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Deprit’s method has been revisited in order to take advantage of certain arbitrariness arising when the inverse of the Lie operator
is applied to obtain the generating function of the Lie transform. This arbitrariness is intrinsic to all perturbation techniques and
can be used to demonstrate the equivalence among different perturbation methods, to remove terms from the generating function
of the Lie transform, or to eliminate several angles simultaneously in the case of having a degenerate Hamiltonian.

1. Introduction

Perturbation methods represent one of the most important
and powerful tools for the study of dynamical systems.
These techniques are frequently used in several fields of
nonlinear mechanics. The method of the averaging, which
was rigorously formulated in [1], and the methods based on
canonical transformations, such as themethods of von Zeipel
[2, 3], Hori [4, 5], and Deprit [6], are some of the analytical
perturbation methods derived from the work of Poincaré
[7]. The demonstration of the equivalence of these methods
[8–12] is based on certain arbitrariness closely related to
the averaged equations. Moreover, this arbitrariness can also
be included during the process of obtaining the generating
function and determining the new system of differential
equations [10, 13–16].

The purpose of this paper is to review the algorithm
proposed by Deprit to perform a Lie transform so as to
identifywhere this arbitrariness appears, how andunderwhat
conditions this can be used, and, finally, what is its relation to
another method derived from the one proposed by Deprit,
such as the so-called double normalization [17–19]. In order

to do that, we will reexamine the processes carried out by
Deprit’s method when it is applied to the normalization of
Hamiltonian systems of the form

H =H
0
(𝐼
1
) + ∑

𝑛≥1

𝜀

𝑛

𝑛!

H
𝑛
(I,𝜑) , (1)

where 𝜀 is a small parameter and I = (𝐼
1
, . . . , 𝐼

𝑚
), 𝜑 =

(𝜑
1
, . . . , 𝜑

𝑚
) are action-angle variables. More precisely, we

will assume that the unperturbed part of (1) can be expressed
in the simple form H

0
= 𝜔𝐼

1
, which is what Arnold

characterizes as proper degeneracy [20], while the perturbed
part can be represented as a trigonometric series in the form

H
𝑛
= ∑

𝑗
1
,...,𝑗
𝑚
∈Z

C
𝑗
1
,...,𝑗
𝑚

(

sin
cos) (𝑗1𝜑1 + ⋅ ⋅ ⋅ + 𝑗𝑚𝜑𝑚) , (2)

where C
𝑗
1
,...,𝑗
𝑚

are functions depending on physical param-
eters and the actions 𝐼

1
, . . . , 𝐼

𝑚
. It is worth noting that all

dynamical systems defined by a Hamiltonian function whose
unperturbed partH

0
is made of a finite number of harmonic

oscillators can be brought to the form (1) by means of a
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suitable change of variables [21, 22]. Moreover, this type of
Hamiltonian frequently appears in a large class of problems
in celestial mechanics and classical mechanics.

For a Hamiltonian of the form (1), Deprit’s method allows
one to obtain the transformed Hamiltonian and the generat-
ing function of the Lie transform, order by order, as a solution
of a partial differential equation.The solution of this equation
is obtained by choosing the transformed Hamiltonian in the
null space and the generating function in the range of the
Lie operator associated to H

0
. Therefore, the transformed

Hamiltonian does not depend on the angular variable 𝜑
1
and

the generating function is obtained by computing the inverse
of the Lie operator. This is a procedure that usually involves
integration.This fact implies that a functionF

𝑛
, belonging to

the null space of the Lie operator, can be added to the generat-
ing function at each order. Usually, these functions are chosen
to be equal to zero. This inherent arbitrariness introduced
by this method is analogous to the gauge freedom [23–25].
It is worth noting that Morrison [10], using the von Zeipel
method, considers a generating function 𝑆

1
=
̂
𝑆
1
+ 𝑆

∗

1
, where

𝑆

∗

1
is an arbitrary 2𝜋-periodic function defined as the average

of 𝑆
1
with respect to the fast variable. The determination of

𝑆

∗

1
can be made at the same order or postponed until next

order, in which case, under certain conditions, it is possible
to consider 𝑆∗

1
as the generating function of a new transfor-

mation, which can be used to remove other angular variables.
Another example of using Deprit’s method with a zero-
average generator can be seen in Metris and Exertier [26].

In Section 2, we make a brief review of some basic
elements of the Lie transform perturbation theory and
identify where the arbitrary function appears in Deprit’s
method. The process whereby Deprit’s method is applied,
and how explicit analytical solutions can be obtained when
the arbitrary function is considered nonnull, is outlined in
Section 3. The special case of degenerated first-order nor-
malized Hamiltonians and their relation with other method
derived from Deprit’s method is presented in Section 4.
Finally, in Section 5, an example of the normalization, when
the arbitrary function is nonnull, is presented.

2. Lie Transforms

LetP be a Poisson algebra of functions, that is, an algebra of
real or complex value functions in (x,X), where (x,X)belongs
to R𝑛 ×R𝑛 or C𝑛 ×C𝑛, and such that for any 𝑓 and 𝑔 inP the
Poisson bracket, defined by

{𝑓, 𝑔} = ∇x𝑓 ⋅ ∇X𝑔 − ∇X𝑓 ⋅ ∇x𝑔, (3)

also belongs toP.
A Lie transform is a uniparametric family of mappings

𝜙 : (x,X, 𝜀) → (x,X) defined by a solution of the system of
differential equations,

𝑑x
𝑑𝜀

= ∇XW (x,X, 𝜀) ,

𝑑X
𝑑𝜀

= −∇xW (x,X, 𝜀) ,
(4)

that satisfies the initial conditions x(x,X, 0) = x and
X(x,X, 0) = X. The function W is the generator of 𝜙
and can be expressed as the following power series in the
parameter 𝜀:

W (x,X, 𝜀) = ∑
𝑖≥0

𝜀

𝑖

𝑖!

𝑊
𝑖+1
(x,X) . (5)

In the Hamiltonian case, perturbation theories are based
on transforming the analytical Hamiltonian function,

H (x,X, 𝜀) = ∑
𝑛≥1

𝜀

𝑛

𝑛!

H
𝑛 (
x,X) ≡ ∑

𝑛≥1

𝜀

𝑛

𝑛!

H
𝑛,0 (

x,X) , (6)

into the new one

K (x,X, 𝜀) = ∑
𝑛≥1

𝜀

𝑛

𝑛!

K
𝑛
(x,X) ≡ ∑

𝑛≥1

𝜀

𝑛

𝑛!

H
0,𝑛
(x,X) ,

(7)

which satisfies some specific prerequisites. One of the most
useful methods to build this transform was proposed by
Deprit in [6].

The Lie-Deprit method looks for a generating function
W of 𝜙 so that the termsH

𝑛
,K
𝑛
, andW

𝑛
satisfy the partial

differential equation, called Homological equation:

LH
0

(W
𝑛
) +K

𝑛
=
̃H
0,𝑛
, (8)

where LH
0

is the Lie operator (or derivative) associated to
H
0
, a linear operator given in terms of a Poisson bracket by

LH
0

: 𝐹 → {𝐹,H
0
} . (9)

The right-hand side of (8), ̃H
0,𝑛
, is computed from H

𝑛
,

(W
𝑖
)
1≤𝑖≤𝑛−1

and (H
𝑝,𝑞
)
𝑝+𝑞≤𝑛−1

, where the latter are obtained
by means of the recursive formula:

H
𝑖,𝑗
=H
𝑖+1,𝑗−1

+

𝑖

∑

𝑘=0

(

𝑖

𝑘

) {H
𝑖−𝑘,𝑗−1

,W
𝑘+1
} , (10)

with 𝑖 ≥ 0 and 𝑗 ≥ 0 (for more details, see [6]).
In the case of the Hamiltonian (1), the algebra P can be

decomposed into the direct sum

P = ker (LH
0

) ⊕ im (LH
0

) , (11)

where ker(LH
0

) denotes the null space (or kernel) of LH
0

and im(LH
0

) the range ofLH
0

.
By (11), ̃H

0,𝑛
can be uniquely split into

̃H
0,𝑛
=
̃H
∗

0,𝑛
+
̃H
∗∗

0,𝑛
, (12)

where ̃H∗
0,𝑛

belongs to the null space of LH
0

and ̃H∗∗
0,𝑛

to the range of LH
0

. According to (12), a solution of the
Homological equation (8) is givenwhen the newHamiltonian
is chosen to be

K
𝑛
=
̃H
∗

0,𝑛
. (13)

Then the generating function,W
𝑛
, has to satisfy the identity

LH
0

(W
𝑛
) =

̃H
∗∗

0,𝑛
. (14)
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Finally, W
𝑛
is obtained by solving (14). This solution is

not uniquely determined by (14) since the addition of any
functionF

𝑛
∈ ker(LH

0

) toW
𝑛
is also a solution to the above

equation. Usually, a natural choice for F
𝑛
would seem to be

to take it identically zero, although this does not necessarily
have to be the most convenient choice. On the other hand, in
the case ofF

𝑛
̸= 0 there are two possible instances in which

the arbitrary function can be determined: first, at the same
order which would produce an effect on the term W

𝑛
of the

generating function and, second, if the determination of the
arbitrary functions is postponed to the next order, then the
effect may be used to express the term K

𝑙
with 𝑙 > 𝑛 of the

transformed Hamiltonian in a much simpler form compared
to the transformed Hamiltonian obtained when F

𝑛
= 0 is

considered.

3. Normalization by the Lie-Deprit Method:
Case F

𝑛
̸= 0

Let H be a Hamiltonian of type (1). K is the normalized
Hamiltonian of H in the phase space (𝜑, I) up to order 𝑛
if the zero order term H

0
is an integral of the transformed

Hamiltonian; that is,

LH
0

(K
𝑖
) = 0, for 𝑖 = 0, . . . , 𝑛, (15)

where the associated Lie operator takes the form

LH
0
( ) =

1

𝜔

𝜕

𝜕𝜑



1

. (16)

In this case, the solution to (8) is obtained when the new
Hamiltonian,K

𝑛
, is

K
𝑛
=

1

2𝜋

∫

2𝜋

0

̃H
0 𝑛
𝑑𝜑



1
, (17)

and the generating function,W
𝑛
, is given by

W
𝑛
=

1

𝜔

∫ (
̃H
0 𝑛
−K
𝑛
) 𝑑𝜑



1
+F
𝑛
, (18)

whereF
𝑛
is an arbitrary integration function in the null space

ofLH
0

. It is worth noting thatF
𝑛
depends on the variables

𝜑



2
, . . . , 𝜑



𝑚
and all momenta 𝐼

𝑖
. We will henceforth drop the

primes from the new variables and momenta to simplify
notation. For a better understanding of the role played by
the arbitrary integration function F

𝑛
, Deprit’s method will

be discussed taking into account its explicit appearance.
The method starts by taking K

0
= H
0
. According to

the Deprit’s algorithm [6], at the first order the Homological
equation, which has to be solved, is

LH
0

(W
1
) +K

1
=
̃H
0 1
, (19)

where the right-hand side of this equation is

̃H
0 1
=H
1 0
=H
1
. (20)

Then, by applying (17) and (18), the first-order term ofK and
W can be written, respectively, as

K
1
=

1

2𝜋

∫

2𝜋

0

H
1
𝑑𝜑
1
, (21)

W
1
=

1

𝜔

∫ (H
1
−K
1
) 𝑑𝜑
1
+F
1
, (22)

where F
1

∈ ker(LH
0

). The arbitrary function can be
determined at the same order; for example, takingF

1
as

F
1
=

1

2𝜋

∫

2𝜋

0

W
1
𝑑𝜑
1
, (23)

the arbitrary function removes those terms that do not
depend on 𝜑

1
fromW

1
or postponed its determination to the

next order. Now we analyze the case when the determination
of F
1
is retained. Then, at second order the right-hand side

of (8) is

̃H
0 2
=H
2 0
+ 2 {H

1 0
,W
1
} . (24)

By using (20) and (22), and after some rearrangements, (24)
can be written in the form

̃H
0 2
=
̃H

#
0 2
+ 2 {H

1
,F
1
} , (25)

where ̃H#
0 2

collects all the terms that do not depend on F
1

and is given by

̃H
#
0 2
=H
2 0
+

2

𝜔

{H
1 0
, ∫ (

̃H
0 1
−K
1
) 𝑑𝜑
1
} . (26)

On the other hand, the second part {H
1
,F
1
} involves the

terms that only depend on the integration constant F
1
. It

is worth noting that this Poisson bracket can be written as
a function of the Lie operator, −LH

1

(F
1
).

By making use of (25), the Homological equation yields

LH
0

(W
2
) +K

2
=
̃H

#
0 2
+ 2 {H

1
,F
1
} . (27)

Now, by expanding the Poisson bracket, (27) can be rewritten
as

LH
0

(W
2
) +K

2
=
̃H

#
0 2
+ 2

𝑚

∑

𝑖=2

(

𝜕H
1

𝜕𝜑
𝑖

𝜕F
1

𝜕𝐼
𝑖

−

𝜕H
1

𝜕𝐼
𝑖

𝜕F
1

𝜕𝜑
𝑖

) .

(28)

Then, by applying (17) and taking into account (28), we obtain
K
2
as

K
2
=

1

2𝜋

∫

2𝜋

0

̃H
#
0 2
𝑑𝜑
1
+ 2

𝑚

∑

𝑖=2

(

𝜕K
1

𝜕𝜑
𝑖

𝜕F
1

𝜕𝐼
𝑖

−

𝜕K
1

𝜕𝐼
𝑖

𝜕F
1

𝜕𝜑
𝑖

) .

(29)

It is worth noting that the dependency of F
1
on K

2
still

remains through its partial derivatives with respect to 𝜑
𝑖

(with 𝑖 = 2, . . . , 𝑚) and all momenta. The elimination of this
dependency is used to express K

2
in a simpler form; it is
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the fundamental idea that can be found behind the explicit
manipulation of the arbitrary integration function.

Therefore, according to this purpose, the first term of (29)
is decomposed as the sumK𝐼

2
+K𝐼𝐼
2
, whereK𝐼𝐼

2
is to bemade

of those terms that we want to remove. Finally, F
1
can be

determined by solving

𝑚

∑

𝑖=2

(

𝜕K
1

𝜕𝜑
𝑖

𝜕F
1

𝜕𝐼
𝑖

−

𝜕K
1

𝜕𝐼
𝑖

𝜕F
1

𝜕𝜑
𝑖

) =

1

2

K
𝐼𝐼

2
. (30)

It is worth noting that the complexity of this identity directly
depends on the formofK

1
and, therefore, on the formofH

1
.

Finally, the second-order term K
2
of the Hamiltonian K is

taken as

K
2
=K
𝐼

2
. (31)

Now, by substituting the value of F
1
into (22) in order to

complete W
1
and into the previous terms H

𝑖 𝑗
of (10), the

second-order termW
2
ofW is

W
2
=

1

𝜔

∫ (
̃H
0 2
−K
2
) 𝑑𝜑
1
+F
2
. (32)

As already mentioned before, the arbitrary function can be
determined at the same order so as to remove those terms that
do not depend on 𝜑

1
fromW

1
or postpone its determination

to the next order.
The above reasoning can be immediately extended to

order 𝑛 in exactly the same way. By (10), the right-hand side
of (8) can be written in the following generic form:

̃H
0 𝑛
=
̃H

#
0 𝑛
+ 𝑛 {H

1 0
,F
𝑛−1
} , (33)

where the contribution of ̃H#
0 𝑛

is known and the second term
contains the unknown functionF

𝑛−1
.

As before, by expanding the Poisson bracket on (33) and
taking into account (20), the Homological equation (8) takes
the form

LH
0

(W
𝑛
) +K

𝑛

=
̃H

#
0 𝑛
+ 𝑛

𝑚

∑

𝑖=2

(

𝜕H
1

𝜕𝜑
𝑖

𝜕F
𝑛−1

𝜕𝐼
𝑖

−

𝜕H
1

𝜕𝐼
𝑖

𝜕F
𝑛−1

𝜕𝜑
𝑖

) .

(34)

It is worth noting that this Poisson bracket can also be written
as a function of the Lie operator as −LH

1

(F
𝑛−1
).

Then, by substituting (33) into (17), we obtainK
𝑛
as

K
𝑛
=

1

2𝜋

∫

2𝜋

0

̃H
#
0 𝑛
𝑑𝜑
1

− 𝑛

𝑚

∑

𝑖=2

(

𝜕K
1

𝜕𝜑
𝑖

𝜕F
𝑛−1

𝜕𝐼
𝑖

−

𝜕K
1

𝜕𝐼
𝑖

𝜕F
𝑛−1

𝜕𝜑
𝑖

) .

(35)

If we proceed in the same way as before, the first term
of (35) can be decomposed again as the sum K𝐼

𝑛
+ K𝐼𝐼
𝑛
.

Then, by choosing suitable functional dependencies ofF
𝑛−1

,

according to the additional aims of the transformation, and
taking into account the identity

𝑚

∑

𝑖=2

(

𝜕K
1

𝜕𝜑
𝑖

𝜕F
𝑛−1

𝜕𝐼
𝑖

−

𝜕K
1

𝜕𝐼
𝑖

𝜕F
𝑛−1

𝜕𝜑
𝑖

) =

1

2𝑛

K
𝐼𝐼

𝑛
, (36)

the explicit value of F
𝑛−1

can be obtained. Again, the
complexity of (36) depends on the form ofK

1
and, therefore,

on the form ofH
1
. Hence, the new Hamiltonian,K

𝑛
, yields

K
𝑛
=K
𝐼

𝑛
. (37)

Then, by replacing the value ofF
𝑛−1

intoW
𝑛−1

and into the
previous termsH

𝑖 𝑗
of the Deprit’s scheme, we obtainW

𝑛
as

W
𝑛
=

1

𝜔

∫ (
̃H
0 𝑛
−K
𝑛
) 𝑑𝜑
1
+F
𝑛
. (38)

Finally, by taking F
𝑛
= 0, if this function is not used to

remove the terms that do not depend on 𝜑
1
from W

𝑛
, the

transformed Hamiltonian can be expressed as

K = ∑

𝑛≥1

𝜀

𝑛

𝑛!

K
𝐼

𝑛
, (39)

where the dependency on 𝜑
1
is eliminated by the normal-

ization process and the additional effects produced by the
integration constants are included from the second order.

4. K
𝑛

Degenerate at Order 𝑛 ≥ 1

As has been seen in the previous section, the arbitrary
integration function, when it is determined at the same
order, only affects the generating function. However, if its
determination is postponed, the form of the terms H

1
and

K
1
becomes important, since it depends on the solution of

the partial differential equation (36).
In this section, we assume that the first-order term

H
1
of the initial Hamiltonian (1) is transformed into a

degenerated term K
1
of the new Hamiltonian in the sense

of Arnold’s characterization. Under this assumption, the
arbitrary function can be considered like the generator of
a new Lie transform which will allow to remove any other
angular variables. It is worth noting that this condition is
weaker than assuming the degeneration of the term H

1
, as

can be seen in the example shown in the next section.
We start considering the case in which the first-order

term K
1
depends on all the momenta 𝐼

𝑖
. It is easy to check

that

𝜕K
1

𝜕𝜑
𝑖

= 0, for 𝑖 = 2, . . . , 𝑚. (40)

On the other hand, for each 𝑛 > 1, using the identity
{H
1 0
,F
𝑛−1
} = −LH

1 0

(F
𝑛−1
), the Homological equation

(34) can be written as

LH
0

(W
𝑛
) + 𝑛LH

1

(F
𝑛−1
) +K

𝑛
=
̃H

#
0 𝑛

(41)
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and, therefore, with the aid of relation (40), (35) yields

K
𝑛
=

1

2𝜋

∫

2𝜋

0

̃H
#
0 𝑛
𝑑𝜑
1
− 𝑛

𝑚

∑

𝑖=2

𝜕K
1

𝜕𝐼
𝑖

𝜕F
𝑛−1

𝜕𝜑
𝑖

. (42)

With the same approach used in the study of the nondegen-
erated case, K

𝑛
is taken as K𝐼

𝑛
, which only depends on the

momenta, and (36) becomes
𝑚

∑

𝑖=2

𝜕K
1

𝜕𝐼
𝑖

𝜕F
𝑛−1

𝜕𝜑
𝑖

= −

1

𝑛

K
𝐼𝐼

𝑛
. (43)

Moreover,K𝐼𝐼
𝑛
can be written as

K
𝐼𝐼

𝑛
= ∑

𝑗
1
,...,𝑗
𝑚
∈�⃗�

C
𝑗
1
,...,𝑗
𝑚

(

sin
cos) (𝑗2𝜑2 + ⋅ ⋅ ⋅ + 𝑗𝑚𝜑𝑚) , (44)

where the coefficients C
𝑗
2
,...,𝑗
𝑚

are functions which depend
on the momenta and the physical parameters of the initial
Hamiltonian.Therefore, if we consider the nonresonant case,
(43) can be solved directly and its solution is expressed as a
Poisson series in the form

F
𝑛−1

= ∑

𝑗
1
,...,𝑗
𝑚
∈�⃗�

C


𝑗
1
,...,𝑗
𝑚

(

− cos
sin ) (𝑗

2
𝜑
2
+ ⋅ ⋅ ⋅ + 𝑗

𝑚
𝜑
𝑚
) , (45)

with

C


𝑗
1
,...,𝑗
𝑚

=

−C
𝑗
1
,...,𝑗
𝑚

𝑛 (]
2
𝐼
2
+ ⋅ ⋅ ⋅ + ]

𝑚
𝐼
𝑚
)

, (46)

where (]
2
, . . . , ]

𝑚
) represents the𝑚−1 vector of fundamental

frequencies of the first-order integrable HamiltonianK
1
:

]
𝑖
=

𝜕K
1

𝜕𝐼
𝑖

. (47)

After that, the value of F
𝑛−1

is inserted into the previous
calculations and the value ofW

𝑛
is obtained:

W
𝑛
=

1

𝜔

∫ (
̃H
0 𝑛
−K
𝑛
) 𝑑𝜑
1
+F
𝑛
. (48)

The transformed Hamiltonian K only depends on the
momenta and hence is integrable by quadratures. In this
situation, the arbitrary function can be seen as the generating
function of a Lie transform, which allows to remove the
remaining angular variables of the transformed Hamiltonian
K. It is worth noting that the so-called double normalization
algorithm [17–19] is not a different algorithm, but the classical
Deprit algorithm for the particular caseF

𝑛
̸= 0.

On the other hand, an equivalent Hamiltonian, which
only depends on themomenta, can also be obtained bymeans
of two Lie transforms: the first one, to remove the variable
𝜑
1
and then the rest of the angular variables. In both Lie

transforms the arbitrary integration functions are taken equal
to zero.

We would like to point out that in the case that the terms
H
𝑖
are transformed into K

𝑖
= 0 for 𝑖 ∈ {1, . . . , 𝑝 − 1}, the

Homological equation (34), which must be solved, is

LH
0

(W
𝑛
) + (

𝑛

𝑝

)LH
𝑝

(F
𝑛−𝑝
) +K

𝑛
=
̃H

#
0 𝑛
, (49)

where the termW
𝑛
is completed at order 𝑛+𝑝.This formula-

tion can be easily extended to other similar cases. For exam-
ple, if the Hamiltonian has a high-order proper degeneracy,
H
1
(𝐼
𝑖
1

), . . . ,H
𝑝
(𝐼
𝑖
𝑝

) only depend on the momenta; then the
Homological equation (34), which must be solved, is

LH
0

(W
𝑛
) + (

𝑛

𝑝

)LH
𝑝

(F
𝑖
𝑝

𝑛−𝑝
) + ⋅ ⋅ ⋅ + 𝑛LH

1

(F
𝑖
1

𝑛−1
)

+K
𝑛
=
̃H

#
0 𝑛

(50)

and allows removing several angular variables simultane-
ously, linking several transformations.

5. Application to Harmonic Oscillators

In order to provide the reader with a simple illustration of the
machinery of the algorithm used by the Deprit’s method in
the case of F

𝑛
̸= 0, we consider the first-order Hamiltonian

system

H =H
0
+ 𝜀H
1
, (51)

whereH
0
is composed of twoharmonic oscillatorswith equal

frequencies, 𝜔,

H
0
=

1

2

(𝑋

2
+ 𝜔𝑥

2
) +

1

2

(𝑌

2
+ 𝜔𝑦

2
) , (52)

which is coupled by a perturbation H
1
= 𝛿𝑥

2
+ 𝑦𝑥

2
+ 𝑦

3,
where𝛿 represents a small detuning parameter and 𝜀 is a small
parameter. These parameters 𝜔, 𝛿, and 𝜀 are independent of
the system variables (𝑥, 𝑦, 𝑋, 𝑌) which are being used. It is
worth mentioning that this kind of Hamiltonian frequently
appears in the context of galactic dynamics [27, 28].

First, we convert the Hamiltonian (51) into a new one of
type (1); we use Lissajous variables, which were introduced by
Deprit in [21] and are defined by

𝑥 = 𝑠 sin (𝜑
1
+ 𝜑
2
) , 𝑋 = 𝜔𝑠 cos (𝜑

1
+ 𝜑
2
) ,

𝑦 = 𝑑 sin (𝜑
1
− 𝜑
2
) , 𝑌 = 𝜔𝑑 cos (𝜑

1
− 𝜑
2
) ,

(53)

where

𝑠 =
√

𝐼
1
+ 𝐼
2

𝜔

, 𝑑 =
√

𝐼
1
− 𝐼
2

𝜔

.
(54)

In terms of Lissajous variables the unperturbed part H
0

becomes

H
0
= 𝜔𝐼
1
. (55)

The perturbed partH
1
takes the form

H
1
=

𝑠

2
𝛿

2

−

𝑠

2
𝛿

2

cos 2 (𝜑
1
+ 𝜑
2
)

+

𝑑 (3𝑑

2
+ 2𝑠

2
)

4

sin (𝜑
1
− 𝜑
2
)
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−

𝑑

3

4

sin 3 (𝜑
1
− 𝜑
2
) −

𝑑𝑠

2

4

sin (3𝜑
1
+ 𝜑
2
)

+

𝑑𝑠

2

4

sin (𝜑
1
+ 3𝜑
2
) ,

(56)

which is nondegenerate.
In order to transform the HamiltonianH into a new one

independent of the angular variables up to third order, we
consider two cases. First, only a Lie transform withF

𝑛
̸= 0 is

used. In the second case, two Lie transforms will be used to
remove the angular variable 𝜑

1
in first place and then 𝜑

2
, both

using F
𝑛
= 0. To conclude, we compare the composition of

these two Lie transforms with the one calculated in the first
case. For the sake of nomenclature simplicity, the primes from
the new variables and momenta will be dropped in all cases.

5.1. CaseF
𝑛

̸= 0. Using the algorithmdescribed in Section 3,
we carry out a Lie transform so that the transformed Hamil-
tonianK is independent of the angular variables up to third
order.

The method starts by taking

K
0
= 𝜔𝐼
1
. (57)

From (21) and (22) the first-order terms of the transformed
Hamiltonian and generating function are given by

K
1
=

𝛿𝑠

2

2

,

W
1
= −

𝛿𝑠

2

4𝜔

sin 2 (𝜑
1
+ 𝜑
2
) −

(2𝑠

2
+ 3𝑑

2
) 𝑑

4𝜔

cos (𝜑
1
− 𝜑
2
)

+

𝑑

3

12𝜔

cos 3 (𝜑
1
− 𝜑
2
) +

𝑠

2
𝑑

12𝜔

cos (3𝜑
1
+ 𝜑
2
)

−

𝑠

2
𝑑

4𝜔

cos (𝜑
1
+ 3𝜑
2
) +F

1
,

(58)

whereF
1
depends on the variable 𝜑

2
and themomenta 𝐼

1
, 𝐼
2
.

This arbitrary function will be determined at the next order.
It is worth noting that K

1
is degenerate, it only depends on

the momenta 𝐼
1
and 𝐼
2
, althoughH

1
is not.

At second order, taking into account (29), the term K
2

has the following expression:

K
2
= −

15𝑑

4

8𝜔

2
−

11𝑠

2
𝑑

2

6𝜔

2
−

5𝑠

4

24𝜔

2
−

𝑠

2
𝛿

2

2𝜔

2

−

𝑠

2
𝑑

2

4𝜔

2
cos 4𝜑

2
−

𝛿

𝜔

𝜕F
1

𝜕𝜑
2

.

(59)

The procedure for determining the arbitrary functionF
1
, as

outlined by (30), takesK𝐼𝐼
2
as the part of (59) which depends

on 𝜑
2
; then it follows that the identity (30) yields

𝑠

2
𝑑

2

4𝜔

2
cos 4𝜑

2
+

𝛿

𝜔

𝜕F
1

𝜕𝜑
2

= 0. (60)

Then, after some calculations, the integration constant is
given by

F
1
= −

𝑠

2
𝑑

2

16𝛿𝜔

sin 4𝜑
2
.

(61)

By substituting (61) into (58), the first-order term W
1
is

completed andK
2
yields

K
2
= −

15𝑑

4

8𝜔

2
−

11𝑠

2
𝑑

2

6𝜔

2
−

5𝑠

4

24𝜔

2
−

𝑠

2
𝛿

2

2𝜔

2
,

(62)

which only depends on themomenta.The second-order term
of the generating function is given by

W
2
=

5𝑠

2
𝑑

2

48𝜔

3
sin 4𝜑

1
+

(5𝑑

2
+ 6𝛿

2
+ 𝑠

2
) 𝑠

2

12𝛿𝜔

3
sin 2 (𝜑

1
+ 𝜑
2
)

+

𝑠

4

96𝜔

3
sin 4 (𝜑

1
+ 𝜑
2
)

+

(36𝑑

2
+ 17𝑠

2
) 𝑑

2

48𝛿𝜔

3
sin 2 (𝜑

1
− 𝜑
2
)

+

3𝑑

4

32𝜔

3
sin 4 (𝜑

1
− 𝜑
2
)

+

(3𝑠

2
− 6𝑑

2
+ 112𝛿

2
) 𝑠

2
𝑑

96𝛿𝜔

3
cos (𝜑

1
− 𝜑
2
)

+

𝑠

2
𝑑

3

48𝛿𝜔

3
cos 3 (𝜑

1
− 𝜑
2
)

+

(2𝑑

2
+ 28𝛿

2
+ 𝑠

2
) 𝑠

2
𝑑

16𝛿𝜔

3
cos (𝜑

1
+ 3𝜑
2
)

+

𝑠

2
𝑑

3

32𝛿𝜔

3
cos (𝜑

1
− 5𝜑
2
)

−

(9𝑑

2
+ 8𝛿

2
) 𝑠

2
𝑑

288𝛿𝜔

3
cos (3𝜑

1
+ 𝜑
2
)

−

𝑠

4
𝑑

96𝛿𝜔

3
cos (3𝜑

1
+ 5𝜑
2
) +F

2
,

(63)
where, as a first order,F

2
depends on the variable 𝜑

2
and all

the momenta. This arbitrary function will be determined at
the next order.

At third order, taking into account (29), the term K
3
is

determined as

K
3
= −

3𝑑

4
𝑠

2

32𝛿𝜔

4
+

3𝑑

2
𝑠

4

32𝛿𝜔

4
+

49𝛿𝑑

2
𝑠

2

6𝜔

4
+

11𝛿𝑠

4

12𝜔

4
+

3𝛿

3
𝑠

2

2𝜔

4

+

𝑑

2
𝑠

2

2𝜔

4
(

23𝑑

2

2𝛿

+

17𝑠

2

2𝛿

+ 19𝛿) cos 4𝜑
2
−

3𝛿

2𝜔

𝜕F
2

𝜕𝜑
2

.

(64)

By taking K𝐼𝐼
3
as the part that depends on 𝜑

2
in (64), the

identity (30) reads

(23𝑑

2
+ 38𝛿

2
+ 17𝑠

2
) 𝑠

2
𝑑

2

16𝛿𝜔

4
cos 4𝜑

2
−

3𝛿

2𝜔

𝜕F
2

𝜕𝜑
2

= 0.
(65)



Mathematical Problems in Engineering 7

By solving (65), the integration constant is given by

F
2
=

(23𝑑

2
+ 38𝛿

2
+ 17𝑠

2
) 𝑠

2
𝑑

2

96𝛿

2
𝜔

3
sin 4𝜑

2
.

(66)

By substituting (66) into (63), the second-order term W
2
is

completed andK
3
yields

K
3
= −

3𝑑

4
𝑠

2

32𝛿𝜔

4
+

3𝑑

2
𝑠

4

32𝛿𝜔

4
+

49𝛿𝑑

2
𝑠

2

6𝜔

4
+

11𝛿𝑠

4

12𝜔

4
+

3𝛿

3
𝑠

2

2𝜔

4
,

(67)

which, similarly, only depends on the momenta and, hence,
is trivially integrable. The value ofW

3
is

W
3
= −

(33𝑑

2
+ 27𝑠

2
+ 700𝛿

2
) 𝑠

2
𝑑

2

576𝛿𝜔

5
sin 4𝜑

1

+P
1
sin 2 (𝜑

1
+ 𝜑
2
)

−

(21𝑑

2
+ 6𝑠

2
+ 166𝛿

2
) 𝑠

4

576𝛿𝜔

5
sin 4 (𝜑

1
+ 𝜑
2
)

+

𝑠

6

1152𝛿𝜔

5
sin 6 (𝜑

1
+ 𝜑
2
)

+

(156𝑑

2
+ 99𝑠

2
− 716𝛿

2
) 𝑠

2
𝑑

2

288𝛿𝜔

5
sin 2 (𝜑

1
− 𝜑
2
)

−

𝑠

2
𝑑

4

64𝛿𝜔

5
sin 4 (𝜑

1
− 𝜑
2
)

−P
2
cos (𝜑

1
− 𝜑
2
) +P

3
cos 3 (𝜑

1
− 𝜑
2
)

+

27𝑑

5

80𝜔

5
cos 5 (𝜑

1
− 𝜑
2
)

−

41𝑠

4
𝑑

2

192𝛿𝜔

5
sin 2 (𝜑

1
+ 3𝜑
2
) −P

4
cos (𝜑

1
+ 3𝜑
2
)

−

47𝑠

2
𝑑

4

384𝛿𝜔

5
sin 2 (𝜑

1
− 3𝜑
2
)

+

(23𝑑

2
+ 12𝑠

2
− 100𝛿

2
) 𝑠

2
𝑑

3

192𝛿

2
𝜔

5
cos (𝜑

1
− 5𝜑
2
)

−

11𝑠

4
𝑑

3

192𝛿

2
𝜔

5
cos (𝜑

1
+ 7𝜑
2
) +

𝑠

4
𝑑

2

192𝛿𝜔

5
sin 2 (3𝜑

1
+ 𝜑
2
)

+ (621𝑑

4
+ (306𝑠

2
+ 2408𝛿

2
) 𝑑

2

+4𝛿

2
(89𝑠

2
− 48𝛿

2
))

𝑠

2
𝑑

1728𝛿

2
𝜔

5
cos (3𝜑

1
+ 𝜑
2
)

+

(103𝑑

2
+ 34𝑠

2
+ 92𝛿

2
) 𝑠

4
𝑑

576𝛿

2
𝜔

5
cos (3𝜑

1
+ 5𝜑
2
)

−

23𝑠

2
𝑑

5

192𝛿

2
𝜔

5
cos (3𝜑

1
− 7𝜑
2
)

+

97𝑠

2
𝑑

3

240𝜔

5
cos (5𝜑

1
− 𝜑
2
)

+

7𝑠

4
𝑑

80𝜔

5
cos (5𝜑

1
+ 3𝜑
2
) +F

3
,

(68)

with

P
1
=

𝑠

2

1152𝛿𝜔

5
(−18𝑑

4
+ 64 (3𝑠

2
− 35𝛿

2
) 𝑑

2
+ 21𝑠

4

− 2304𝛿

4
− 208𝑠

2
𝛿

2
) ,

P
2
=

𝑑

576𝛿

2
𝜔

5
(102𝑠

6
+ 3120𝛿

2
𝑠

4
+ 4480𝛿

4
𝑠

2

− 12𝑑

4
(23𝑠

2
− 945𝛿

2
)

+ 𝑑

2
(11508𝑠

2
𝛿

2
− 99𝑠

4
)) ,

P
3
=

𝑑

3

576𝛿

2
𝜔

5
(−125𝑠

4
+ 140𝛿

2
𝑠

2
+ 𝑑

2
(720𝛿

2
− 92𝑠

2
)) ,

P
4
=

𝑠

2
𝑑

192𝛿

2
𝜔

5
(253𝑑

4
+ (274𝑠

2
+ 960𝛿

2
) 𝑑

2

+ 4 (17𝑠

4
+ 67𝛿

2
𝑠

2
+ 688𝛿

4
)) .

(69)

Finally, by taking F
3
= 0, the third-order theory is

completed. It is worth noting that the process takes place
within the Poisson algebra.

In this example, the performed Lie transform, taking
into account the F

𝑛
̸= 0 case in Deprit’s method, removes

both angular variables (𝜑
1
, 𝜑
2
) at once. Then, the Hamilton’s

equation associated with the transformed Hamiltonian K
can be written as

�̇�
1
= 𝜔 +

𝛿

2𝜔

𝜀 −

6𝛿

2
+ 27𝑠

2
+ 67𝑑

2

24𝜔

3
𝜀

2

+

−9𝑑

4
+ 144𝛿

4
+ 784𝛿

2
𝑑

2
+ 9𝑠

4
+ 960𝛿

2
𝑠

2

576𝛿𝜔

5
𝜀

3
,

�̇�
2
=

𝛿

2𝜔

𝜀 −

6𝛿

2
− 17𝑠

2
− 23𝑑

2

24𝜔

3
𝜀

2

+

−9𝑑

4
+144𝛿

4
+4𝑑

2
(196𝛿

2
+ 9𝑠

2
)−9𝑠

4
−608𝛿

2
𝑠

2

576𝛿𝜔

5
𝜀

3
,

̇
𝐼
1
= 0,

̇
𝐼
2
= 0,

(70)

which are easily integrated by quadratures.

5.2. CaseF
𝑛
= 0. Using the classical choice ofF

𝑛
in Deprit’s

algorithm, we present here the transformed Hamiltonians
and the generating functions of two Lie transforms. The
first Lie transform develops so as to remove the angular
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variable 𝜑
1
and the second transform does the same with the

other angular variable 𝜑
2
, so that the final Hamiltonian is

independent of all the angular variables up to third order.
The first transformedHamiltonian through third order in

𝜀 is

K

=K


0
+ 𝜀K


1
+

𝜀

2

2

K


2
+

𝜀

3

3!

K


3
,

(71)

where
K


0
= 𝜔𝐼,

K


1
=

𝛿𝑠

2

2

,

K


2
= −

15𝑑

4

8𝜔

2
−

11𝑑

2
𝑠

2

6𝜔

2
−

5𝑠

4

24𝜔

2
−

𝛿

2
𝑠

2

2𝜔

2
−

𝑑

2
𝑠

2

4𝜔

2
cos 4𝜑

2
,

K


3
=

49𝑑

2
𝛿𝑠

2

6𝜔

4
+

11𝛿𝑠

4

12𝜔

4
+

3𝛿

3
𝑠

2

2𝜔

4
+

11𝑑

2
𝛿𝑠

2

4𝜔

4
cos 4𝜑

2
,

(72)

whereas the generating function yields

U = U
1
+ 𝜀U
2
+

𝜀

2

2

U
3
,

(73)

with

U
1
= −

𝛿𝑠

2

4𝜔

sin 2 (𝜑
1
+ 𝜑
2
) −

(3𝑑

3
+ 2𝑑𝑠

2
)

4𝜔

cos (𝜑
1
− 𝜑
2
)

+

𝑑

3

12𝜔

cos 3 (𝜑
1
− 𝜑
2
) +

𝑑𝑠

2

12𝜔

cos (3𝜑
1
+ 𝜑
2
)

−

𝑑𝑠

2

4𝜔

cos (𝜑
1
+ 3𝜑
2
) ,

U
2
=

5𝑑

2
𝑠

2

48𝜔

3
sin 4𝜑

1
+

𝑠

2
(5𝑑

2
+ 6𝛿

2
+ 𝑠

2
)

12𝜔

3
sin 2 (𝜑

1
+ 𝜑
2
)

+

𝑠

4

96𝜔

3
sin 4 (𝜑

1
+ 𝜑
2
)

+

(9𝑑

4
+ 5𝑑

2
𝑠

2
)

12𝜔

3
sin 2 (𝜑

1
− 𝜑
2
)

+

3𝑑

4

32𝜔

3
sin 4 (𝜑

1
− 𝜑
2
) +

7𝛿𝑑𝑠

2

6𝜔

3
cos (𝜑

1
− 𝜑
2
)

−

𝛿𝑑𝑠

2

36𝜔

3
cos (3𝜑

1
+ 𝜑
2
) +

7𝛿𝑑𝑠

2

4𝜔

3
cos (𝜑

1
+ 3𝜑
2
) ,

U
3
= −

359𝛿𝑑

2
𝑠

2

288𝜔

5
sin 4𝜑

1

−

(140𝑑

2
+ 144𝛿

2
+ 13𝑠

2
) 𝛿𝑠

2

72𝜔

5
sin 2 (𝜑

1
+ 𝜑
2
)

−

83𝛿𝑠

4

288𝜔

5
sin 4 (𝜑

1
+ 𝜑
2
) −

245𝛿𝑑

2
𝑠

2

72𝜔

5
sin 2 (𝜑

1
− 𝜑
2
)

−

(2835𝑑

4
+ 3018𝑑

2
𝑠

2
+ 669𝑠

4
+ 1120𝛿

2
𝑠

2
) 𝑑

144𝜔

5

⋅ cos (𝜑
1
− 𝜑
2
)

+

45𝑑

5
+ 23𝑑

3
𝑠

2

36𝜔

5
cos 3 (𝜑

1
− 𝜑
2
)

+

27𝑑

5

80𝜔

5
cos 5 (𝜑

1
− 𝜑
2
)

−

(173𝑑

2
+ 688𝛿

2
+ 22𝑠

2
) 𝑑𝑠

2

48𝜔

5
cos (𝜑

1
+ 3𝜑
2
)

−

11𝑑

3
𝑠

2

48𝜔

5
cos (𝜑

1
− 5𝜑
2
)

+

(101𝑑

2
− 12𝛿

2
+ 29𝑠

2
) 𝑑𝑠

2

108𝜔

5
cos (3𝜑

1
+ 𝜑
2
)

+

𝑑𝑠

4

18𝜔

5
cos (3𝜑

1
+ 5𝜑
2
)

+

17𝑑

3
𝑠

2

40𝜔

5
cos (5𝜑

1
− 𝜑
2
) +

7𝑑𝑠

4

80𝜔

5
cos (5𝜑

1
+ 3𝜑
2
) .

(74)

Then, the variable 𝜑
2
is removed using a second Lie

transform.The transformedHamiltonian through third order
in 𝜀 is

K

=K


0
+ 𝜀K


1
+

𝜀

2

2

K


2
+

𝜀

3

3!

K


3
,

(75)

where

K


0
= 𝜔𝐼,

K


1
=

𝛿𝑠

2

2

,

K


2
= −

15𝑑

4

8𝜔

2
−

11𝑑

2
𝑠

2

6𝜔

2
−

5𝑠

4

24𝜔

2
−

𝛿

2
𝑠

2

2𝜔

2
,

K


3
= −

3𝑑

4
𝑠

2

32𝛿𝜔

4
+

3𝑑

2
𝑠

4

32𝛿𝜔

4
+

49𝛿𝑑

2
𝑠

2

6𝜔

4
+

11𝛿𝑠

4

12𝜔

4
+

3𝛿

3
𝑠

2

2𝜔

4
,

(76)

whereas the generating function is given by

V =V
1
+ 𝜀V
2
+

𝜀

2

2

V
3
,

(77)

with

V
1
= −

𝑑

2
𝑠

2

16𝛿𝜔

sin 4𝜑
2
,

V
2
=

(23𝑑

2
+ 38𝛿

2
+ 17𝑠

2
) 𝑑

2
𝑠

2

96𝛿

2
𝜔

3
sin 4𝜑

2
,

V
3
= 0.

(78)

Note that, up to third order, the Hamiltonian K, obtained
by Deprit’s method considering F

𝑛
̸= 0, is identical to the

Hamiltonian K, which has been obtained after applying
two Lie transforms, generated, respectively, byU andV, and
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taking the arbitrary integration constant equal to zero. On the
other hand, in order to relate the generating functionsW,U,
andV, we consider the composition of the two previous Lie
transforms taking into account the following identity:

T = U +L
−1

U (V) . (79)

Then, we consider the difference between W and T up to
third order. It is easy to check thatW

1
−T
1
=W
2
−T
2
= 0,

whereas at third order we obtain that

W
3
−T
3
=

(−19𝑑

2
− 9𝛿

2
+ 𝑠

2
) 𝑑

2
𝑠

2

288𝛿𝜔

5
sin 4𝜑

2
,

(80)

which is a function that belongs to ker(LH
0

).

6. Conclusion

Deprit’smethod has been revisited so as to clarify and identify
the role played by the intrinsic arbitrariness which appears
in all perturbation techniques. This arbitrariness arises as an
arbitrary integration function, when the generating function
of the Lie transform is calculated from theHomological equa-
tion in Deprit’s method. This function belongs to the kernel
of the Lie transform. In the case of a degenerate Hamiltonian
in Arnold’s sense, this function allows removing the implicit
terms belonging to the kernel of the Lie transform embedded
in the generating function or can be used as the generator of
a new transformation through which other angular variables
can be removed. Moreover, other algorithms derived from
Deprit’s method, like the so-called double normalization, are
put in the correct context and their relation with classical
Deprit’s method clarified. Finally, exactly the same reasoning
can be applied to other techniques like Hori’s method.
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[27] M. Hénon and C. Heiles, “The applicability of the third integral
of motion: some numerical experiments,” The Astronomical
Journal, vol. 69, pp. 73–79, 1964.

[28] V. Lanchares, A. I. Pascual, J. Palacián, P. Yanguas, and J. P. Salas,
“Perturbed ion traps: a generalization of the three-dimensional
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