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Abstract. We study some problems related to convergence and divergence a.e.

for Fourier series in systems {(pk} , where {(¡>k} is either a system of orthonor-

mal polynomials with respect to a measure dp on [-1, 1] or a Bessel system

on [0,1]. We obtain boundedness in weighted LP spaces for the maximal

operators associated to Fourier-Jacobi and Fourier-Bessel series. On the other

hand, we find general results about divergence a.e. of the Fourier series associ-

ated to Bessel systems and systems of orthonormal polynomials on [-1, 1].

0. Introduction

Let du be a positive measure on a finite interval [a, b]cM. and

n fb

Snfix) = Y ck<t>kix) , Ck= fit)<t>kit) dpit) ,
i,_i Ja
/c=l

the «th partial sum of the Fourier series of / with respect to a real, complete,

and orthonormal system {<j)k} on L2{dp).

In what follows {<j)k} will be either the system of orthonormal polynomials

given by the normalization of the sequence {1, x, x2, ...} in L2([-l, 1] ; dp)

or the Bessel system in L2([0, I]; dp), where dp = xdx.

We shall denote by S*fix) = sup„ \S„fix)\ the maximal operator associated

to the Fourier series of /. We are interested in the two following questions:

(a) Given p e [1, 2), does S„fix) converge to fix)  p a.e. for any / in

Lpidp)1
(b) Is S* of strong or weak type (/?, p) ?

Very well-known standard arguments show that an affirmative answer to ques-

tion (b) leads to an affirmative answer to question (a). Several authors have stud-

ied the former questions in the case of orthonormal polynomials on [-1, 1] or

Bessel systems on [0,1]. Titchmarsh [16] and Benedek-Panzone [3] analyze
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question (a) in the case of Fourier-Bessel series, determinating the range of p's

such that (a) is true, but their techniques (equiconvergence theorems) cannot

be used to approach matter (b).
For Jacobi polynomials, equiconvergence theorems again show that there ex-

ists a range of /?'s such that (a) is true (see [15]). Badkov studies in [2] the

problem of the boundedness of the operator S* for generalized Jacobi poly-

nomials. He obtains boundedness (even in some weighted LP-spaces) for the

same range of p's in which (a) is true.

With respect to negative answers of question (a), Pollard [14] shows that for

each p < j there exists a function / e LP{dx) such that its Legendre-Fourier

series diverges a.e. After that, Meaney [10] extends the result to p = | and

to Jacobi polynomials (see also Badkov [2]). In these results, the asymptotic

behavior of the polynomials is used together with category arguments.

Our purpose in this paper is two fold. First we obtain results about bounded-

ness of the maximal operators in weighted LP spaces, which extend Badkov's

results in the case of Jacobi polynomials and are new in the case of Bessel

functions (even in the unweighted case). The procedure is simple and basically

consists of showing that a general result of Gilbert on transplantation remains

true when one considers weights in the Muchkenhoupt A^-classes.

Second we note that a lower bound on the Lp-noven of the polynomials is

only needed in order to obtain a result on divergence a.e. In this case, a pow-

erful result established by Maté, Nevai, and Totik [9], which is valid for a very

general class of polynomials on [-1, 1], allows us to prove a general divergence

theorem that includes the Badkov and Meaney results. Moreover, we are able to

prove an analogous result to Maté, Nevai, and Totik's in the context of Bessel

functions, which allows us to obtain divergence results in this case.

We shall use the following notations. Let a, ß > -1. We shall denote by

Pna'p' the Jacobi polynomials on [-1, 1] with respect to the measure dp(oc'^ =

(1 -x)a(l + x)P dx (see [15]). Let Ja be the Bessel function of order a > -1

and j%ix) - y/2\Ja+lian)\~lJaianx) (where an is the increasing sequence of

the zeroes of Ja) the Bessel system of order a, which is orthonormal and

complete in L2([0, 1]; xdx).
The corresponding maximal operators will be denoted by S* ß and S*,

respectively.

APi[a, b]) (where 1 < p < oc) will stand for the Muckenhoupt classes (see

[11]) consisting of those nonnegative functions œ on [a, b] such that

(\I\~l ico j (\I\~l f co-pllp\       < C    for every interval I c[a,b],

where p + p' = pp'.

1. Extension to A„ classes of a Gilbert result

Let {un)n>o a sequence of functions on [0,7r] verifying:

(1.1) There exists a constant A such that sup0<^.<ff \u„ix)\ < A  V« .

(1.2) There exist functions A,, X2, X3, A4 in L°°((0, n/2)) suchthat

Unix) = Ai(;c)cos«.x; + A2(x)sin«.x

+ inx)~1iX3ix)cosnx + A4(x)sin«x) + 0((/ix)-2)
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uniformly for x e (1/«, n/2).
(1.3) There exist functions X[, X'2, X'^, X'A in L°°((0, n/2)) such that

Au„ix) = j)c(Ai(x)cos«x + X2ix)sinnx)

+ n~1iX3ix)cosnx + X^ix) sin nx) + 0(«~2x_1)

uniformly for x £ (1/«, 7r/2), where Aw„ = un - w„+1.

(1.4) There exists a function X in L°°((0, n/2)) such that

Au„ix) = n~lXix)u„ix) + in~2 + x)O(l)

uniformly for x € (0, 1/«).
(1.5) There exists a sequence (£/„) satisfying (1.1 )-( 1.4) such that

M7r-x) = (-l)"l/„(x) + 0(rr2)

uniformly for xe(0, n/2).
Let (r„ j.) be a double sequence such that

(1-6) ¿~ol'-»,*l<°°  vfc-
(1.7) There exists a constant B such that |r„,A:l < •#  V«,/c.

(1.8) There exists a constant B such that ¿£ti |A(r„;^)| < B  Vk, where

^irn,k) = r«+l,í: - >n,/c •

If (m„), (v„) satisfy (1.1 )-( 1.5) and (r„jt) verifies (1.6)-( 1.8) then we define
the kernels:

oo oo

*Jt(*. t) = Yrn,ke'"xe-int,       Lkix,t) = Yrn,kUnix)v„it).

n=0 n=0

In this situation the Gilbert result is (see [5]):

Theorem. Let 1 < p < oo. If the operator f —> sup*. j\fit)Kkix, t)dt is of

weak type ip, p) or strong type ip, p) in LpH~n, n)), then the same is true

for the operator 4> -> supfc f*n 4>it)Lkix, t) dt   in Lp((0, n)).

Examples of («„) satisfying (!.!)-( 1.5) are (see [5])

uan'ßid) = Ai'pp^picoseyx - coseyi2+xi\\ + cos eyi2+xi\     a, ß > -\

(where A„'^ is a normalization constant), or

uanid) = n-i6i'2j^in-l6),        a>-\.

If we call T* ß and T* to the corresponding maximal operators, then we

have the relations

(1.9) S*aJ¡ficosd) = TZtßgi6)il -cosö)-Q/2-'/4(l + coso)-"/2-'/4

where g(0) = /(cos0)(l - cos0)a/2+1/4(l + cos0)^/2+1/4 and

(1.10) S*afin-ld) = T:gid)6-1'2

where g(0) = fin-ld)d~1/2.

It is clear from Gilbert's theorem that it is possible to obtain boundedness

for the maximal operators T* ß and T* by comparing them with the usual

Carleson-Hunt maximal operator (see [4, 6]) associated to the trigonometric

system. However, formulae (1.9) and (1.10) indicate that we shall need a

"weighted" Gilbert theorem if we want to obtain some boundedness for the

maximal operators S*a ß and S*.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



460 J. J. GUADALUPE, M. PEREZ, F. J. RUIZ, AND J. L. VARONA

Theorem 1. Let 1 < p < oo. Let co e APH~n, n)) an even weight. Let

iun), ivn), and {rn,k) be sequences under the hypothesis of Gilbert's theorem.

If the operator f -* A* f = sup^ /"^ f{t)Kkix, t) dt   is of weak or strong type

ip, p) in LpH~n, n), co), then the same is true for the operator cp -* B*f -

sup* \f*K4>it)Lkix, t)dt\ in Z/((0, n),a>).

Proof. The Gilbert proof is based on the control of the operator B* by opera-

tors close to the operator A* (since (u„), (v„) may be expressed in terms of

sines and cosines) together with another one that can be essentially controlled

by the Hardy-Littlewood maximal function. Now, the proof consists of observ-

ing that all the operators taking part in the proof are bounded with Ap weights

because of the hypothesis and Muckenhoupt's result related to the boundedness

of the Hardy-Littlewood maximal function with Ap weights (see [11]). Details

can be found in [13, Chapter IV].
When rn k = 1 if n < k and 0 otherwise and (w„) = (i/„) is the sequence

u%'P (or u%), then A* is the operator

k

/^ $•(/>)(*) = sup
k

£/(«)*''"

71=0

where S* is the Carleson maximal operator and /b = fiO) + jif + f), f being

the conjugate function of /.
Both operators S* and /b are bounded in L"H-n, n), co) when co is an

Ap weight, due to Hunt, Muckenhoupt, and Wheeden's theorem (see [7]) and

Hunt and Young's theorem (see [8]). On the other hand, the corresponding

operator B* is the maximal operator T* ß (or T*).

Some applications of Theorem 1 are

Theorem 2. (i) Let a, ß > -j and 1 < p < oo. Let u be a weight on [-1, 1].

//

ait) = w(cos0(1 -cosi)(2~p)(2a+1)/4(l +cost){2-p){2ß+l)/4 e Ap((0, n))

then S* ß is bounded in Lpiudp(a'^).

(ii) Let a > - j  and  1  < p < oo.   Let u  be a weight on  [0, 1 ].   //

uix)x{~pl2 6 ApHO, 1)) then S* is bounded in Lpiuix)xdx).

Proof, (i) By (1.9), S*>ß is bounded on Lpiudp^a'^) if and only if T*ß is

bounded on Lpico) and this follows from the above mentioned remarks.

(ii) It is analogous using (1.10) instead of (1.9).

A particular case of Theorem 2(i) is

Corollary 1 (Badkov [2]). Let a,   ß  >  -\,     \  < p  <  <x>, and w(x)  =

(1 - x)api\ + x)bp . If the conditions

HK    ̂ +"(HM.
a + (a+l)|i-I)>-i,        4 + (/l+»(i-l)>-4

are fullfilled, then S* ß is bounded on Lpiu dp^'^).
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Proof. We need only to check that

(1 -cosír+{(2-p)(2a+1)}/4(l +cos06i,+{(2"p)(^+1)}/4 € ApHO, n)),

but this is equivalent to

t2ap+{(2-P)(2«+y)}/2,n _ t)2bp+{(2-p)(2ß+l)}/2 £ ^((Q) ^ >

and a simple exercise of integration shows that this is true taking into account

the hypothesis.

Note. Considering different systems («„), (i>„), Theorem 1 also allows us to

obtain transplantation's results of the following type:

Let dp, dv be two different measures of Jacobi type and

let P„, Q„ the corresponding orthonormal Jacobi polynomi-

als. Then, for a certain range of p's, for each / e LPidv),
there exists age Lpidp) such that

j   gix)Pnix)dpix) = J  fix)Qnix)dvix)   V«>0

and llgili/fify) < Cll/lli,^) where the constant C is indepen-
dent of /.

Theorems of this type have been studied by Askey [1] and Muckenhoupt

[12], not for the polynomials on [-1, 1] but for the corresponding orthonormal

functions in (0, n).

2. Divergence almost everywhere

First we are going to study the case of orthonormal polynomials in [-1, 1].

Assume dp is a positive Borel measure on [-1, 1] such that p' > 0 a.e.,

and let {Pnix)}^^ denote the corresponding orthonormal polynomials.

The following result is due to Maté, Nevai, and Totik [9].

Lemma 1. Suppose 1 < r < oo.   If g is a Lebesgue measurable function in

[-1, 1], then

ÍJ1 \gix)il-x2rl'4p'ix)-l'2\rdx\      <Mliminfljl \gix)P„ix)\r dx j

where M = Äi/22«n«{i/r-1/2,0}

By using this lemma we obtain

Theorem 3. Let co be a Lebesgue measurable positive function in [-1, 1] and

\<p<q<oo, (l/p+1/0=1). If

(2.1)     coix)-1 i L"idp)    or    ^'(x)1-«/2(l -x2)-ql*coix)-q $ L\dx),

then there exists f e Lpicop dp) such that Snf either does not exist or diverges

almost everywhere in [-1, 1].

Proof. Suppose that   c0(/)   =   /_, fix)Poix)dpix)   exists for each   /   G

Lpicopdp).  By duality, this implies P0 6 L"ico'" dp), i.e., co~x € L"idp).
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If co~l e Lqidp), then Snf exists for every n = 0, 1, 2, ... and every

f e If iof dp), and so the operators

c„: f € Vio? dp) - c„(/) = y  fix)P„ix)dpix)

are continuous by using Holder's inequality. Moreover, ||c„|| = \\Pn<^~l\\Li(dp.)

and so, by (2.1) and Lemma 1, it is clear that sup„ \\Pno~l\\L<i{dp) = °° • Then

the Banach-Steinhaus theorem shows that there exists / e Lpicop dp) such that

sup„|c„(/)| = 00.

On the other hand, if S„fix) = Y!k=ockif)Pkix) converges in a set E of

Lebesgue measure \E\ > 0 and sup„ \c„if)\ = oo, then there exists a subse-

quence P„k with

lim P„k (x) = 0    a.e. in E.
k

If we take ô > 0 and à < \E\, by using Egoroffs theorem, there exists D c E

such that |Z>| = S and \imkPnicix) = 0 uniformly in D. Therefore

lim [ \P„k\dp = 0.
k    Jd

But, by Lemma 1 with r = 1 and gix) = p'íx)xdÍx) , we have

lim / \P„k\dp> AT1 [ il-x2)~l/4p'ix)i/2dx>0,
k  Jd Jd

which is a contradiction.

Next we show a similar result for Bessel systems. First of all, we need to

establish an analogous result of Lemma 1. For that, we shall use the following

estimates for Bessel functions

(2.2) Jaiz) = za2~aTia + l)"1 + 0(zQ+2), z^O,

(2.3) 7a(z) = v/2(^z)-1/2cos(z-^-|)+0(z-3/2), z^oo,

rl        ? i
(2.4) /    Jaianx) xdxva-, n —► oo

Jo nan

and the Fejer lemma: if /, g are nonnegative functions, g is continuous with

period 2n , and f e Ll ((0, 2n)), then

(2.5) lim ¿ / * fit)giXt) dt = #(0)/(0)
A—»oo Z7T 7o

where A(x) denotes the Fourier transform of h .

Lemma 2. Let a > -1. Lei A(x) tea Lebesgue measurable nonnegative func-

tion on [-1, 1] and 1 < /? < oo. Then

.i

(2.6) lim  [ \j<nlix)\phix)dx>M f hix)x~p/2dx
"-"Wo ./o

where
jp/2     r2n

M=^—        \cost\pdt.
2n in
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Proof. If there exists no á e (0, 1) such that hix)xap i L'(0, Ö) then (2.6)

is trivial since (2.2) implies that all the integrals on the left in (2.6) are equal

to oo. Then, we may suppose that hix)xap e L'(0, a) for some ¿6(0, 1).

By (2.4) it is enough to prove

(2.7) lim  / \ina„)l'2Jaia„xWhix)dx = M f hix)x~pl2 dx.
n^°° Jo Jo

Suppose that hix)~pl2 e L'((0, 1)). If we prove

(2.8)

Urn   /    ianx)l/2Jaianx) - ( - J     cos (anx - %^ - -^

then (2.7) is reduced to show that

hix)x-pl2dx = ij,

1/2

(2.9)   Hm  /    Í-J     cos (a„jc - ^ - |)   hix)dx = M /  hix)x~p/2dx.

Now (2.9) holds by using (2.5) with

t = 2nx,        git) = 2l/2cos(t- ^-- j\

-P/2

fit) = h
t

In m A.2-.
2n

Thus, let us prove (2.8) under conditions

(2.10) hix)xap £LxiiO,o))     and    hix)x~pl2 e L'((0, 1)).

Take n large enough so that a„ > 1. In view of (2.4), if anx > 1 then

12
ianx)l/2Jaianx)- (-j     cos (a„x - °^- - -^j < Cianx)V2ianx)-y2 < C,,

and, according to (2.2), if a„x < 1 it follows

ianx)l/2Jaianx)- (-)     cos(anx- — --j

< CHa„x)a+l'2 + 1) < dixa+l/2 + 1)

(in the last inequality we use anx < 1 if a + ¿ > 0 and anx > x if a + \ < 0).

Now, by (2.10), we can apply the dominate convergence theorem and obtain

(2.8).
Finally, in case that hix)x~pl2 $ Ll((0, 1)), let {Kj}f=x be the sequence

of increasing measurable sets K}■ — {x e (0, 1): h{x)x~pl2 < j} and denote by

hj the function hj = h on Kj and 0 elsewhere. By applying (2.7) for each hj

and then the monotone convergence theorem, (2.7) also holds in this case, and

the proof of the lemma is finished.

From Lemma 2 and proceeding exactly as in the proof of Theorem 3, we

obtain
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Theorem 4. Let a > -1 and suppose 1 <p < q < oo, (l//>+ \/q = 1). Let co

be a Lebesgue measurable nonnegative function on [0, 1]. If

coix)-qxaq+x i Llidx)     or    coix)-qxl-q/2 i Llidx)

then there exists f e Lpicoix)pxdx) whose Fourier series with respect to the

system {j%ix)} either does not exist or diverges almost everywhere on [0, 1].

Notes, (i) If a > — j, the proof of Lemma 2 shows that the sign ">" can be

replaced by "=".
(ii) Theorems 3 and 4 contain as particular cases the known cases of gener-

alized Jacobi polynomials [2, 10, 14] or Bessel systems [3].

(iii) Analogous result to Theorem 4 can be obtained for Dini systems in

[0,1].
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