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We study the dynamics of some Newton-type iterative methods when they are applied of polynomials degrees two and three. The
methods are free of high-order derivatives which are the main limitation of the classical high-order iterative schemes. The iterative
schemes consist of several steps of damped Newton’s method with the same derivative. We introduce a damping factor in order to
reduce the bad zones of convergence. The conclusion is that the damped schemes become real alternative to the classical Newton-
type method since both chaos and bifurcations of the original schemes are reduced. Therefore, the new schemes can be utilized to
obtain good starting points for the original schemes.

1. Introduction

One of the most important and usual problems in numerical
analysis is finding the solutions of a nonlinear equation:

𝑓 (𝑥) = 0, (1)

where 𝑓 :R → R is a 𝐶𝑟 function, with 𝑟 ≥ 1. To approx-
imate the solutions of these equations, iterative methods can
be used. There are many iterative methods with different
properties but the most commonly used is Newton’s iterative
method:

𝑁
𝑓
(𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓 (𝑥)
. (2)

This method and its variants have been studied by many
authors since it was proposed by Newton in 1669. It is
well known that under certain assumptions related to the
starting point 𝑥

0
and to the function 𝑓 the method provides

a sequence {𝑥
𝑛
}
𝑛∈N that converges quadratically to a solution

of (1).
The classical third-order schemes, such as Halley or Che-

byshev methods, evaluate second-order Fréchet derivatives.
These evaluations are very time consuming for systems of
equations. Indeed, let us observe that, for a nonlinear sys-
tem of 𝑚 equations and 𝑚 unknowns, the second Fréchet

derivative has 𝑚3 entries. In particular, these methods are
hardly used in practice. For that reason, we are interested in
the study of methods that increase the order but evaluating
only first-order Fréchet derivatives. The methods consist of
two (or more) steps of the Newton method having the same
derivative, other main advantage of these methods relays on
the fact that if we consider a system of equations only one 𝐿𝑈
decomposition is necessary in each iteration. Because of these
two properties the schemes are considered a real alternative
to the classical Newton method.

On the other hand, we can find a rigorous and useful
procedure to find the best scheme in families of Newton-
type methods with frozen derivatives in [1]. For most of the
cases, themost efficient candidate of the family is the two-step
iterativemethod.Wewill study all this family but with special
attention to the two-step scheme.

In this paper, our main purpose is to study the dynamics
of the discrete systemdefined by themethods but introducing
a damping factor 𝜆 ∈ (0, 1]. We are interested to search chaos
or sensitive dependence on initial conditions for this discrete
dynamical system. In [2], Hurley and Martin showed that
the classical Newton iterative method exhibits chaos for a
large class of functions (see also [3]). The introduction of the
damping factor not only reduces the order of convergence
but also reduces the chaos and the bifurcations as we will
see in Sections 3 and 4. In particular, we can utilize these
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schemes as starting points for the classical Newton schemes.
We conclude this paper by comparing the damped method
with the original one and the successive damped high-order
methods that come from using more Newton’s steps.

The study of the dynamics of the iterative methods at-
tracts the attention of many groups [4–8].

The paper is organized as follows. In Section 2 we intro-
duce our new scheme and present the associated scaling
theorem.The scaling theorem allows up to suitable change of
coordinates, to reduce the study of the dynamics of iterations
of general maps, to the study of specific families of iterations
of simpler maps. The dynamics for polynomials of degree-
two and three, having chaotic dynamics in some cases, are
presented in Sections 3 and 4, respectively. In these sections,
we observe that the inclusion of the damping factor reduces
the bad zone of convergence. In Section 5 we give the main
conclusions drawn from the study and we summarize the
benefits to include the damping factor. Finally, we propose the
use of damped methods in order to find good starting points
for the original methods.

2. A Damped Newton-Type Iterative Method

Our first goal is to analyze the dynamics of a modification of
the following third-order iterative root-finding method [9]:

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑦
𝑛
−
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
.

(3)

This iterative root-finding algorithm is defined by the
following iterative function:

𝑀
𝑓
(𝑥) = 𝑁

𝑓
(𝑥) −

𝑓 (𝑁
𝑓
(𝑥))

𝑓 (𝑥)
, (4)

where𝑁
𝑓
(𝑥) = 𝑥 − 𝑢

𝑓
(𝑥) and 𝑢

𝑓
(𝑥) = 𝑓(𝑥)/𝑓(𝑥). In other

words, 𝑥
𝑛+1

= 𝑀
𝑓
(𝑥
𝑛
). The dynamics of this method were

studied in [10]. Now, we introduce a damping factor 𝜆 ∈ (0, 1]
and we analyze its influence on the dynamics in the iterative
method (4). By introducing the damping factor the root-
finding algorithm has the following form:

𝑦
𝑛
= 𝑥
𝑛
− 𝜆

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑦
𝑛
− 𝜆

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
.

(5)

Thus the following iterative function describes the root-
finding algorithm:

𝑀
𝜆,𝑓
(𝑥) = 𝑁

𝜆,𝑓
(𝑥) − 𝜆

𝑓 (𝑁
𝜆,𝑓
(𝑥))

𝑓 (𝑥)
, 0 < 𝜆 ≤ 1, (6)

where𝑁
𝜆,𝑓
(𝑥) = 𝑥 − 𝜆𝑓(𝑥)/𝑓(𝑥).

Notice that it is easy to proof that the roots of the function
𝑓 are fixed points of𝑀

𝜆,𝑓
. Moreover, we have that

𝑀
𝜆,𝑓
(𝑥) = 1 − 𝜆

𝑓(𝑥)2 − 𝑓 (𝑥) 𝑓 (𝑥)

𝑓(𝑥)2

− 𝜆((𝑓 (𝑥 − 𝜆
𝑓 (𝑥)

𝑓 (𝑥)
)

× (1 − 𝜆
𝑓(𝑥)2 − 𝑓 (𝑥) 𝑓 (𝑥)

𝑓(𝑥)2
)𝑓 (𝑥)

− 𝑓(𝑥 − 𝜆
𝑓 (𝑥)

𝑓 (𝑥)
)𝑓 (𝑥))

× (𝑓(𝑥)
2)
−1

) .

(7)

In particular, if𝛼 is a simple root of𝑓, that is,𝑓(𝛼) = 0 and
𝑓(𝛼) ̸= 0, then𝑀

𝜆,𝑓
(𝛼) = (1 − 𝜆)2. Thus every simple root of

𝑓 is an attracting point of𝑀
𝜆,𝑓

and for𝜆 = 1 a superattracting
fixed point. If 𝛽 is a multiple root of multiplicity𝑚 of 𝑓, then
it is an attracting fixed point for every value of 𝜆. There are
fixed points of𝑀

𝜆,𝑓
(𝑥) different from the roots. These points

are called extraneous fixed points. In [10], Amat et al. showed
that this method for 𝜆 = 1 (without damping factor) presents
chaos and bifurcations when it is applied to a one-parameter
family of cubic polynomials. Chaos behavior are related to the
existence of points 𝑥∗ such that 𝑓(𝑥∗) = 0 and 𝑓(𝑥∗) ̸= 0.

When we apply the iterative method 𝑀
𝜆,𝑓

to a poly-
nomial, we may have some problems, since we obtain a
rational map, say𝑀

𝜆,𝑝
(𝑥) = 𝑃(𝑥)/𝑄(𝑥), where 𝑃 and 𝑄, are

polynomials, that we may suppose without common factors.
The difficulty arises at those points where the evaluation of
numerator is nonzero and the denominator is zero, one such
points correspond to the poles of the iterative method.

In order to study the dynamics of 𝑀
𝜆,𝑓

by means of
graphical analysis we consider it as a map �̃�

𝜆,𝑓
on [0, 1[. For

this, let 𝐺 : R →]0, 1[ be given by 𝐺(𝑥) = (1/𝜋) arctan(𝑥) +
1/2. This map is an homeomorphism from R into ]0, 1[.
Define the maps �̃�

𝜆,𝑓
:]0, 1[→ ]0, 1[ by �̃�

𝜆,𝑓
= (𝐺 ∘ 𝑀

𝜆,𝑓
∘

𝐺−1)(𝑥), where 𝑀
𝜆,𝑓

is the iterative root-finding method
introduced above for amap𝑓 : R → R.Wemay extend �̃�

𝜆,𝑓

to maps from [0, 1] into itself. We use the same notation
for this extension. Note that the extended function has fixed
points at 𝑥 = 0 and at 𝑥 = 1 and that these fixed points are
repelling.

Now we have the following useful result.

Theorem 1 (the scaling theorem). Let 𝑓(𝑥) be an analytic
function, and let 𝑇(𝑥) = 𝛼𝑥 + 𝛽, with 𝛼 ̸= 0, be an affine map.
Let 𝑔(𝑥) = (𝑓 ∘ 𝑇)(𝑥). Then 𝑇 ∘𝑀

𝜆,𝑔
∘ 𝑇−1(𝑥) = 𝑀

𝜆,𝑓
(𝑥); that

is,𝑀
𝜆,𝑔

and𝑀
𝜆,𝑓

are affine conjugated by 𝑇.
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Figure 1: �̃�
1.0,𝑓
−

as a circle map.
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Figure 2: �̃�
1.0,𝑓
−

restricted to the interval 𝐼.

Proof. We have

𝑀
𝜆,𝑔
(𝑇−1 (𝑥)) = 𝑇

−1

(𝑥) − 𝜆𝑢
𝑔
(𝑇−1 (𝑥))

− 𝜆
𝑔 (𝑇−1 (𝑥) − 𝜆𝑢

𝑔
(𝑇−1 (𝑥)))

𝑔 (𝑇−1 (𝑥))
.

(8)

On the other hand, since𝑔∘𝑇−1(𝑥)=𝑓(𝑥) and (𝑔 ∘ 𝑇−1)(𝑥) =
(1/𝛼)𝑔(𝑇−1(𝑥)), then 𝑔(𝑇−1(𝑥)) = 𝛼(𝑔 ∘ 𝑇−1)(𝑥) = 𝛼𝑓(𝑥),
and by an easy induction process it follows that𝑔(𝑘)(𝑇−1(𝑥)) =
𝛼𝑘𝑓(𝑘)(𝑥). Hence, 𝑢

𝑔
(𝑇−1(𝑥)) = (1/𝛼)𝑢

𝑓
(𝑥).

Substituting these quantities in𝑀
𝜆,𝑔
(𝑇−1(𝑥)) we obtain

𝑇 ∘𝑀
𝜆,𝑔
∘ 𝑇−1 (𝑥)

= 𝑇 (𝑀
𝜆,𝑔
(𝑇−1 (𝑥)))

= 𝛼𝑀
𝜆,𝑔
(𝑇−1 (𝑥)) + 𝛽

= 𝛼𝑇−1 (𝑥) − 𝛼𝜆𝑢
𝑔
(𝑇−1 (𝑥))

− 𝛼𝜆
𝑔 (𝑇−1 (𝑥) − 𝜆𝑢

𝑔
(𝑇−1 (𝑥)))

𝑔 (𝑇−1 (𝑥))
+ 𝛽
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Figure 3: Graphics of �̃�
𝜆,𝑓
−

with 𝜆 = 0.75, where the BZ interval is
𝐼
0.75

= [0.401996 ⋅ ⋅ ⋅ , 0.598004 ⋅ ⋅ ⋅ ].
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Figure 4: Graphics of �̃�
𝜆,𝑓
−

with 𝜆 = 0.5, where the BZ interval is
𝐼
0.5
= [0.437167 ⋅ ⋅ ⋅ , 0.562833 ⋅ ⋅ ⋅ ].

= 𝛼𝑇−1 (𝑥) − 𝜆𝑢
𝑓
(𝑥)

− 𝜆
𝑔 (𝑇−1 (𝑥) − (𝜆/𝛼) 𝑢

𝑓
(𝑥))

𝑓 (𝑥)
+ 𝛽

= 𝑥 − 𝜆𝑢
𝑓
(𝑥) − 𝜆

𝑔 (𝑇−1 (𝑥) − (𝜆/𝛼) 𝑢
𝑓
(𝑥))

𝑓 (𝑥)
.

(9)

Finally, by a comparison of Taylor series expansions of 𝑓
and 𝑔, we obtain

𝑔(𝑇−1 (𝑥) −
𝜆

𝛼
𝑢
𝑓
(𝑥))

= 𝑔 (𝑇−1 (𝑥)) −
𝜆

𝛼
𝑔 (𝑇−1 (𝑥) 𝑢

𝑓
(𝑥)) ⋅ ⋅ ⋅

= 𝑓 (𝑥) − 𝜆𝛼𝑓


(𝑥)
1

𝛼
𝑢
𝑓
(𝑥) + ⋅ ⋅ ⋅

= 𝑓 (𝑥 − 𝜆𝑢𝑓 (𝑥)) .

(10)

Therefore, 𝑇 ∘𝑀
𝜆,𝑔
∘ 𝑇−1(𝑥) = 𝑀

𝜆,𝑓
(𝑥).

This ends the proof.
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Figure 5: Graphics of �̃�
𝜆,𝑓
−

with 𝜆 = 0.25, where the BZ interval is
𝐼
0.25

= [0.470144 ⋅ ⋅ ⋅ , 0.529856 ⋅ ⋅ ⋅ ].

The theorem remains valid for any nonzero constant 𝑐
such that 𝑔(𝑥) = 𝑐(𝑓 ∘ 𝑇)(𝑥).

The Scaling Theorem allows up to suitable change of
coordinates, to reduce the study of the dynamics of iterations
𝑀
𝜆,𝑓

, to the study of specific families of iterations of simpler
maps. For example, each quadratic polynomial 𝑓(𝑥) = 𝑎𝑥2 +
𝑏𝑥 + 𝑐, with 𝑎 ̸= 0, that we suppose that is monic, by an
affine change of variables reduces to one of the following
polynomials:

(i) 𝑓
−
(𝑥) = 𝑥2 − 1,

(ii) 𝑓
+
(𝑥) = 𝑥2 + 1,

(iii) 𝑓
0
(𝑥) = 𝑥2,

depending on the number of real roots of 𝑓(𝑥) = 0 (two,
one (double), or not real roots). Therefore the study of the
dynamics of 𝑀

𝜆,𝑓
, when it is applied to a quadratic poly-

nomial, reduces to the study of the dynamics of𝑀
𝜆,𝑓
𝑠

where
𝑠 = +, 0, −, up to affine change of variables. On the other
hand, the study of the dynamics of the iterative method �̃�

𝜆,𝑓

reduces to the study of the dynamics of the interval map
�̃�
𝜆,𝑓
𝑠

. Similarly, any cubic polynomial reduces to one of the
simplest cubic polynomials:

(I) 𝑓
−
(𝑥) = 𝑥3 − 𝑥,

(II) 𝑓
+
(𝑥) = 𝑥3 + 𝑥,

(III) 𝑓
0
(𝑥) = 𝑥3,

(IV) 𝑓
𝛾
(𝑥) = 𝑥3 + 𝛾𝑥 + 1.

The last one is an appropriate rescaling that puts 𝑀
𝜆,𝑓

inside the conjugacy class.

3. Quadratic Polynomials

Following the analysis of Section 2, we have to study three
cases.

Case 1 (𝑓
0
(𝑥) = 𝑥2). In this case form (6) we have

𝑀
𝜆,𝑓
0

(𝑥) = −
1

8
𝑥 (−2 + 𝜆) (4 + (−2 + 𝜆) 𝜆) . (11)
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Figure 6: Graphics of �̃�
𝜆,𝑓
−

with 𝜆 = 0.01, where the BZ interval is
𝐼
0.01

= [0.498872 ⋅ ⋅ ⋅ , 0.501128 ⋅ ⋅ ⋅ ].
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Figure 7: Graphics of𝑀
1.0,𝑓
+

.

This function for 𝜆 ∈ (0, 1] is a linear contraction.The unique
fixed point are 𝑥 = 0, which is a global attractor, but not
super-attracting. Therefore, its dynamics is trivial.

Case 2 (𝑓
−
(𝑥) = 𝑥2 − 1). For 𝑓

−
(𝑥) = 𝑥2 − 1 from (6) and (7)

we have that

𝑀
𝜆,𝑓
−

(𝑥)

= − ( (𝜆3 + 𝑥4 (−2 + 𝜆) (4 + (−2 + 𝜆) 𝜆)

−2𝑥2𝜆 (4 + (−2 + 𝜆) 𝜆))

×(8𝑥3)
−1

) ,

𝑀
𝜆,𝑓
−

(𝑥)

= ( − (−3𝜆3 + 𝑥4 (−2 + 𝜆) (4 + (−2 + 𝜆) 𝜆)

+2𝑥2𝜆 (4 + (−2 + 𝜆) 𝜆))

×(8𝑥4)
−1

) .

(12)
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Figure 8: Graphics of �̃�
1.0,𝑓
+

as a circle map.
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Figure 9:𝑀
𝑓
−3

,𝜆
for 𝜆 = 0.9.

Now the fixed points of 𝑀
𝜆,𝑓
−

(𝑥) are 𝑥
1,2

= ±1 and 𝑥
3,4

=

±𝜆/√8 − 4𝜆 + 𝜆2. The points 𝑥
1,2

are the roots of 𝑓
−
, and we

have that𝑀
𝜆,𝑓
−

(𝑥
1,2
) = (𝜆 − 1)2; thus 𝑥

1,2
are attracting fixed

points for 𝜆 ∈ (0, 1), and superattracting for 𝜆 = 1. On the
other hand, we have that𝑀

𝜆,𝑓
−

(𝑥
3,4
) = −15 + 16/𝜆 + 6𝜆 − 𝜆2.

Thus, the extraneous fixed points 𝑥
3,4

are repelling. Note that
𝑀
𝜆,𝑓
−

(𝑥) has a vertical asymptote at 𝑥 = 0.

Let 𝜆 = 1 and 𝐼 = [𝑝
1
, 𝑝
2
] be the interval determined

by the repelling fixed points 𝑝
1
= 𝐺(𝑥

3
) = 0.36614 . . . and

𝑝
2
= 𝐺(𝑥

4
) = 0.63386 . . . of �̃�

1.0,𝑓
−

. Figure 1 shows �̃�
1.0,𝑓
−

and Figure 2 shows a zoom of the restriction of the function
to the interval 𝐼.

It is clear that �̃�
1.0,𝑓
−

restricted to the interval 𝐼 has
an invariant Cantor set Δ

−
of zero Lebesgue measure of

nonescaping points; that is, Δ
−
is the set of points whose

orbits remain in the interval 𝐼 under iteration by �̃�
1.0,𝑓
−

. In
otherwords, these points are not attracted to one of the super-
attracting fixed points of �̃�

1.0,𝑓
−

(note that when 𝜆 = 1 the
fixed points are superattracting).

From the above analysis, we have that the orbit of any
point 𝑥 ∈ [0, 1]\ (Δ

−
∪𝑝
1
, 𝑝
2
) is attracted to one of the super-

attracting fixed points of �̃�
1.0,𝑓
−

. Consequently, the orbit of
any point inR \ (𝐺−1(Δ

−
) ∪ {𝑥
3
, 𝑥
4
}) is attracted to one of the

fixed points of𝑀
1.0,𝑓
−

.
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(x)

Figure 10:𝑀
𝑓
−3

,𝜆
for 𝜆 = 0.3.
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Figure 11:𝑀
𝑓
−3

,𝜆
for 𝜆 = 0.1.

Thus we can define the “bad zone” as BZ = Δ
−
∪ {𝑝
1
, 𝑝
2
}

since if 𝑥 ∈ BZ, then it is not attracted by any of the attracting
points of �̃�

𝜆,𝑓
−

.

Lemma 2. The “bad zone” of the damping two-step Newton-
like method defined in (6) applied to quadratic polynomials
with two different roots decreases with the damping parameter
𝜆.

Proof. We begin by calculating

𝑝
1
= 𝐺 (𝑥

3
) =

1

2
−
arctan [𝜆/√8 + (−4 + 𝜆) 𝜆]

𝜋
,

𝑝
2
= 𝐺 (𝑥

4
) =

1

2
+
arctan [𝜆/√8 + (−4 + 𝜆) 𝜆]

𝜋
.

(13)

So we have that

𝐼
𝜆
= [

1

2
−
arctan [𝜆/√8 + (−4 + 𝜆) 𝜆]

𝜋
,

1

2
+
arctan [𝜆/√8 + (−4 + 𝜆) 𝜆]

𝜋
] .

(14)

Thus 𝐼 is an interval centered in 0.5 and width
2(arctan(𝜆/√8 + (−4 + 𝜆)𝜆)/𝜋) = 2𝑎. It is easy to see that



6 Abstract and Applied Analysis

2 4

5

10

−5

−4 −2

x

Mf−1,0.9
(x)

Figure 12:𝑀
𝑓
−1

,𝜆
for 𝜆 = 0.9.

Δ
−
decreases when 𝑎 decreases. Taking into account that the

functions (𝜆/√8 + (−4 + 𝜆)𝜆)(𝑥) and arctan(𝑥) are increas-
ing functions, it follows that 𝑎 decreases as 𝜆 so with smaller
𝜆 we have smaller BZ.

Thus we have seen analytically and graphically, in Figures
3, 4, 5, and 6, that the size of (Δ

−
∪ {𝑝
1
, 𝑝
2
}) decreases with

the damping factor 𝜆 and as a consequence we can state that
the chaotic zone decreases with 𝜆.

Case 3 (𝑓
+
(𝑥) = 𝑥2 + 1). In this case, the equation 𝑓

+
has

no real roots, thus𝑀
𝜆,𝑓
+

(𝑥) has not real fixed points, and its
dynamics is chaotic. Figures 7 and 8 illustrate this behavior.

4. Cubic Polynomials

In this section we consider cubic polynomials. As we have
seen in Section 2, by an affine change of coordinates, every
cubic polynomial 𝑓 reduces to one of the simplest 𝑓

0
, 𝑓
−
, 𝑓
+

or to a member of the one-parameter family of cubic poly-
nomials 𝑓

𝛾
. Therefore, we analyze the dynamics of these

simpler cubic polynomials.

Case 4 (𝑓
+
(𝑥) = 𝑥3 +𝑥). In this case, 𝑓 has only one real root

at 𝑥 = 0, and the method (6) has the following form:

𝑀
𝑓
+

,𝜆
= 𝑥 −

(𝑥 + 𝑥3) 𝜆

1 + 3𝑥2

− (𝜆(𝑥 −
(𝑥 + 𝑥3) 𝜆

1 + 3𝑥2
+ (𝑥 −

(𝑥 + 𝑥3) 𝜆

1 + 3𝑥2
)

3

)

×(1 + 3𝑥2)
−1

) . (15)

Since𝑓
+
(𝑥) = 1+3𝑥2 > 0 for all𝑥, it follows that𝑓

+
has no

critical points; hence,𝑀
𝑓
+

,𝜆
(𝑥) is a global homeomorphism

from R into itself and its dynamics is trivial.

Case 5 (𝑓
−
(𝑥) = 𝑥3 −𝑥). In this case 𝑓 has 3 real roots, 𝑥 = 0,

𝑥 = 1 and 𝑥 = −1.𝑀
𝑓
−

,𝜆
(𝑥) is given by (6)

𝑀
𝑓
−

,𝜆
(𝑥) = 𝑥 −

𝑥 (−1 + 𝑥2) 𝜆

−1 + 3𝑥2

− (𝜆(−𝑥 +
𝑥 (−1 + 𝑥2) 𝜆

−1 + 3𝑥2

+(𝑥−
𝑥 (−1+𝑥2)𝜆

−1+3𝑥2
)

3

)(−1+3𝑥2)
−1

).

(16)

Notice that 𝑀
𝑓
−

,𝜆
(𝑥) has two asymptotes at the points 𝑎

1
=

√3/3 and 𝑎
2
= −√3/3. We have that when 𝑥 → 𝑎

1
, then

𝑀
𝑓
−

,𝜆
(𝑥) → −∞, and when 𝑥 → 𝑎

2
, then𝑀

𝑓
−

,𝜆
(𝑥) → ∞.

If we now calculate the fixed points of 𝑀
𝑓
−

,𝜆
(𝑥), there exist

9 fixed points which are the three roots of 𝑓(𝑥
1
= −1, 𝑥

2
=

0, 𝑥
3
= 1) and the following extraneous fixed points:

𝑥
4
= −√

3

9 − 3𝜆 + 𝜆2
−

𝜆

2 (9 − 3𝜆 + 𝜆2)
+

𝜆2

2 (9 − 3𝜆 + 𝜆2)
−
𝜆√9 − 2𝜆 + 𝜆2

2 (9 − 3𝜆 + 𝜆2)
,

𝑥
5
= √

3

9 − 3𝜆 + 𝜆2
−

𝜆

2 (9 − 3𝜆 + 𝜆2)
+

𝜆2

2 (9 − 3𝜆 + 𝜆2)
−
𝜆√9 − 2𝜆 + 𝜆2

2 (9 − 3𝜆 + 𝜆2)
,

𝑥
6
= −√

3

9 − 3𝜆 + 𝜆2
−

𝜆

2 (9 − 3𝜆 + 𝜆2)
+

𝜆2

2 (9 − 3𝜆 + 𝜆2)
+
𝜆√9 − 2𝜆 + 𝜆2

2 (9 − 3𝜆 + 𝜆2)
,

𝑥
7
= √

3

9 − 3𝜆 + 𝜆2
−

𝜆

2 (9 − 3𝜆 + 𝜆2)
+

𝜆2

2 (9 − 3𝜆 + 𝜆2)
+
𝜆√9 − 2𝜆 + 𝜆2

2 (9 − 3𝜆 + 𝜆2)
,

(17)

where 𝑥
8

= −√(−2 + 𝜆)/(−6 + 𝜆) and 𝑥
9

=
√(−2 + 𝜆)/(−6 + 𝜆). Evaluating all these points in𝑀

𝑓
−

,𝜆
(7),

we obtain that the first 3 ones (the roots of 𝑓) are attracting
fixed points for every 𝜆 ̸= 1 and superattracting for 𝜆 = 1.The
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Figure 13:𝑀
𝑓
0

,𝜆
for 𝜆 = 0.9.
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Figure 14:𝑀
𝑓
0

,𝜆
for 𝜆 = 0.7.

extraneous fixed points are repelling ones since𝑀
𝑓
−

,𝜆
(𝑥
1,2,3

)

= (−1 + 𝜆)2:

𝑀
𝑓
−

,𝜆
(𝑥
4,5
)

= − (9 (−3 + √9 + (−2 + 𝜆) 𝜆)

+𝜆 (47 + 𝜆 (−13 + 5𝜆

+3√9 + (−2 + 𝜆) 𝜆))) (4𝜆)
−1,

𝑀
𝑓
−

,𝜆
(𝑥
6,7
)

= (9 (3 + √9 + (−2 + 𝜆) 𝜆)

+𝜆 ( − 47 + 𝜆 (13 − 5𝜆

+3√9 + (−2 + 𝜆) 𝜆))) (4𝜆)
−1,

𝑀
𝑓
−

,𝜆
(𝑥
8,9
) = 13 + (−8 + 𝜆) 𝜆.

(18)

In particular, the dynamics is trivial.

Case 6 (𝑓
0
(𝑥) = 𝑥3). The function 𝑓

0
only has one triple root

at 𝑥 = 0. We have that (6) has the following form:

𝑀
𝑓
0

,𝜆
=
1

81
𝑥 (−3 + 𝜆) (−27 + (−3 + 𝜆)

2𝜆) , (19)
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Figure 15:𝑀
𝑓
0

,𝜆
for 𝜆 = 0.1.
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Figure 16:𝑀
𝑓
𝛾

,𝜆
for 𝜆 = 0.5 and 𝛾 = 𝛾

0.5
= 0.442.

which is a linear contraction for every value of 𝜆 ∈ (0, 1]. The
only fixed point is attracting, but not superattracting and the
dynamics of𝑀

𝑓
0

,𝜆
is trivial.

Case 7 (𝑓
𝛾
(𝑥) = 𝑥3 + 𝛾𝑥 + 1). We have from (6) that

𝑀
𝑓
𝛾

,𝜆
(𝑥) = 𝑥 −

(1 + 𝑥3 + 𝑥𝛾) 𝜆

3𝑥2 + 𝛾

− (𝜆(1 + 𝛾(𝑥 −
(1 + 𝑥3 + 𝑥𝛾) 𝜆

3𝑥2 + 𝛾
)

+(𝑥 −
(1 + 𝑥3 + 𝑥𝛾) 𝜆

3𝑥2 + 𝛾
)

3

)

× (3𝑥2 + 𝛾)
−1

) .

(20)

We are going to analyze in this section the dynamics of
𝑀
𝑓
𝛾

,𝜆
(𝑥) depending on the two parameters 𝛾 and𝜆. Ourmain

purpose is to compare the results by fixing the parameter 𝛾 for
different values of the damping parameter 𝜆 and to study how
it changes the dynamics.
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Table 1: Approximations of 𝛾
𝜆
for some values of 𝜆.

𝜆 𝛾
𝜆

0.01 0.00795
0.1 0.081
0.2 0.1657
0.3 0.254
0.4 0.346
0.5 0.442
0.6 0.543
0.7 0.649
0.8 0.762
0.9 0.881
1.0 1.00768

0.90 0.95 1.00 1.05 1.10

0.0

0.2

−0.2

−0.4

−0.6

Figure 17: Feigembaun diagram for 𝜆 = 1.0.

We begin by studying the case 𝛾 < 0. In this case, our
function 𝑓

𝛾
has two critical points: 𝛾

+,−
= ±√−𝛾/3. Let be

𝛾
∗
= −3/ 3√4 ≈ −1.88988. Notice that 𝑓

𝛾
∗

has a double root
at the positive critical point 𝛾

+
. Hence, this value of the

parameter will be very significant in the study of the dynam-
ics.

We have three different possibilities.

(i) If 𝛾 < 𝛾
∗
, the polynomial 𝑓

𝛾
has three real roots.

(ii) If 𝛾 = 𝛾
∗
, the polynomial 𝑓

𝛾
has one positive double

real root and a simple one which is negative.
(iii) If 𝛾 > 𝛾

∗
, the polynomial 𝑓

𝛾
has only one real root.

For 𝛾 < 𝛾
∗
the iterative method𝑀

𝑓
𝛾

,𝜆
(𝑥) has two vertical

asymptotes. 𝑀
𝑓
𝛾

,𝜆
(𝑥) has 7 fixed points, the 3 real roots of

the polynomial (attracting fixed points), and the extraneous
fixed points (repelling). See Figure 9 as an example. As we
can observe in Figures 10, and 11 if the damping factor de-
creases, then extraneous fixed points tend to be closer to the
asymptotes.

For 𝛾
∗
≤ 𝛾 < 0 the iterative method 𝑀

𝑓
𝛾

,𝜆
(𝑥) has two

vertical asymptotes at 𝛾
−
and 𝛾
+
, as we can see in Figure 12.

Notice that lim
𝑥→𝛾

±

−

𝑀
𝑓
𝛾

,0
(𝑥) = ∞ and lim

𝑥→𝛾
±

+

𝑀
𝑓
𝛾

,0
(𝑥) =

∞.𝑀
𝑓
𝛾

,𝜆
(𝑥) has 3 fixed points, the one which corresponds to

the real solution of the polynomial 𝑓
𝛾
is attracting and two
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−0.4

−0.6

Figure 18: Feigembaun diagram for 𝜆 = 0.8.
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0.0
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Figure 19: Feigembaun diagram for 𝜆 = 0.5.

repelling extraneous fixed points. Again we obtain that when
the damping factor decreases the chaotic zone also decreases.

Now we are going to consider the simplest case which
corresponds to 𝛾 = 0, and we have

𝑀
𝑓
0

,𝜆
(𝑥)

= ( (3𝑥3 (−3 + 𝜆) 𝜆
3 + 𝜆4 + 3𝑥6𝜆 (−18 + 9𝜆 − 6𝜆2 + 𝜆3)

+𝑥9 (81 − 54𝜆 + 27𝜆2 − 9𝜆3 + 𝜆4))

×(81𝑥8)
−1

) .

(21)

This map has one attracting point at 𝑥
1

= −1 which
corresponds to the root of 𝑓

0
. Moreover it has another two

extraneous fixed points which are the real solutions of the
equation:

𝜆3 + (−9𝜆2 + 2𝜆3) 𝑥3 + (−54 + 27𝜆 − 9𝜆2 + 𝜆3) 𝑥6 = 0.

(22)

As we see in Figure 13 both extraneous fixed points are
repelling.

Now if we focus our attention on the damping factor, we
obtain that when 𝜆 decreases, the extraneous fixed points
tend to be closer to the asymptote 𝑥 = 0.This behavior can be
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Figure 20: Feigembaun diagram for 𝜆 = 0.3.
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Figure 21:𝑀
𝑓
−

,𝜆
for 𝜆 = 1.0 and 𝑓

−
(𝑥) = 𝑥3 − 𝑥 with three Newton

steps.

observed in Figures 14 and 15. Notice that 𝑥 = 0 is the critical
point of 𝑓

0
.

The last study is related with 𝛾 > 0. Notice that for, every
value of 𝛾 ̸= 0, 𝑀

𝑓
𝛾

,𝜆
presents a maximum which increases

when 𝛾 decreases. Moreover there exists a value 𝛾
𝜆
that

depends on the value of the damping factor, such that, for
each 𝛾 > 𝛾

𝜆
,𝑀
𝑓
𝛾

,𝜆
has only one fixed point (the root of the

function) and the dynamics is trivial. In Table 1, it shows the
different approximations of 𝛾

𝜆
for some values of 𝜆. Figure 16

illustrates this case.
When 𝛾 = 𝛾

𝜆
,𝑀
𝑓
𝛾

,1
presents another fixed point which

is a saddle node (as Amat et al. showed in [10]) and when
the parameter 𝛾 decreases, it appears bifurcations. If we now
see Figures 17, 18, 19, and 20, it is clear that the problems
decrease with 𝜆; even for small values (𝜆 < 0.2) they seem
they disappear.

Finally, we conclude with the following conjecture: if 𝜆 =
𝑛/2𝑘 with 𝑛, 𝑘 ∈ N, then𝑀

𝑓
𝛾

,𝜆
has only three fixed points.

5. Concluding Remarks

In this work we have analyzed the dynamics of a new
damped third-order Newton-likemethod.We have stated the
following conclusions drawn from the study

0.5 1.0

1

2

3

x

−1.0 −0.5

−1
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−3

M0.25,f−
(x)

Figure 22:𝑀
𝑓
−

,𝜆
for 𝜆 = 0.25 and𝑓

−
(𝑥) = 𝑥3−𝑥with three Newton

steps.
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(
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)

Figure 23: �̃�
𝑓
+

,𝜆
for 𝜆 = 1.0 and 𝑓

+
(𝑥) = 𝑥3 + 𝑥 with three Newton

steps.

(i) The connected component of the basin of attraction
increases when the damping factor decreases.

(ii) The sizes of the chaotic and the bifurcation zones
decrease when the damping factor decreases.

(iii) The nonconvergence zone decreases when the damp-
ing factor decreases.

In addition, we have performed a similar study including
more Newton’s steps. The conclusions remain valid. Figures
21, 22, 23, and 24 show examples of the behavior with more
Newton’s steps. Therefore, we can propose the use of damped
methods in order to find good starting points for the original
methods. We would like to analyze these hybrid methods in
a forthcoming paper. We are also interested to analyze the
situation of nonfixed damping factors.
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