ψν(x) = xα−αp/2−p/8
[
|x1/2 − ν| + ν1/3

]−p/4
(4)

and show that ψν ∈ Ap uniformly in n. Indeed,

ψν(x) ∈ Ap unif.⇔ ψν(ν2x) ∈ Ap unif.

⇔ xα−αp/2−p/8
[
|x1/2 − 1| + ν−2/3

]−p/4
∈ Ap unif.

and

(
xα−αp/2−p/8

[
|x1/2 − 1| + ν−2/3

]−p/4)−1

∼ x−α+αp/2+p/8
[
|x1/2 − 1|p/4 + ν−p/6

]
=
[
xα−αp/2−p/8|x1/2 − 1|−p/4

]−1
+
[
ν p/6xα−αp/2−p/8

]−1

so that proving that xα−αp/2−p/8|x1/2−1|−p/4 ∈ Ap and xα−αp/2−p/8 ∈ Ap will suffice. But

{
xα−αp/2−p/8 ∈ Ap

xα−αp/2−p/8|x1/2 − 1|−p/4 ∈ Ap
⇔



−1 < α− αp/2− p/8 < p − 1

−1 < −p/4 < p − 1

−1 < α− αp/2− p/4 < p − 1

⇔



α− αp/2− p/8 < p − 1

p < 4

−1 < α− αp/2− p/4

⇔

{
2α+1

4 p < α + 1 < 2α+9/2
4 p

p < 4

and these inequalities hold by the hypothesis. The proof of Theorem 1 is now complete.
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Proof of Theorem 2 For each n ≥ 0 and b ∈ BMO, Tn(b) : Lp(xα) → Lp(xα) is bounded
if and only if Sn : Lp(epbxα) → Lp(epbxα) is bounded, and both operators have the same
norm. Thus, we can follow the proof of Theorem 1 and conclude that conditions (1), (2),
(3) and (4), i.e.,

Cxα−αp/2+p/2| Jα+1(x1/2)|p ≤ Φ(x) ≤ Cxα−αp/2| Jα(x1/2)|−p,

Cxα−αp/2| Jα(x1/2)|p ≤ Ψ(x) ≤ Cxα−αp/2−p/2| Jα+1(x1/2)|−p,

ϕν(x) = xα−αp/2+p/8
[
|x1/2 − ν| + ν1/3

]p/4
,

ψν(x) = xα−αp/2−p/8
[
|x1/2 − ν| + ν1/3

]−p/4
,

are still sufficient, if we require now epbΦ, epbΨ, epbϕν, epbψν ∈ Ap uniformly in ν. The
proof of Theorem 1, together with next lemma, finish the proof of Theorem 2.

Lemma 4 Let 1 < p < ∞. For each φ ∈ Ap, there exists some δ > 0 such that epbφ ∈ Ap

whenever b ∈ BMO with ‖b‖BMO < δ. Moreover, δ and the Ap constant of epbφ depend only
on the Ap constant of φ.

Remark Again, statements like “δ depends only on the Ap constant of φ” should be un-
derstood as: given a constant C > 0 which verifies the Ap condition for φ, some δ can be
chosen depending only on C .

Proof If φ ∈ Ap, there exists some ε > 1 such that φε ∈ Ap; moreover, ε and the Ap

constant of φε depend only on the Ap constant of φ [6, Theorem IV.2.7, p. 399]. Take now
1/ε + 1/ε ′ = 1. There exists some δ > 0 such that

‖b‖BMO < δ =⇒ epε ′b ∈ Ap;

here, δ and the Ap constant of epε ′b depend only on ε ′ [6, p. 409]. This, together with
φε ∈ Ap and Hölder’s inequality, imply epbφ ∈ Ap with an Ap constant depending only on
the Ap constant of φ.
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