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WHOSE HANKEL TRANSFORM IS SUPPORTED ON [0, 1]
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Abstract. Let Jµ denote the Bessel function of order µ. For α > −1, the system
x−α/2−1/2Jα+2n+1(x1/2), n = 0, 1, 2, . . . is orthogonal on L2((0,∞), xα dx). In
this paper we study the mean convergence of Fourier series with respect to this
system for functions whose Hankel transform is supported on [0, 1].
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§1. Introduction.

Let Jµ(x) stand for the Bessel function of order µ and {P (α,β)
n (x)}∞n=0 for the Jacobi

polynomials (see [15] and Ch. VII and X in [5]). It is well known that the Jacobi polyno-
mials are orthogonal on (-1,1) with respect to the weight (1− x)α(1 + x)β , α, β > −1, and
the Bessel functions satisfy the orthogonality relation∫ ∞

0

Jα+2n+1(x)Jα+2m+1(x)
dx

x
=

δnm

2(2n + α + 1)
, n,m = 0, 1, 2, . . . (α > −1).

If we denote

(1) jα
n (x) =

√
α + 2n + 1Jα+2n+1(

√
x)x−α/2−1/2, n = 0, 1, 2, . . .

then the system {jα
n}∞n=0 is orthonormal on L2(xα) = L2((0,∞), xα dx).

The Bessel functions and the Jacobi polynomials are related by the formula (see [6])∫ ∞

0

Jα+2n+1(t)Jα(xt) dt = xαP (α,0)
n (1− 2x2)χ[0,1](x).

Following [4] we define the Hankel transform Hα of order α > −1 to be the integral
operator

(2) Hα(f, x) =
x−α/2

2

∫ ∞

0

f(t)Jα(
√

xt)tα/2 dt, x > 0,

for suitable functions f .
This means that

(3) Hα(jα
n , x) =

√
α + 2n + 1P (α,0)

n (1− 2x)χ[0,1](x),
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and therefore supp(Hα(jα
n )) ⊆ [0, 1].

We consider the partial sums of the Fourier series with respect to the system {jα
n}∞n=0:

Sn(f, x) =
n∑

k=0

ck(f)jα
k (x), ck(f) =

∫ ∞

0

f(t)jα
k (t)tα dt.

They can be written as

(4) Sn(f, x) =
∫ ∞

0

f(t)Kn(x, t)tα dt, where Kn(x, t) =
n∑

k=0

jα
k (x)jα

k (t).

Series of this kind are a particular case of series
∑

n≥0 anJα+n, which are usually called
Neumann series. A study of their pointwise convergence can be found in [16] and [17].

The main aim in this paper is to study the convergence of Snf in the Lp(xα)-norm.
This involves two problems:

a) To obtain uniform boundedness of the operators Snf in Lp(xα).
b) To find the subspace of Lp(xα) consisting of the functions f which can be approx-

imated in the Lp(xα)-norm by its Fourier series, that is, to describe the space

Bp,α = span{jα
n (x)}∞n=0 (closure in Lp(xα)).

In order to solve a) the kernel Kn is decomposed in a suitable way which reduces the
problem to show the boundedness of the Hilbert transform with weights, and hence some
estimates for the Bessel functions and some results on Ap theory are needed. Some of these
ideas have been used in the literature (see [1], [8], [9], [10], [12], [13]).

Regarding to b), looking at (3) we only need to deal with functions with Hankel
transform supported on [0, 1]. This leads us to consider, in a natural way, the analogous
of the disc multiplier for the Hankel transform, i. e., the operator Mα defined by

Hα(Mαf, x) = Hα(f, x)χ[0,1](x).

Our problem of expanding a function whose Hankel transform is supported on [0, 1]
with respect to an orthogonal system is in some sense similar to expanding a function
whose Fourier transform is supported on [−1, 1], which has been treated in [1] using as an
orthogonal system the spherical Bessel functions

√
π
2xJn+1/2(x). The method we use to

establish our results is easier than the one in [1]. Our development in §2 can be adapted
to simplify some of the proofs in [1] and [2].

The paper is organized as follows: In section §2, we solve problem a). In section §3
we prove that the operator Mα, defined for suitable functions f , can be extended from
Lp(xα) into itself and it turns out to be the projection operator. This allows us to study
problem b) obtaining, in section §4, a characterization of Bp,α in terms of Mα and solving
the convergence of Snf to f in the Lp(xα)-norm.
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§2. Uniform boundedness of the partial sums.

In what follows, α ≥ −1
2 and p0 = 4(α+1)

2α+3 , p1 = 4(α+1)
2α+1 . From the well known estimates

(see [5] or [15])

Jµ(x) =
xµ

2µΓ(µ + 1)
+ O(xµ+2), x → 0+

and

(5) Jµ(x) =

√
2

πx

[
cos

(
x− µπ

2
− π

4

)
+ O(x−1)

]
, x →∞

it follows

(6) |Jα(x)| ≤ Cαxα, x ∈ (0,∞)

and

(7) |Jα(x)| ≤ Cαx−1/2, x ∈ (0,∞).

Given p ∈ (1,∞) and a fixed interval (a, b), a weight w is said to belong to the Ap(a, b)
class if (∫

I

w(x) dx

) (∫
I

w(x)−1/(p−1) dx

)p−1

≤ C|I|p

for every interval I ⊆ (a, b), with C independent of I. An important application of Ap

theory lies in its relation with the boundedness of the Hilbert transform

H(f, x) =
∫ b

a

f(t)
x− t

dt.

Indeed, in [11] (see also [7] for further information) it is proved that

H : Lp((a, b), w) −→ Lp((a, b), w) bounded ⇐⇒ w ∈ Ap(a, b).

Besides, the norm of the Hilbert transform operator and the constant in the Ap definition
depend only one on each other. This allows us to use the uniform Ap theory in a similar
way to [10]. Let us suppose that a family of weights {wn}∞n=0 defined in the same interval
(a, b) satisfies the Ap condition with the same constant C (in this case we will say that
wn ∈ Ap(a, b) uniformly). Then, the Hilbert transform H is uniformly bounded from
Lp((a, b), wn) into itself, that is, with constant independent of n.

It is well known

(8) xβ ∈ Ap(0, 1) ⇐⇒ xβ ∈ Ap(1,∞) ⇐⇒ xβ ∈ Ap(0,∞) ⇐⇒ −1 < β < p− 1.

Moreover, by making the change of variable x = rnz we easily obtain that, if rn ↘ 0, then

(9) (|x|+ rn)β ∈ Ap(−1, 1) uniformly ⇐⇒ −1 < β < p− 1.
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By using (8), it is easy to prove that, if α ≥ −1/2 and p0 < p < p1, then

xα−αp/2+p/4 ∈ Ap(0,∞) and xα−αp/2−p/4 ∈ Ap(0,∞).

The following result will be used later.

Lemma 1. Let α ≥ −1/2, max{ 4
3 , p0} < p < min{4, p1} and 0 < sn ↗∞. Then

(10) xα−αp/2+p/8
(
|x1/2 − sn|+ s1/3

n

)p/4

∈ Ap(0,∞) uniformly

and

(11) xα−αp/2−p/8
(
|x1/2 − sn|+ s1/3

n

)−p/4

∈ Ap(0,∞) uniformly .

Proof.
Let us prove (11); the proof of (10) is similar. Making the change of variable x = s2

nz
in the Ap definition, it is easy to show that (11) is equivalent to proving

zα−αp/2−p/8
(
|z1/2 − 1|+ s−2/3

n

)−p/4

∈ Ap(0,∞) uniformly.

Taking into account the behaviour of this expression on the intervals (0, 1/2), (1/2, 3/2)
and (3/2,∞), it is not difficult to check that we only need to see

zα−αp/2−p/8 ∈ Ap(0, 1
2 ),

(
|z1/2 − 1|+ s−2/3

n

)−p/4

∈ Ap( 1
2 , 3

2 ), zα−αp/2−p/4 ∈ Ap( 3
2 ,∞).

The first and the third ones are true by (8). Finally, the second one follows from (9) by
using |z1/2 − 1| ∼ |z − 1| and making a change of variable.

Theorem 1. Let 1 < p < ∞ and α ≥ −1/2. Then, there exists a constant C independent
of n and f , such that

(12) ‖Snf‖Lp(xα) ≤ C‖f‖Lp(xα) ∀f ∈ Lp(xα)

if and only if max{ 4
3 , p0} < p < min{4, p1}.

Proof.
To find necessary conditions for (12) we apply the standard argument used for the

first time in [12]. The uniform boundedness implies that of the operator Tn = Sn − Sn−1,

Tn(f, x) = cn(f)jα
n (x) = jα

n (x)
∫ ∞

0

f(t)jα
n (t)tα dt.

Thus, by using duality we can easily obtain that (12) implies

(13) ‖jα
n‖Lp(xα)‖jα

n‖Lq(xα) ≤ C.
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Taking n = 0 and applying (5) and (1), we find that p0 < p < p1. Now, provided that
p0 < p < p1, asymptotic estimates for Jα+2n+1(x) with n and x large enough allow us to
show that

‖jα
n‖Lp(xα) ∼

 n−1−α+2α/p+2/p if p < 4
n−1/2−α/2(log n)1/4 if p = 4
n−5/6−α+2α/p+4/(3p) if p > 4

.

This, together with (13), implies 4/3 < p < 4.
On the other hand, let us suppose that max{ 4

3 , p0} < p < min{4, p1} and prove the
uniform boundedness of Snf .

We need a suitable decomposition of the kernel Kn(x, t). In [16] it is proved that

φµ(x, t) =
∞∑

k=0

2(µ + 2k + 1)Jµ+2k+1(x)Jµ+2k+1(t)

satisfies
φµ(x, t) =

xt

x2 − t2
{xJµ+1(x)Jµ(t)− tJµ(x)Jµ+1(t)} .

Consequently, by (4) and (1) it is clear that

Kn(x, t) =
1
2
x−α/2−1/2t−α/2−1/2

{
φα(x1/2, t1/2)− φα+2n+2(x1/2, t1/2)

}
.

Now, by using zJα+2n+3(z) = (α + 2n + 2)Jα+2n+2(z)− zJ ′α+2n+2(z) we obtain

φα+2n+2(x, t) =
xt

x2 − t2
{
Jα+2n+2(x)tJ ′α+2n+2(t)− Jα+2n+2(t)xJ ′α+2n+2(x)

}
.

Hence it follows

Kn(x, t) =
x−α/2t−α/2

2(x− t)

{
x1/2Jα+1(x1/2)Jα(t1/2)− t1/2Jα(x1/2)Jα+1(t1/2)

}

+
x−α/2t−α/2

2(x− t)

{
x1/2J ′α+2n+2(x

1/2)Jα+2n+2(t1/2)− t1/2Jα+2n+2(x1/2)J ′α+2n+2(t
1/2)

}
.

This enables us to write

Sn(f, x) = W1(f, x)−W2(f, x) + W3,n(f, x)−W4,n(f, x),

where

W1(f, x) =
1
2

∫ ∞

0

x−α/2+1/2t−α/2 Jα+1(x1/2)Jα(t1/2)
x− t

f(t)tα dt,

W2(f, x) =
1
2

∫ ∞

0

x−α/2t−α/2+1/2 Jα(x1/2)Jα+1(t1/2)
x− t

f(t)tα dt,
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W3,n(f, x) =
1
2

∫ ∞

0

x−α/2+1/2t−α/2 J ′ν(x1/2)Jν(t1/2)
x− t

f(t)tα dt,

W4,n(f, x) =
1
2

∫ ∞

0

x−α/2t−α/2+1/2 Jν(x1/2)J ′ν(t1/2)
x− t

f(t)tα dt

and ν = α + 2n + 2.
Therefore, to prove (12) it is sufficient to see

‖Wif‖Lp(xα) ≤ C‖f‖Lp(xα), i = 1, 2

and
‖Wi,nf‖Lp(xα) ≤ C‖f‖Lp(xα), i = 3, 4.

In order to apply Ap theory we will use the following estimates for Bessel functions
and their derivatives:

(14) |Jν(x)| ≤ Cx−1/4
(
|x− ν|+ ν1/3

)−1/4

,

(15) |J ′ν(x)| ≤ Cx−3/4
(
|x− ν|+ ν1/3

)1/4

,

where, again, ν = α + 2n + 2 and the constant C depends only on α. These inequalities
can be easily deduced from those used in [1] (see also [15]).

Now, the boundedness of the operators W1 and W2 is equivalent to

‖x1/2−α/2Jα+1(x1/2)H(tα/2Jα(t1/2)f(t), x)‖Lp(xα) ≤ C‖f(x)‖Lp(xα)

and
‖x−α/2Jα(x1/2)H(t1/2+α/2Jα+1(t1/2)f(t), x)‖Lp(xα) ≤ C‖f(x)‖Lp(xα).

By using (7) and xα−αp/2−p/4 ∈ Ap(0,∞) it follows

‖x−α/2Jα(x1/2)H(t1/2+α/2Jα+1(t1/2)f(t), x)‖p
Lp(xα)

≤ C1

∫ ∞

0

∣∣∣x−α/2−1/4H(t1/2+α/2Jα+1(t1/2)f(t), x)
∣∣∣p xα dx

≤ C2

∫ ∞

0

∣∣∣x1/2+α/2Jα+1(x1/2)f(x)
∣∣∣p xα−αp/2−p/4 dx

≤ C3

∫ ∞

0

∣∣∣x1/2+α/2−1/4f(x)
∣∣∣p xα−αp/2−p/4 dx = C3‖f(x)‖p

Lp(xα).

The verification of the other inequality is similar by using (7) and xα−αp/2+p/4 ∈ Ap(0,∞).
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To finish the proof we will prove the uniform boundedness of W4,n; that of W3,n can
be obtained in a similar way. Taking g(t) = J ′ν(t1/2)tα/2+1/2f(t) and using consecutively
(14), (11) and (15) we have

‖W4,nf‖p
Lp(xα) = 2−p

∫ ∞

0

∣∣∣∣∫ ∞

0

x−α/2tα/2+1/2 Jν(x1/2)J ′ν(t1/2)
x− t

f(t) dt

∣∣∣∣p xα dx

= 2−p

∫ ∞

0

|H(g, x)|p
∣∣∣Jν(x1/2)

∣∣∣p x−αp/2+α dx

≤ C1

∫ ∞

0

|H(g, x)|pxα−αp/2−p/8
(
|x1/2 − ν|+ ν1/3

)−p/4

dx

≤ C2

∫ ∞

0

|g(x)|pxα−αp/2−p/8
(
|x1/2 − ν|+ ν1/3

)−p/4

dx ≤ C3‖f‖p
Lp(xα)

and the result follows.

§3. The projection operator Mα.

By using (6), the integral operator (2) exists for every f ∈ L1(xα) andHαf ∈ L∞(xα).
Actually, we have

(16) ‖Hαf‖L∞(xα) ≤ 1
2Cα‖f‖L1(xα).

However (2) does not exist for f ∈ Lp(xα) in general and so we will introduce the operator
Mα in a similar way to that of the disc multiplier.

We consider the space

S+ =
{

f ∈ C∞(0,∞) : ∀k, n ≥ 0, |tkf (n)(t)| < Ck,n

}
with the topology generated by the seminorms ‖ · ‖k,n, k, n ∈ N, defined by ‖f‖k,n =
supt∈(0,∞) tk|f (n)(t)| (see [3] and [4]). It is easy to identify S+ with the functions f such
that f(t) = φ(t), t ≥ 0, for some φ(t) in the Schwartz class S.

With this notation Hα is an isomorphism of S+ onto itself and H2
α is the identity map.

Moreover, Fubini’s Theorem implies the multiplication formula for the Hankel transform:

(17)
∫ ∞

0

Hα(f, x)g(x)xα dx =
∫ ∞

0

Hα(g, x)f(x)xα dx, f, g ∈ S+.

Now, taking g(x) = Hα(f, x) and using that H2
α = Id, we have Parseval’s formula

‖Hαf‖L2(xα) = ‖f‖L2(xα).
Since S+ is dense in L2(xα), the operator Hα : S+ → S+ can be extended to Hα :

L2(xα) → L2(xα) satisfying

(18) ‖Hαf‖L2(xα) = ‖f‖L2(xα) and H2
α = Id .
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Let Mα be the operator defined by

Mα(f, x) = Hα(χ[0,1]Hαf, x), f ∈ S+.

Note that if f ∈ S+ then Hαf ∈ S+; thus χ[0,1]Hαf ∈ L2(xα) and Mαf is well defined
∀f ∈ S+.

Theorem 2. Let α ≥ −1/2 and p0 < p < p1. Then there exists a constant Cp,α such that

‖Mαf‖Lp(xα) ≤ Cp,α‖f‖Lp(xα), ∀f ∈ S+.

Therefore, Mα can be extended to an operator (also denoted Mα) bounded on Lp(xα) such
that

i) Hα(Mαf) = Hα(f)χ[0,1] for all f ∈ L2(xα) ∩ Lp(xα).

ii) M2
αf = Mαf for all f ∈ Lp(xα).

iii) Moreover, for f ∈ Lp(xα) and g ∈ Lq(xα), 1/p + 1/q = 1, we have∫ ∞

0

f(x)Mα(g, x)xα dx =
∫ ∞

0

g(x)Mα(f, x)xα dx.

Proof.
By using (2) and Fubini’s Theorem we obtain

Mα(f, x) =
1
4

∫ ∞

0

(∫ 1

0

Jα(
√

yt)Jα(
√

yx) dy

)
tα/2x−α/2f(t) dt.

Moreover, a change of variable in Lommel’s formula∫ 1

0

Jα(yt)Jα(yx)y dy =
1

t2 − x2
(Jα(t)xJ ′α(x)− Jα(x)tJ ′α(t))

=
1

t2 − x2
(tJα+1(t)Jα(x)− xJα(t)Jα+1(x))

(for the last equality, use zJ ′α(z) = αJα(z)− zJα+1(z)) leads us to

Mα(f, x) =
1
2

∫ ∞

0

t1/2Jα+1(t1/2)Jα(x1/2)− x1/2Jα(t1/2)Jα+1(x1/2)
t− x

tα/2x−α/2f(t) dt

= W1(f, x)−W2(f, x),

where W1 and W2 are bounded operators (see the proof of Theorem 1).
Now, taking into account that H2

α = Id and using standard density arguments, the
statements i) and ii) follow easily. Let us now prove iii):
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From (17), it easily follows that, for f, g ∈ L2(xα), we have

(19)
∫ ∞

0

Hα(f, x)Hα(g, x)xα dx =
∫ ∞

0

f(x)g(x)xα dx.

Now, let U1 and U2 be the bilinear functionals on Lp(xα)× Lq(xα) defined by

U1(f, g) =
∫ ∞

0

f(x)Mα(g, x)xα dx

and
U2(f, g) =

∫ ∞

0

g(x)Mα(f, x)xα dx.

It suffices to show that U1 and U2 are bounded and coincide on the subset
(
L2(xα) ×

L2(xα)
)
∩

(
Lp(xα)×Lq(xα)

)
, which is dense in Lp(xα)×Lq(xα). The boundedness of U1

and U2 is clear by Hölder’s inequality and p0 < p, q < p1. Furthermore, by using (19), i)
twice, and (19) once again, we have∫ ∞

0

f(x)Mα(g, x)xα dx =
∫ ∞

0

Hα(f, x)Hα(Mαg, x)xα dx =
∫ 1

0

Hα(f, x)Hα(g, x)xα dx

=
∫ ∞

0

Hα(Mαf, x)Hα(g, x)xα dx =
∫ ∞

0

Mα(f, x)g(x)xα dx

and so the proof is complete.

§4. Main consequences.

Definition. Let α ≥ −1/2 and p0 < p < p1. We define

Ep,α = {f ∈ Lp(xα) : Mαf = f}

endowed with the topology induced by Lp(xα).

Proposition 1. Let α ≥ −1/2, p0 < s < r < p1. Then Es,α ⊂ Er,α and the inclusion is
continuous and dense.

Proof.
From (16) and (18), by using interpolation (see [14]), it follows

‖Hαf‖Lq(xα) ≤ C‖f‖Lp(xα), 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1
p + 1

q = 1.

On the other hand, if p ≤ 2 and p0 < p < p1, for f ∈ S+ we have

‖Mαf‖L∞(xα) = ‖Hα(χ[0,1]Hαf)‖L∞(xα)

≤ C1‖χ[0,1]Hαf‖L1(xα) ≤ C2‖Hαf‖Lq(xα) ≤ C3‖f‖Lp(xα).
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By density,
‖Mαf‖L∞(xα) ≤ C‖f‖Lp(xα).

Since Mα is bounded from Lp(xα) into itself, p0 < p < p1, by interpolation we obtain
‖Mαf‖Lr(xα) ≤ C‖f‖Lp(xα), r ≥ p. Interpolating one more time, we find

(20) ‖Mαf‖Lr(xα) ≤ C‖f‖Ls(xα), p0 < s < r < p1.

If f ∈ Es,α then Mαf = f and so (20) leads to ‖f‖Lr(xα) ≤ C‖f‖Ls(xα), which implies
Es,α ⊂ Er,α.

To prove that the inclusion is dense, let f ∈ Er,α. Since Lr(xα) ∩ Ls(xα) is dense in
Lr(xα), for each ε > 0 there exists a function g ∈ Lr(xα)∩Ls(xα) such that ‖f − g‖Lr(xα) <
ε. Taking h = Mαg it follows that h ∈ Ep,α. Then

‖f − h‖Lr(xα) = ‖Mαf −Mαg‖Lr(xα) ≤ ‖Mα‖ ‖f − g‖Lr(xα) < Cε

and the proof is complete.

If 1/p + 1/q = 1, the following result says that the dual space (Ep,α)′ is isomorphic to
Eq,α in the standard sense

Proposition 2. Let α ≥ −1/2 and T a bounded linear operator on Ep,α, p0 < p < p1.
There exists a unique function g ∈ Eq,α, 1/p + 1/q = 1, such that

(21) T (f) =
∫ ∞

0

f(x)g(x)xα dx ∀f ∈ Ep,α.

Furthermore, C‖g‖Lq(xα) ≤ ‖T‖ ≤ ‖g‖Lq(xα) for a constant C > 0 depending only on the
norm of Mα in Lq(xα).

Proof.
Let T ∈ (Ep,α)′. By Hahn-Banach’s Theorem, T can be extended to T ∈ (Lp(xα))′

preserving its norm ‖T‖. By duality between Lp(xα) and Lq(xα), there exists h ∈ Lq(xα)
such that

T (f) =
∫ ∞

0

f(x)h(x)xα dx ∀f ∈ Lp(xα)

and ‖h‖Lq(xα) = ‖T‖.
If g = Mαh from ii) in Theorem 2 it follows g ∈ Eq,α. We are going to check that this

function satisfies our purposes. If f ∈ Ep,α, from iii) in Theorem 2 we have

T (f) =
∫ ∞

0

f(x)h(x)xα dx =
∫ ∞

0

Mα(f, x)h(x)xα dx

=
∫ ∞

0

Mα(h, x)f(x)xα dx =
∫ ∞

0

g(x)f(x)xα dx.
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By using p0 < q < p1 and Hölder’s inequality we have ‖T‖ ≤ ‖Mαh‖Lq(xα). Thus, the
equivalence of norms ‖g‖Lq(xα) ∼ ‖T‖ follows immediately.

To prove the uniqueness, suppose p ≥ 2 and there exist g and g′ in Eq,α satisfying
(21). Then ∫ ∞

0

f(x)(g(x)− g′(x))xα dx = 0 ∀f ∈ Ep,α.

Taking f = g− g′ ∈ Eq,α ⊂ Ep,α it follows g− g′ = 0 a. e. Now, the case p < 2 is a simple
consequence of this considering that Lq(xα) is reflexive and, since Eq,α is closed, then Eq,α

is also reflexive.

As it was pointed out in Introduction, let Bp,α stands for the closure in Lp(xα) of the
space span {jα

n}
∞
n=0. The following results show the main consequences in this section.

Corollary. Let α ≥ −1/2. Then limn→∞ ‖Snf − f‖Lp(xα) = 0 for every f ∈ Bp,α if and

only if max
{

4
3 , p0

}
< p < min {4, p1}. Moreover, if it is the case, then Bp,α = Ep,α.

Proof.
i) By using (3), (18) and the completeness of the Jacobi system it follows that {jα

n}
∞
n=0

is complete in E2,α and so B2,α = E2,α. Hence the convergence for p = 2 is clear. When
p0 < p < p1 then jα

n ∈ Ep,α and therefore Bp,α ⊂ Ep,α.
If 2 < p < p1 and f ∈ Ep,α it follows that for each ε > 0 there exists a function

g ∈ L2(xα) ∩ Lp(xα) such that ‖f − g‖Lp(xα) < ε. Taking h = Mαg we have Mαh = h
and so h ∈ E2,α ∩ Ep,α = B2,α ∩ Ep,α. Since Mα is continuous then ‖f − h‖Lp(xα) =
‖Mαf −Mαg‖Lp(xα) < Cε. As h ∈ B2,α it follows that there exists h′ ∈ span {jα

n}
∞
n=0

such that ‖h− h′‖L2(xα) < ε. By applying triangle inequality and Proposition 1 we obtain
‖f − h′‖Lp(xα) < C1ε and therefore Ep,α ⊂ Bp,α. Then the mean convergence for 2 < p <
min {4, p1} is an immediate consequence of Theorem 1 and Banach-Steinhaus Theorem.

If max
{

4
3 , p0

}
< p < 2, the result is easily obtained by duality.
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[5] A. Erdélyi et al., “Higher Transcendental Functions,” Vol. II, McGraw-Hill, New York,

1953.
[6] A. Erdélyi et al., “Tables of Integral Transforms,” Vol. II, McGraw-Hill, New York,

1954.
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