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Abstract. Let w(x) = (1−x)α(1+x)β be a Jacobi weight on the interval
[−1, 1] and 1 < p < ∞. If either α > −1/2 or β > −1/2 and p is an
endpoint of the interval of mean convergence of the associated Fourier-
Jacobi series, we show that the partial sum operators Sn are uniformly
bounded from Lp,1 to Lp,∞, thus extending a previous result for the
case that both α, β > −1/2. For α, β > −1/2, we study the weak and
restricted weak (p, p)-type of the weighted operators f −→ uSn(u−1f),
where u is also a Jacobi weight.

§1. Introduction and main results.

Let w be a Jacobi weight on the interval [−1, 1], that is,

w(x) = (1− x)α(1 + x)β , α, β > −1

and let 1 < p < ∞; Snf stands for the n-th partial sum of the Fourier series associated to
the Jacobi polynomials, orthonormal on [−1, 1] with respect to w. It is well known that Snf
converges to f for every f ∈ Lp(w) if and only if the partial sum operators Sn are uniformly
bounded in Lp(w), i.e., there exists a constant C > 0 such that

‖Snf‖Lp(w) ≤ C‖f‖Lp(w) ∀n ≥ 0, ∀f ∈ Lp(w) (1)

(throughout this paper, we will denote by C a constant independent of f , n, etc., but not
necessarily the same at each occurrence). Furthermore, there exists an open interval (p0, p1)
such that this boundedness holds if and only if p belongs to (p0, p1) (see [6]). The assumption
that either α > −1/2 or β > −1/2 is equivalent to 1 < p0 < p1 < ∞. More precisely, in
this case (1) holds if and only if

4(α + 1)
2α + 3

< p <
4(α + 1)
2α + 1

when α ≥ β (and the analogous inequality with α replaced by β if β ≥ α).
In this paper we examine the behaviour of Sn at the endpoints of the interval of mean

convergence. In order to do this we need some classical definitions and notations. Given
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a measure µ and 1 ≤ p < ∞, the space Lp
∗(µ) = Lp,∞(µ) is defined to be the space of

measurable functions such that

‖f‖Lp
∗(µ) = sup

y>0
y [µ({x : |f(x)| > y})]1/p

< ∞.

An operator T is of weak (p, p)-type if T : Lp(µ) −→ Lp
∗(µ) is bounded. Now, let f∗ be the

nonincreasing rearrangement of f , given by f∗(t) = inf{s : λ(s) ≤ t}, where λ denotes the
distribution function of f . Then, the Lorentz space Lp,r(µ) is the class of all measurable
functions f satisfying

‖f‖∗p,r =
(

r

p

∫ ∞

0

[
t1/pf∗(t)

]r dt

t

)1/r

< ∞,

where 1 ≤ p < ∞, 1 ≤ r < ∞. An operator T is of restricted weak (p, p)-type if T :
Lp,1(µ) −→ Lp,∞(µ) is bounded, which is equivalent to ‖TχE‖Lp

∗(µ) ≤ C‖χE‖Lp(µ) for all
characteristic functions χE , with C > 0 independent of E. We refer the reader to [11] for
further information on these topics.

If both α, β > −1/2, the authors proved (see [2]) that the n-th partial sum operators are
uniformly of restricted weak (p, p)-type but not of of weak (p, p)-type when p is an endpoint
of the interval of mean convergence. In theorems 2 and 3 we extend this result to weighted
case f −→ uSn(u−1f), where u is also a Jacobi weight, that is,

u(x) = (1− x)a(1 + x)b, a, b ∈ R.

Now, the weighted uniform boundedness

‖uSnf‖Lp(w) ≤ C‖uf‖Lp(w) ∀f ∈ Lp(upw), ∀n ≥ 0

holds (see [6]) if and only if

|a + (α + 1)(
1
p
− 1

2
)| < min{1

4
,
α + 1

2
},

|b + (β + 1)(
1
p
− 1

2
)| < min{1

4
,
β + 1

2
}.

(2)

Via Pollard’s formula, these operators can be related to the Hilbert transform. Then,
the theory of Ap weights is used, as well as some classical dyadic-type decomposition of the
interval [−1, 1].

In the general case α > −1/2, α ≥ β (the case β ≥ α follows by symmetry), we prove
in theorem 1 that the n-th partial sum operators are uniformly of restricted weak (p, p)-type
when p is an endpoint of the interval of mean convergence, thus extending the above cited
result (the question of the weak boundedness had already been answered in the negative
in [2]). Now, however, uniform bounds are not available for Jacobi polynomials; therefore,
a uniform weighted norm inequality is needed for operators of the form f −→ unH(vnf),
where H is the Hilbert transform and (un), (vn) are two sequences of weights involving
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Jacobi polynomials or their bounds. This is achieved by studying the Ap constants of the
pairs of weights (un, vn), as well as some Lp,∞ norms.

Concerning mixed weak norm inequalities for the Hilbert transform, we can state the
following property, which can be proved in the same way as theorem 3 of [7] (throughout this
paper, the Hilbert transform, as well as Ap classes of weights, are taken on [−1, 1]): assume
that u1(x), u2(x), v(x) ≥ 0, 1 < p < ∞ and there is a constant C > 0 such that

‖u2Hg‖Lp
∗(u1) ≤ C‖g‖Lp(v) ∀g ∈ Lp(v);

then, there exists another constant B > 0 which depends only on C, such that for every
interval I

‖u2χI‖Lp
∗(u1)

(∫ 1

−1

v(x)−1/(p−1)

(|I|+ |x− xI |)q
dx

)1/q

≤ B, (3)

xI being the centre of I.
Let us state the main results of this paper. By symmetry, there is no loss of generality in

assuming α ≥ β. Regarding the restricted weak type, by standard arguments it is enough to
consider just one of the endpoints of the interval of mean convergence, as we remark below.

Theorem 1. Let α > −1/2, β > −1, α ≥ β. If p = 4(α+1)
2α+1 , there exists a constant C > 0

such that for every measurable set E and for every n ≥ 0

‖SnχE‖Lp
∗(w) ≤ C‖χE‖Lp(w).

Theorem 2. Let α, β ≥ −1/2, u(x) = (1− x)a(1 + x)b, 1 < p < ∞. If the inequalities

−1
4
≤ a + (α + 1)(

1
p
− 1

2
) <

1
4
, −1

4
≤ b + (β + 1)(

1
p
− 1

2
) <

1
4

hold, then there exists a constant C > 0 such that

‖uSn(u−1χE)‖Lp
∗(w) ≤ C‖χE‖Lp(w)

for every n ≥ 0 and every measurable set E ⊆ [−1, 1].

Remark. For 1 < p < ∞ and 1/p + 1/q = 1, it is easy to see that

‖uSn(u−1χE)‖Lp
∗(w) ≤ C‖χE‖Lp(w) ∀n ≥ 0, ∀E ⊆ [−1, 1]

if and only if

‖u−1Sn(uχE)‖Lq
∗(w) ≤ C‖χE‖Lq(w) ∀n ≥ 0, ∀E ⊆ [−1, 1].

This allows us to derive, from theorem 2, the same result for the case

−1
4

< a + (α + 1)(
1
p
− 1

2
) ≤ 1

4
, −1

4
< b + (β + 1)(

1
p
− 1

2
) ≤ 1

4
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as well as the analog of theorem 1 for p = 4(α+1)
2α+3 .

Theorem 3. Let α, β ≥ −1/2, u(x) = (1 − x)a(1 + x)b, 1 < p < ∞. If there exists a
constant C > 0 such that for every f ∈ Lp(upw) and for every n ≥ 0

‖uSnf‖Lp
∗(w) ≤ C‖uf‖Lp(w),

then the inequalities

|a + (α + 1)(
1
p
− 1

2
)| < 1

4
, |b + (β + 1)(

1
p
− 1

2
)| < 1

4

are verified.

§2. Preliminary lemmas.

A basic tool in the study of Fourier series on the interval [−1, 1] is Pollard’s decomposition of
the kernels Kn(x, t) (see [9], [6]): if {Pn}n≥0 is the sequence of polynomials orthonormal with
respect to w(x)dx and {Qn}n≥0 is the sequence of polynomials associated to (1− x2)w(x)dx,
then

Kn(x, t) = rnT1,n(x, t) + snT2,n(x, t) + snT3,n(x, t),

where
T1,n(x, t) = Pn+1(x)Pn+1(t),

T2,n(x, t) = (1− t2)
Pn+1(x)Qn(t)

x− t
,

T3,n(x, t) = (1− x2)
Pn+1(t)Qn(x)

t− x

and {rn}, {sn} are bounded sequences. In fact, for any measure µ on [−1, 1] with µ′ > 0
a.e. (in particular, for w(x)dx),

lim
n→∞

rn = −1/2, lim
n→∞

sn = 1/2

(this can be deduced from [9] and [10] or [4]). Therefore, we can write

Snf = rnW1,nf + snW2,nf − snW3,nf,

where

W1,nf(x) = Pn+1(x)
∫ 1

−1

Pn+1(t)f(t)w(t)dt,

W2,nf(x) = Pn+1(x)H((1− t2)Qn(t)f(t)w(t), x)

and
W3,nf(x) = (1− x2)Qn(x)H(Pn+1(t)f(t)w(t), x),
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H being the Hilbert transform on the interval [−1, 1]. Thus, the study of Sn can be reduced
to that of Wi,n (i = 1, 2, 3). Due to the definition of W2,n and W3,n, we will need to show
the uniform boundedness of the Hilbert transform with pairs of weights (un, vn).

The boundedness of the Hilbert transform can be stated in terms of Muckenhoupt’s
classes of weights Ap (see [3] and [8]; throughout this paper, these will be Ap classes on the
interval [−1, 1]): if u, v are two weights, 1 < p < ∞ and (uδ, vδ) ∈ Ap for some δ > 1, then
H is a bounded operator from Lp(v) into Lp(u), with a constant which depends only on the
Ap constant of (uδ, vδ).

Therefore, we will say that a sequence {(un, vn)}n belongs uniformly to an Ap class if
(un, vn) ∈ Ap ∀n with a constant that does not depend on n.

The polynomials Pn satisfy the estimate

|Pn(x)| ≤ C(1− x + n−2)−(2α+1)/4(1 + x + n−2)−(2β+1)/4 ∀n,∀x ∈ [−1, 1] (4)

with a constant C > 0 independent of x and n. An analogous estimate is verified by Qn,
with α + 1 and β + 1 instead of α and β. In this case, as 2α + 3 > 0 and 2β + 3 > 0, we can
remove the n’s and get

|Qn(x)| ≤ C(1− x)−(2α+3)/4(1 + x)−(2β+3)/4 ∀n,∀x ∈ [−1, 1]. (5)

In this context, the following result will be useful.

Lemma 4. Let {xn} be a sequence of positive numbers with lim
n→∞

xn = 0. Let 1 < p < ∞,

r, s, R, S ∈ R. Then,

(|x|r(|x|+ xn)s, |x|R(|x|+ xn)S) ∈ Ap([−1, 1]) uniformly

if and only if

−1 < r; R < p− 1; R ≤ r;
−1 < r + s; R + S < p− 1; R + S ≤ r + s.

Proof. According to its definition,

(|x|r(|x|+ xn)s, |x|R(|x|+ xn)S) ∈ Ap([−1, 1]) uniformly

if and only if there exists a constant C > 0 such that∫ b

a

|x|r(|x|+ xn)sdx (
∫ b

a

[|x|R(|x|+ xn)S ]−1/(p−1)dx)p−1 ≤ C(b− a)p (6)

for all −1 ≤ a < b ≤ 1, ∀n ≥ 1. Integrability conditions imply the above inequalities. In
turn, if those inequalities hold we can easily deduce (6) from the estimate∫ b

a

xγ(x + c)µdx ≤
{

Kbγ+µ(b− a) if c ≤ b
Kbγcµ(b− a) if b ≤ c

,
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valid for 0 ≤ a < b ≤ 1, 0 ≤ c ≤ 1, γ > −1, γ + µ > −1, with a constant K which depends
only on γ, µ.

The same property holds if we replace x by x − a, with a ∈ [−1, 1]. Even more, it is
not difficult to show that in order to see whether a finite product of this type of expressions
is uniformly in Ap, we only need to check the above inequalities for each factor of the form

(|x− a|r(|x− a|+ xn)s, |x− a|R(|x− a|+ xn)S)

separately.

We will eventually need to show that some of the operators are not of strong or weak
type. In this sense, the following lemma (see [5]) will be used:

Lemma 5. Let supp dα = [−1, 1], α′ > 0 a.e. in [−1, 1], and 0 < p ≤ ∞. There exists a
constant C > 0 such that if g is a Lebesgue-measurable function on [−1, 1], then

‖α′(x)−1/2(1− x2)−1/4‖Lp(|g|pdx) ≤ C lim inf
n→∞

‖Pn‖Lp(|g|pdx).

There is a weak version of this property: it is a consequence of Kolmogorov’s condition
(see [1], lemma V.2.8, p. 485) and the previous lemma.

Lemma 6. Let supp dα = [−1, 1], α′ > 0 a.e. in [−1, 1], and 0 < p < ∞. There exists a
constant C > 0 such that if g, h are Lebesgue-measurable functions on [−1, 1], then

‖α′(x)−1/2(1− x2)−1/4g(x)‖Lp
∗(|h|pdx) ≤ C lim inf

n→∞
‖Png‖Lp

∗(|h|pdx).

The following lemma will be useful to estimate some weighted Lp
∗ norms:

Lemma 7. Let 1 ≤ p < ∞, r, s ∈ R, a > 0. Then,

χ(0,a)(x)xr ∈ Lp
∗(x

sdx) ⇐⇒ pr + s + 1 ≥ 0, (r, s) 6= (0,−1).

Moreover, in this case there is a constant K depending on r, s, p such that

‖χ(0,a)(x)xr‖Lp
∗(x

sdx) = Kar+(s+1)/p.

Proof. Since

‖χ(0,a)(x)xr‖p
Lp
∗(x

sdx)
= sup

y>0
yp

∫
A

xsdx

with A = {x; 0 < x < a, xr > y}, the proof is reduced to a simple calculation of that
integral, depending on the sign of pr + s + 1 and r.

Finally, this lemma will be used in the study of the operator W2,n:
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Lemma 8. Let α > −1, 1 < p < ∞, 1/p + 1/q = 1, 0 < r < 1, n ∈ N. If
(α + 1)(1/p− 1/2) < 1/4, then there exists a constant C, independent of r and n, such
that

‖(1− t)(1− t+n−2)−(2α+3)/4χ(r,1)(t)‖Lq
∗((1−t)α) ≤ C(1− r)1−(α+1)/p(1− r +n−2)(2α+1)/4.

Proof. a) Case α ≥ −1/2. Since −(2α + 3)/4 < 0,

‖(1− t)(1− t + n−2)−(2α+3)/4χ(r,1)(t)‖Lq
∗((1−t)α) ≤

≤ ‖(1− t)(1−2α)/4χ(r,1)(t)‖Lq
∗((1−t)α).

By lemma 7 and taking into account that (2α + 1)/4 ≥ 0, we have

‖(1− t)(1−2α)/4χ(r,1)(t)‖Lq
∗((1−t)α) ≤ C(1− r)(1−2α)/4+(α+1)/q ≤

≤ C(1− r)1−(α+1)/p(1− r + n−2)(2α+1)/4.

b) Case 1 − r ≤ n−2. Then, by lemma 7 and the inequality 1 − r + n−2 ≤ 2n−2, we
obtain

‖(1− t)(1− t + n−2)−(2α+3)/4χ(r,1)(t)‖Lq
∗((1−t)α) ≤

≤ (n−2)−(2α+3)/4‖(1− t)χ(r,1)(t)‖Lq
∗((1−t)α) ≤

≤ C(n−2)−(2α+3)/4(1− r)1+(α+1)/q ≤

≤ C(1− r + n−2)−(2α+3)/4(1− r)1−(α+1)/p(1− r)α+1 ≤

≤ C(1− r)1−(α+1)/p(1− r + n−2)(2α+1)/4.

c) Case α < −1/2 and n−2 ≤ 1 − r. Then 1 − 2α ≥ 0 and 1 − r + n−2 ≤ 2(1 − r).
Thus,

‖(1− t)(1− t + n−2)−(2α+3)/4χ(r,1)(t)‖Lq
∗((1−t)α) ≤

≤ ‖(1− t + n−2)(1−2α)/4χ(r,1)(t)‖Lq
∗((1−t)α) ≤

≤ (1− r + n−2)(1−2α)/4‖χ(r,1)(t)‖Lq
∗((1−t)α) ≤

≤ C(1− r + n−2)(1−2α)/4(1− r)(α+1)/q =

= C(1− r)1−(α+1)/p(1− r + n−2)(2α+1)/4(1− r + n−2)−α(1− r)α ≤

≤ C(1− r)1−(α+1)/p(1− r + n−2)(2α+1)/4.

§3. Proof of theorems 1 and 2.

The proof of theorem 1 consists of lemmas 9, 10 and 11 below. In order to prove theorem 2,
analogous weighted lemmas can be shown using that, in the case α, β ≥ −1/2, not only the
polynomials Qn but also the Pn satisfy an uniform estimate similar to (5).
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Lemma 9. Under the hypothesis of theorem 1, there exists a constant C such that

‖W1,nf‖Lp
∗(w) ≤ C‖f‖Lp(w) ∀f ∈ Lp(w), ∀n ∈ N.

Lemma 10. Under the hypothesis of theorem 1, there exists a constant C such that

‖W3,nf‖Lp(w) ≤ C‖f‖Lp(w) ∀f ∈ Lp(w), ∀n ∈ N.

Lemma 11. Under the hypothesis of theorem 1, there exists a constant C such that for
every measurable set E ⊆ [−1, 1] and for every n ≥ 0

‖W2,nχE‖Lp
∗(w) ≤ C‖χE‖Lp(w) (7)

Proof of lemma 9. From its definition, we have

‖W1,nf‖Lp
∗(w) ≤ ‖Pn+1‖Lp

∗(w)‖Pn+1‖Lq(w)‖f‖Lp(w),

where 1/p + 1/q = 1. So, we only need to prove

‖Pn‖Lp
∗(w) ≤ C ∀n ∈ N

and
‖Pn‖Lq(w) ≤ C ∀n ∈ N,

which follows from lemma 7, (4) and the dominate convergence theorem.

Proof of lemma 10. It is clear that

‖W3,nf‖Lp(w) ≤ C‖f‖Lp(w)

for every f ∈ Lp(w) if and only if

‖Hg‖Lp((1−x2)p|Qn|pw) ≤ C‖g‖Lp(|Pn+1|−pw1−p)

for every g ∈ Lp(|Pn+1|−pw1−p). Using again (4) and its analogous for Qn, it is enough to
obtain

‖Hg‖Lp(un) ≤ C‖g‖Lp(vn) ∀n, ∀g ∈ Lp(vn),

with

un(x) = (1− x)p+α(1− x + n−2)−p(2α+3)/4(1 + x)p+β(1 + x + n−2)−p(2β+3)/4

and

vn(x) = (1− x)α(1−p)(1− x + n−2)p(2α+1)/4(1 + x)β(1−p)(1 + x + n−2)p(2β+1)/4.

8



Now, we only need to prove that

((1− x)(p+α)δ(1− x + n−2)−p(2α+3)δ/4, (1− x)α(1−p)δ(1− x + n−2)p(2α+1)δ/4) ∈ Ap

and

((1 + x)(p+β)δ(1 + x + n−2)−p(2β+3)δ/4, (1 + x)β(1−p)δ(1 + x + n−2)p(2β+1)δ/4) ∈ Ap

uniformly in n, for some δ > 1. This can be deduced from lemma 4.

Proof of lemma 11. From p = 4(α+1)
2α+1 and α ≥ β, it follows

−1
4
≤ (α + 1)(

1
p
− 1

2
) <

1
4

(8)

and

−1
4
≤ (β + 1)(

1
p
− 1

2
) <

1
4
. (9)

We will prove that (8) and (9) imply (7). By the symmetry of these inequalities, we can
consider only the case E ⊆ [0, 1].

a) We will show first that there exists a constant C > 0 such that

‖χ[−3/4,3/4]W2,n(χE)‖Lp
∗(w) ≤ C‖χE‖Lp(w)

for all n ∈ N and every measurable set E ⊆ [0, 1].
Since 1 − x and 1 + x are bounded away from 0 and ∞ on [−3/4, 3/4], from (4) and

the definition of W2,n we get

‖χ[−3/4,3/4]W2,n(χE)‖Lp
∗(w) ≤ C‖χ[−3/4,3/4]H((1− t2)χEQnw)‖Lp((1−x)r(1+x)s)

for any previously fixed r, s. If we find r, s such that

H : Lp((1− x)α−p(2α+1)/4(1 + x)β−p(2β+1)/4) −→ Lp((1− x)r(1 + x)s) (10)

is bounded, then from (5) it would follow

‖χ[−3/4,3/4]H((1− t2)χEQnw)‖Lp((1−x)r(1+x)s) ≤ ‖H((1− t2)χEQnw)‖Lp((1−x)r(1+x)s) ≤

≤ C‖(1− x2)χEQnw‖Lp((1−x)α−p(2α+1)/4(1+x)β−p(2β+1)/4) ≤ C‖χE‖Lp(w),

as we want to show. In order to get (10), it is enough to have

((1− x)rδ(1 + x)sδ, (1− x)δ[α−p(2α+1)/4](1 + x)δ[β−p(2β+1)/4]) ∈ Ap

for some δ > 1. This is equivalent, by lemma 4, to the following conditions:

−1 < r; −1 < s;
α− p(2α + 1)/4 < p− 1; β − p(2β + 1)/4 < p− 1;
α− p(2α + 1)/4 ≤ r; β − p(2β + 1)/4 ≤ s.
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It is easy to see that the second row inequalities hold, while for the others we only need to
take r and s large enough.

b) Now, we are going to prove that there exists a constant C > 0 such that

‖χ[−1,−3/4]W2,n(χE)‖Lp
∗(w) ≤ C‖χE‖Lp(w)

for all n ∈ N and every measurable set E ⊆ [0, 1].
As E ⊆ [0, 1], we can drop the denominator x− t in W2,n(χE) and, using the inequality

(5), we get
|χ[−1,−3/4](x)W2,n(χE , x)| ≤

≤ Cχ[−1,−3/4](x)|Pn+1(x)|
∫ 1

−1

(1− t)1−(2α+3)/4χE(t)w(t)dt ≤

≤ Cχ[−1,−3/4](x)|Pn+1(x)| ‖(1− t)(1−2α)/4‖Lq(w)‖χE‖Lp(w) ≤

≤ C‖χE‖Lp(w)χ[−1,−3/4](x)|Pn+1(x)|.

Therefore
‖χ[−1,−3/4]W2,n(χE)‖Lp

∗(w) ≤

≤ C‖χE‖Lp(w) ‖χ[−1,−3/4](1 + x + n−2)−(2β+1)/4‖Lp
∗(w) ≤ C‖χE‖Lp(w),

by the dominate convergence and lemma 7.
c) We must show now that there exists a constant C > 0 such that

‖χ[3/4,1]W2,n(χE)‖Lp
∗(w) ≤ C‖χE‖Lp(w)

for all n ∈ N and every measurable set E ⊆ [0, 1]. Let us define, for k = 2, 3, . . . the sets

Ik = [1− 2−k, 1− 2−k−1),

Jk1 = [0, 1− 2−k+1), Jk2 = [1− 2−k+1, 1− 2−k−2), Jk3 = [1− 2−k−2, 1].

For each k ≥ 2, Jki (i = 1, 2, 3) are non-overlapping sets such that [0, 1] = Jk1 ∪ Jk2 ∪ Jk3.

The sets Ik are also disjoint and
⋃
k≥2

Ik = [3/4, 1). The following properties are easy to

check:
∀k ≥ 2, ∀x ∈ Ik, 2−k−1 ≤ 1− x ≤ 2−k; (11)

∀k ≥ 2, ∀t ∈ Jk2, 2−k−2 ≤ 1− t ≤ 2−k+1; (12)

∀k ≥ 2, ∀x ∈ Ik, ∀t ∈ Jk1, 2−k+1 ≤ 1− t ≤ 2(x− t) ≤ 2(1− t); (13)

∀k ≥ 2, ∀x ∈ Ik, ∀t ∈ Jk3, 1− t ≤ 2−k−2 ≤ t− x ≤ 2−k. (14)

We can write

χ[3/4,1]W2,n(χE) =
∑
k≥2

χIk
W2,n(χEχJk1) +

∑
k≥2

χIk
W2,n(χEχJk2) +

∑
k≥2

χIk
W2,n(χEχJk3).

10



We prove that each term is bounded.
c1) If x ∈ Ik, from (13) and Hölder’s inequality for Lorentz spaces it follows

|H((1− t2)χEχJk1Qnw, x)| ≤ C

∫ 1

−1

χEχJk1 |Qn|w ≤

≤ C‖χE‖Lp(w)‖χJk1Qn‖Lq
∗(w)

.

From the estimates (4) for Qn, property (8), lemma 7 and using that 1 ≤ 1 + t ≤ 2 for
t ∈ Jk1, we obtain

‖χJk1Qn‖Lq
∗(w)

≤ C‖χJk1(1− t + n−2)(α+1)/q−(2α+3)/4(1− t + n−2)−(α+1)/q‖Lq
∗(w)

≤

≤ C(1− x + n−2)(α+1)/q−(2α+3)/4‖χJk1(1− t + n−2)−(α+1)/q‖Lq
∗(w)

≤

≤ C(1− x + n−2)(α+1)/q−(2α+3)/4.

Therefore, if x ∈ Ik then

|H((1− t2)χEχJk1Qnw, x)| ≤ C‖χE‖Lp(w)(1− x + n−2)(α+1)/q−(2α+3)/4,

where the constant C does not depend on k. Since the Ik are disjoint, this implies

|
∑
k≥2

χIk
(x)W2,n(χEχJk1 , x)| ≤

≤ C(1− x + n−2)−(2α+1)/4‖χE‖Lp(w)(1− x + n−2)(α+1)/q−(2α+3)/4 =

= C(1− x + n−2)−(α+1)/p‖χE‖Lp(w) ≤ C(1− x)−(α+1)/p‖χE‖Lp(w).

Then, by lemma 7,

‖
∑
k≥2

χIk
W2,n(χEχJk1)‖Lp

∗(w) ≤ C‖χE‖Lp(w).

c2) Let k ≥ 2. By (4) and (11),

‖χIk
W2,n(χEχJk2)‖Lp

∗(w) = C‖χIk
Pn+1H((1− t2)χEχJk2Qnw)‖Lp

∗(w) ≤

≤ C(2−k + n−2)−(2α+1)/4(2−k)α/p‖χIk
H((1− t2)χEχJk2Qnw)‖Lp

∗(dx) ≤

≤ C(2−k + n−2)−(2α+1)/4(2−k)α/p‖H((1− t2)χEχJk2Qnw)‖Lp(dx).

Since the Hilbert transform is bounded in Lp(dx), this expression can be bounded, using (4)
and (12), by

C(2−k + n−2)−(2α+1)/4(2−k)α/p‖(1− x2)χEχJk2Qnw‖Lp(dx) ≤
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≤ C(2−k + n−2)−(2α+1)/4(2−k)α+1(2−k + n−2)−(2α+3)/4‖(1− x)α/pχEχJk2‖Lp(dx) ≤

≤ C‖χEχJk2‖Lp(w).

Now, as the functions χIk
W2,n(χEχJk2) have non-overlapping support and

∑
k≥2 χJk2 ≤ 3,

we get

‖
∑
k≥2

χIk
W2,n(χEχJk2)‖

p
Lp
∗(w)

≤
∑
k≥2

‖χIk
W2,n(χEχJk2)‖

p
Lp
∗(w)

≤

≤ C
∑
k≥2

‖χEχJk2‖
p
Lp(w) ≤ C‖χE‖p

Lp(w).

That is,

‖
∑
k≥2

χIk
W2,n(χEχJk2)‖Lp

∗(w) ≤ C‖χE‖Lp(w).

c3) Let k ≥ 2 and x ∈ Ik. By (14), Hölder’s inequality for Lorentz spaces and (4), it
follows

|H((1− t2)χEχJk3Qnw, x)| ≤

≤ C2k

∫ 1

−1

(1− t2)χE(t)χJk3(t)Qn(t)w(t)dt ≤

≤ C2k‖(1− t)χEχJk3Qn‖L1(w) ≤

≤ C2k‖χE‖Lp(w)‖(1− t)(1− t + n−2)−(2α+3)/4χJk3‖Lq
∗((1−t)α).

By lemma 8 and (8),

‖(1− t)(1− t + n−2)−(2α+3)/4χJk3‖Lq
∗((1−t)α) ≤ C(2−k)1−(α+1)/p(2−k + n−2)(2α+1)/4,

what, together with (11), implies

|H((1− t2)χEχJk3Qnw, x)| ≤ C(1− x)−(α+1)/p(1− x + n−2)(2α+1)/4‖χE‖Lp(w)

if x ∈ Ik, with a constant C which does not depend on x, E, k, n. Since the Ik are
non-overlapping, we have

|
∑
k≥2

χIk
(x)W2,n(χEχJk3 , x)| ≤ Cχ[3/4,1)(1− x)−(α+1)/p‖χE‖Lp(w)

and, by lemma 7,

‖
∑
k≥2

χIk
W2,n(χEχJk3)‖Lp

∗(w) ≤ C‖χE‖Lp(w).

This concludes the proof of the lemma.

§4. Proof of theorem 3.
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The weak boundedness
‖uSnf‖Lp

∗(w) ≤ C‖uf‖Lp(w)

implies the following conditions (see [2], theorem 1, with the appropriate changes):

u ∈ Lp
∗(w)

u−1 ∈ Lq(w)

u(x)w(x)−1/2(1− x2)−1/4 ∈ Lp
∗(w)

u(x)−1w(x)−1/2(1− x2)−1/4 ∈ Lq(w).

With the weight u(x) = (1− x)a(1 + x)b and having in mind that α, β ≥ −1/2, this means

−1
4
≤ a + (α + 1)(

1
p
− 1

2
) <

1
4
,

−1
4
≤ b + (β + 1)(

1
p
− 1

2
) <

1
4
.

Therefore, we only need to show that the equality cannot occur in the left hand side of these
equations. Assume, for example,

−1
4

= a + (α + 1)(
1
p
− 1

2
). (15)

Let us consider again Pollard’s decomposition of the partial sums Snf . As we mentioned at
the beginning of the previous section, the proofs of lemmas 9 and 10 essentially show that
there exists a constant C such that for all f ∈ Lp(w) and every n ∈ N

‖uW1,nf‖Lp
∗(w) ≤ C‖uf‖Lp(w)

and
‖uW3,nf‖Lp(w) ≤ C‖uf‖Lp(w)

(notice that in the case α, β ≥ −1/2, the polynomials Pn satisfy the estimate analogous to
(5), what simplifies the proofs). Under our hypothesis, this implies that there exists also a
constant C such that for all f ∈ Lp(upw) and every n ∈ N

‖uW2,nf‖Lp
∗(w) ≤ C‖uf‖Lp(w),

that is,
‖uPn+1Hg‖Lp

∗(w) ≤ C‖u(x)(1− x2)−1Qn(x)−1w(x)−1g‖Lp(w).

Applying (3), we have

‖uPn+1χI‖Lp
∗(w)

(∫ 1

−1

u(x)−q(1− x2)q|Qn(x)|qw(x)
(|I|+ |x− xI |)q

dx

)1/q

≤ C

13



for every interval I ⊆ [−1, 1], with a constant C > 0 independent of n and I; now, by lemma
6

‖u(x)(1− x2)−1/4w(x)−1/2χI‖Lp
∗(w)

(∫ 1

−1

u(x)−q(1− x2)q/4w(x)1−q/2

(|I|+ |x− xI |)q
dx

)1/q

≤ C.

Taking I = [1− ε, 1], it follows

‖xa−α/2−1/4χ[0,ε]‖Lp
∗(x

α)

(∫ 1

0

x−aq+q/4+α(1−q/2)

(ε + |x− ε/2|)q
dx

)1/q

≤ C. (16)

Now, by lemma 7 and (15)

‖xa−α/2−1/4χ[0,ε]‖Lp
∗(x

α) = K (17)

and∫ 1

0

x−aq+q/4+α(1−q/2)

(ε + |x− ε/2|)q
dx =

∫ 1

0

x1/(p−1)

(ε + |x− ε/2|)q
dx ≥ C

∫ 1

ε

x1/(p−1)−qdx = C| log ε|,

which, together with (17), leads to a contradiction in (16). Therefore, (15) cannot be true
and the theorem is proved.
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