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Abstract

Necessary conditions for the weak convergence of Fourier series in or-
thogonal polynomials are given and it is also shown that the partial sum
operator associated with the Jacobi series is restricted weak type, but not
weak type, for the endpoints of the mean convergence interval.

Introduction

Let dα be a finite positive Borel measure on an interval I ⊂ R such that supp(dα)
is an infinite set and let pn(dα) denote the corresponding orthonormal polyno-
mials. For f ∈ L1(dα), Snf stands for the nth partial sum of the orthogonal
Fourier expansion of f in {pn(dα)}∞n=0, that is,

Sn(f, x) =
n∑

k=0

akpk(x), ak = ak(f) =
∫

I

fpk dα.

The study of the convergence of Snf in Lp(dα) (p 6= 2) has been discussed
for several classes of orthogonal polynomials (c.f. Askey-Wainger [1], Badkov [2–
4], Muckenhoupt [11–13], Newman-Rudin [16], Pollard [17–19], Wing [24]). For
instance, in the case of Jacobi polynomials {P (α,β)

n (x)}∞n=0 which are orthogonal
in [−1, 1] with respect to the weight w(x) = (1 − x)α(1 + x)β , α, β ≥ −1/2,
Pollard proved that |1/p − 1/2| < min{1/(4α + 4), 1/(4β + 4)} is a sufficient
condition for the uniform boundedness ‖Snf‖p,w ≤ C‖f‖p,w, which is equivalent
to the convergence in Lp(w), 1 < p < ∞. Newman and Rudin showed that
the previous condition is also necessary and later Muckenhoupt extended these
results to α, β > −1.

The aim of this paper is to examine the weak behaviour of the Fourier-Jacobi
expansion, that is, to study if there exists a constant C, independent of n, y
and f , such that∫

|Sn(f,x)|>y

w(x) dx ≤ Cy−p

∫ 1

−1

|f(x)|pw(x) dx, y > 0,
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i.e., if Sn is uniformly bounded from Lp(w) into Lp
∗(w), 1 < p < ∞.

By using interpolation [22, Th. 3.15, p. 197], the range of p’s for which
there exists convergence of Snf in Lp(w) is always an interval, named mean
convergence interval. Moreover, the previous weak inequality only can be true,
beside the mean convergence interval, in its endpoints. Since for −1 < α, β ≤
−1/2, the conditions |1/p − 1/2| < min{1/(4α + 4), 1/(4β + 4)} are trivial for
p ∈ (1,∞), we suppose, by symmetry, α ≥ β and α > −1/2. Then the mean
convergence interval is 4(α + 1)/(2α + 3) < p < 4(α + 1)/(2α + 1). For the
Fourier-Legendre expansion (α = β = 0) and p = 4 Chanillo [5] proved that
the partial sum operator is not weak type (4, 4), but is restricted weak type
(4, 4) (and (4/3, 4/3), by duality), i.e., it is weakly bounded on characteristic
functions.

On the other hand, Máté, Nevai and Totik [10] obtained, in a general way,
necessary conditions for the mean convergence of Fourier expansions.

Theorem (Máté-Nevai-Totik). Let dα be such that supp(dα) = [−1, 1], α′ >
0 almost everywhere, U and V nonnegative Borel measurable functions such that
neither of them vanishes almost everywhere in [−1, 1] and V is finite on a set
with positive Lebesgue measure. If Sn is uniformly bounded from Lp(V (x)p dα)
into Lp(U(x)p dα), then

(i) U(x)p ∈ L1(dα), V (x)−q ∈ L1(dα), q = p/(p− 1),

(ii)
∫ 1

−1

U(x)pα′(x)1−p/2(1− x2)−p/4 dx < ∞,

(iii)
∫ 1

−1

V (x)−qα′(x)1−q/2(1− x2)−q/4 dx < ∞.

When dα and dβ = U(x)p dα = V (x)p dα are generalized Jacobi measures,
these conditions turn out to be sufficient too [2–4].

This paper is organized as follows. In Section 1 we obtain necessary condi-
tions for the weak convergence. These allow us to prove that Sn is not weak
type (p, p) for p = 4(α + 1)/(2α + 3). From these conditions it follows that (i),
(ii) and (iii) are necessary not only for the mean convergence but also for the
weak convergence. We end this section giving an example which shows that they
are not sufficient. In Section 2 we prove, by using similar arguments to [5], that
Sn is not weak type for p = 4(α + 1)/(2α + 1). Finally, in Section 3, we obtain
that the partial sum operator is restricted weak type (p, p) for both endpoints
of the mean convergence interval when α, β ≥ −1/2 and one of them is bigger
than −1/2.

Section 1

Assume supp(dα) = [−1, 1], α′ > 0 a.e., and let {pn(x)}∞n=0 be the corre-
sponding orthonormal polynomials. C is used to denote positive constants not
necessarily the same in each occurrence and q = p/(p − 1). For f ∈ L1(dα)
let Snf denote the nth partial sum of the orthogonal Fourier expansion of f
in {pn(x)}∞n=0. We want to find necessary conditions for the weak convergence
of Sn.
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Lema 1. Let U and V be weights and let 1 < p < ∞. If there exists a constant
C such that for every f ∈ Lp(V p dα) the inequality

‖Snf‖Lp
∗(Up dα) ≤ C‖f‖Lp(V p dα) (1.1)

holds for all integers n ≥ 0, then

‖pn‖Lq(V −q dα)‖pn‖Lp
∗(Up dα) ≤ C. (1.2)

Proof. It follows from (1.1) that

‖an(f)pn‖Lp
∗(Up dα) = ‖Snf − Sn−1f‖Lp

∗(Up dα) ≤ C‖f‖Lp(V p dα).

Thus,
|an(f)| ≤ C

(
‖pn‖Lp

∗(Up dα)

)−1 ‖f‖Lp(V p dα).

Therefore, every operator

pn/V p : Lp(V p dα) −→ R

f 7−→
(∫ 1

−1

(pn/V p)fV p dα

)
= an(f)

is bounded and, by duality, its norm as operator coincides with the norm as
function in Lq(V p dα). Thus

‖pn/V p‖Lq(V p dα) ≤ C
(
‖pn‖Lp

∗(Up dα)

)−1

and (1.2) indeed holds.

In order to prove the main theorem, we will use the following result estab-
lished by Máté, Nevai and Totik [10, Th. 2].

Lema 2. Let supp(dα) = [−1, 1], α′ > 0 a.e. in [−1, 1] and 0 < p ≤ ∞. There
exists a constant C such that if g is a Lebesgue-measurable function in [−1, 1],
then

‖α′(x)−1/2(1− x2)−1/4‖Lp(|g|p dx) ≤ lim inf
n→∞

‖pn‖Lp(|g|p dx).

In particular, if
lim inf
n→∞

‖pn‖Lp(|g|p dx) = 0

then g = 0 a.e.

Theorem 1. Let dα, U and V be as in Lemma 1. If there exists a constant C
such that

‖Snf‖Lp
∗(Up dα) ≤ C‖f‖Lp(V p dα)

holds for all integers n ≥ 0 and every f ∈ Lp(V p dα), then

Up, V −q ∈ L1(dα), (1.3)

α′(x)−1/2(1− x2)−1/4 ∈ Lp
∗(U

pα′ dx), (1.4)

α′(x)−1/2(1− x2)−1/4 ∈ Lq(V −qα′ dx). (1.5)
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Proof. Taking n = 0 in Lemma 1 we obtain (1.3).
In order to proof (1.4) and (1.5), we use the following result:

‖f‖Lp
∗(dm) ≤ sup

E

‖fχE‖r

‖χE‖s
≤
(

p

p− r

)1/r

‖f‖Lp
∗(dm),

where dm is a Borel measure, 0 < r < p < ∞, 1/s = 1/r − 1/p and the
supremum is taken over all measurable sets E such that 0 < m(E) < ∞ [7,
Lemma V.2.8, p. 485]. From Lemma 2 and this inequality, it follows that

‖α′(x)−1/2(1− x2)−1/4‖Lp
∗(|g|p dx) ≤ lim inf

n→∞
‖pn‖Lp

∗(|g|p dx).

Now, taking lim infn→∞ in (1.2), we obtain

‖α′(x)−1/2(1− x2)−1/4‖Lq(V −qα′ dx)‖α′(x)−1/2(1− x2)−1/4‖Lp
∗(Upα′ dx) ≤ C.

As none of this norms can vanish, we get (1.4) and (1.5).

An easy consequence from Theorem 1 is

Corollary 1. If dα, U and V are as in Lemma 1 and if Sn is uniformly
bounded from Lp(V (x)p dα) into Lp

∗(U(x)p dα) and from Lq(U(x)−q dα) into
Lq
∗(V (x)−q dα), then we have

U(x)p ∈ L1(dα), V (x)−q ∈ L1(dα), (1.6)∫ 1

−1

V (x)−qα′(x)1−q/2(1− x2)−q/4 dx < ∞, (1.7)

∫ 1

−1

U(x)pα′(x)1−p/2(1− x2)−p/4 dx < ∞. (1.8)

Remark 1. Let Sn denote the nth partial sum of the Fourier-Jacobi expansion
(α′(x) = (1 − x)α(1 + x)β , α, β ≥ −1/2, α > −1/2) and U(x) = V (x) = 1.
Because of (1.3) and (1.5) in Theorem 1 we obtain the following conditions

|A + 1||1/p− 1/2| < (A + 1)/2, (A + 1)(1/p− 1/2) < 1/4,

where A is α or β, the same in each statement. As the latter inequality is not
satisfied for p = 4(α + 1)/(2α + 3), it implies that Sn is not weak type (p, p)
for the lower endpoint of the interval of mean convergence. The same happens
with generalized Jacobi polynomials.

Remark 2. The conditions (1.6), (1.7) and (1.8) are the same that (i), (ii) and
(iii) in the Introduction. These are necessary conditions for the boundedness of
Sn from Lp(V (x)p dα) into Lp(U(x)p dα) or equivalently from Lq(U(x)−q dα)
into Lq(V (x)−q dα). This points out that the conditions obtained by Máté,
Nevai and Totik are necessary not only for the mean convergence but also for
the weak convergence.
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Remark 3. Let us prove that Máté-Nevai-Totik conditions are not sufficient for
the weak convergence. Consider the Fourier-Legendre expansion (dα = dx),
p = 4, and take

U(x) =
∣∣∣∣log

(
1 + x

4

)∣∣∣∣−5/8 ∣∣∣∣log
(

1− x

4

)∣∣∣∣−5/8

,

V (x) =
∣∣∣∣log

(
1 + x

4

)∣∣∣∣−3/8 ∣∣∣∣log
(

1− x

4

)∣∣∣∣−3/8

.

It is immediate that U and V satisfy (1.6) in Corollary 1. In order to prove
the remaining conditions (1.7) and (1.8) we will show that the weights U and
V satisfy even stronger ones, that is

((1− x2)δU(x)4δ, (1− x2)δV (x)4δ) ∈ A4(−1, 1) for some δ > 1, (1.9)

((1− x2)−1U(x)4, (1− x2)−1V (x)4) ∈ A4(−1, 1), (1.10)

where Ap(−1, 1) stands for the Muckenhoupt Ap classes [9, 14], i.e. (u, v) ∈
Ap(−1, 1), 1 < p < ∞, if∫

I

u(x) dx

(∫
I

v(x)−1/(p−1) dx

)p−1

≤ C|I|p

for every interval I ⊂ [−1, 1], and |I| denotes the Lebesgue measure of the
interval I. The weight w belongs to A1 if Mw(x) ≤ Cw(x) a.e., where M
denotes the Hardy-Littlewood function.

In order to prove (1.9), by using symmetry and change of variable, it suffices
to show that

(u, v) = (xδ| log x|−5δ/2, xδ| log x|−3δ/2) ∈ A4(0, 1/2).

Let

w(x) = x| log x|−2 = x−1/2
(
x−1/2| log x|2/3

)−3

= w1(x)w2(x)−3.

It is known that w1 ∈ A1 and it is not difficult to prove that w2 ∈ A1. Thus,
w ∈ A4 by using the factorization theorem for Ap weights [6]. Now, (1.9) follows
from [15, Th. 2] and it implies that the Hilbert transform H is bounded from
Lp(v) into Lp(u), which will be used later.

On the other hand, if u(x) = x−1| log x|b and v(x) = x−1| log x|B , it can be
shown that (u, v) ∈ Ap(0, 1/2) if and only if −b > 1 and b+1 ≤ B. Then (1.10)
follows obviously.

If pn(x) stands for the Legendre orthonormal polynomials, the partial sum
operator can be decomposed [17] as

Sn(f, x) = αnpn+1(x)
∫ 1

−1

pn(t)− pn+2(t)
x− t

f(t) dt

+ αn(pn+2(x)− pn(x))
∫ 1

−1

pn+1(t)
x− t

f(t) dt

− βnpn+1(x)
∫ 1

−1

pn+1(t)f(t) dt, (1.11)
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where αn and βn are bounded and

(1− x2)1/4|pn(x)| ≤ C, (1− x2)−1/4|pn(x)− pn+2(x)| ≤ C. (1.12)

We now try to estimate the three summands of the equation (1.11). We begin
by estimating the last term using Hölder’s inequality, the first part of (1.12)
and (1.10). We have∫ 1

−1

|pn+1(t)f(t)| dt ≤ C

(∫ 1

−1

(1− t2)−1/3V (t)−4/3 dt

)3/4

×
(∫ 1

−1

|f(t)V (t)|4 dt

)1/4

= C1‖fV ‖4.

Therefore∫ 1

−1

∣∣∣∣pn+1(x)
∫ 1

−1

pn+1(t)f(t) dt

∣∣∣∣4 U(x)4 dx

≤ C

∫ 1

−1

(1− x2)−1U(x)4 dx

∫ 1

−1

|f(t)V (t)|4 dt = C1‖fV ‖44.

We now estimate the middle term using (1.9) and (1.12):∫ 1

−1

∣∣∣∣(pn+2(x)− pn(x))
∫ 1

−1

pn+1(t)f(t)
x− t

dt

∣∣∣∣4 U(x)4 dx

≤ C

∫ 1

−1

|H(pn+1f, x)|4(1− x2)U(x)4 dx

≤ C1

∫ 1

−1

|pn+1(x)f(x)|4(1− x2)V (x)4 dx ≤ C2‖fV ‖44.

Finally, we will prove that the first term is not weakly bounded. The proof is
by contradiction. Let us assume that there exists a constant C, independent of
n and f ∈ L4(V 4), such that∫

|pn+1(x)||H((pn−pn−2)f,x)|>y

U(x)4 dx ≤ Cy−4‖fV ‖44.

Then, it will be enough to construct a sequence of functions {fn(t)} such that the
constant appearing in the above inequality grows with n. A slight modification
of the argument used by Chanillo proves that C ≥ (log n)3/2. Therefore, the
partial sum operator is not weak type (4, 4).

Section 2

Let Sn denote the nth partial sum of the Fourier-Jacobi expansion with respect
to w(x) = (1 − x)α(1 + x)β , being α ≥ β and α > −1/2. Then, the interval
of mean convergence is given by 4(α + 1)/(2α + 3) < p < 4(α + 1)/(2α + 1).
Theorem 1 works to prove that Sn is not weak type on Lp(w) for p = 4(α +
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1)/(2α + 3), since (1.5) is not satisfied. But it is not useful to show that Sn

is not weak type for p = 4(α + 1)/(2α + 1). It leads us to make use of other
arguments.

Let r = 4(α + 1)/(2α + 1). Then, there exists no constant C, independent
of n and f ∈ Lr(w), such that

‖Snf‖Lr
∗(w) ≤ C‖f‖Lr(w). (2.1)

Proof. In what follows assume supp(f) ⊂ [0, 1]. Let pn(x) denote the orthonor-
mal polynomials with respect to w(x) and qn(x) the orthonormal polynomials
with respect to w(x)(1−x2). Moreover, if (2.1) is true, the same happens if the
left integral is only taken over the set {x ∈ (0, 1), |Sn(f, x)| > y}. Then, we will
suppose all integrals are restricted by the condition x ∈ (0, 1).

Pollard [18] proved that in

Sn(f, x) =
∫ 1

−1

f(t)Kn(x, t)w(t) dt

the kernel Kn(x, t) can be decomposed in the form

Kn(x, t) = rnT1(n, x, t) + snT2(n, x, t) + snT3(n, x, t) (2.2)

where rn and sn are bounded and

T1(n, x, t) = pn(x)pn(t) (2.3)

T2(n, x, t) = (1− t2)
pn(x)qn−1(t)

x− t
(2.4)

T3(n, x, t) = T2(n, t, x) = (1− x2)
pn(t)qn−1(x)

t− x
. (2.5)

As α ≥ −1/2, from [23, p. 169], if x ∈ [0, 1], we have the following estimates:

|pn(x)| ≤ C(1− x)−α/2−1/4, (2.6)

|qn(x)| ≤ C(1− x)−α/2−3/4. (2.7)

Let

Wi(f, x) = Wi,n(f, x) =
∫ 1

−1

f(t)Ti(n, x, t)w(t) dt (i = 1, 2, 3).

We try to estimate the three terms∫
|Wi(f,x)|>y

w(x) dx (i = 1, 2, 3).

(i = 1) By using (2.6) and Hölder’s inequality, we have

|W1(f, x)| =
∣∣∣∣pn(x)

∫ 1

0

f(t)pn(t)w(t) dt

∣∣∣∣
≤ C(1− x)−α/2−1/4

(∫ 1

0

|f(t)|pw(t) dt

)1/p

×
(∫ 1

0

(1− t)q(−α/2−1/4)w(t) dt

)1/q

= C1(1− x)−α/2−1/4‖f‖p,w
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if q(−α/2− 1/4) + α > −1. Applying this to p = r we get∫
|W1(f,x)|>y

w(x) dx ≤
∫

(1−x)−1/4−α/2>y/(C‖f‖r,w)

w(x) dx ≤ C1y
−r‖f‖r

r,w

what shows that W1 is weakly bounded.
(i = 3) Let H denote the Hilbert transform. It is well known that H is

bounded from Lp(u) into Lp(u) if and only if the weight u belongs to Ap [9].
By using (2.6) and (2.7), we get∫ 1

0

|W3(f, x)|pw(x) dx

≤ C

∫ 1

0

|H(f(t)pn(t)w(t), x)|p(1− x)(1/4−α/2)p+α dx. (2.8)

Recalling that (1−x)(1/4−α/2)p+α ∈ Ap(0, 1) iff −1 < (1/4−α/2)p+α < p− 1,
[21], and it is verified for p = r, then (2.8) and (2.6) yield∫ 1

0

|W3(f, x)|rw(x) dx

≤ C

∫ 1

0

|f(x)pn(x)w(x)|r(1− x)(1/4−α/2)r+α dx ≤ C1‖f‖r
r,w

and therefore W3 is strongly bounded.
(i = 2) We shall prove that there is not any constant C, independent of n

and f , such that∫
|pn(x)H(f(t)qn−1(t)(1−t2)w(t),x)|>y

w(x) dx ≤ Cy−r‖f‖r
r,w. (2.9)

The proof is by contradition, constructing a sequence of functions {fm,n(t)}
such that the constant C appearing in the previous inequality grows with m.
In order to get it we try to remove the term (x− t)−1 in the Hilbert transform
and we need sharper forms of (2.6) and (2.7).

Because of [23, Th. 8.21.13], if N = n+(α+β+1)/2 and γ = −(α+1/2)π/2
we have

pn(cos θ) = (2α+βπ)−1/2(sin(θ/2))−α−1/2(cos(θ/2))−β−1/2

× [cos(Nθ + γ) + (n sin θ)−1O(1)]

where c/n ≤ θ ≤ π − c/n, c being a fixed positive number.
We will restrict our attention to θ ≤ π/2 and choose M large enough and

such that M −α/2 is a positive integer. If Mπ/n ≤ θ ≤ (M +1/8)π/n, we have

Nθ + γ ≤
(

n +
α + β + 1

2

)(
M +

1
8

)
π

n

−
(

α +
1
2

)
π

2
−−−→
n→∞

(
M − α

2

)
π − π

8
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and

Nθ + γ ≥
(

n +
α + β + 1

2

)
Mπ

n
−
(

α +
1
2

)
π

2
−−−→
n→∞

(
M − α

2

)
π − π

4
.

Hence, for every ε > 0 there exists n0 such that(
M − α

2

)
π − π

4
− ε ≤ Nθ + γ ≤

(
M − α

2

)
π − π

8
+ ε, n ≥ n0.

Therefore | cos(Nθ + γ)| is bounded below by a positive constant for n large
enough, and the same happens to | cos(Nθ + γ)| − |(n sin θ)−1O(1)|. Then
pn(cos θ) ≥ C(sin(θ/2))−α−1/2, and taking x = cos θ we get

|pn(x)| ≥ C(1− x2)−α/2−1/4 ≥ C1(1− x)−α/2−1/4 ≥ C2n
α+1/2 (2.10)

for n ≥ n0 and x ∈ [cos (M+1/8)π
n , cos Mπ

n ] = In.
We define

fm,n(t) =
sgn qn−1(t)

(1− t)α/2+1/4
if 0 ≤ t ≤ cos

(
2Mπ

m

)
, m < n,

and fm,n(t) = 0 elsewhere.
Now, we are going to estimate the left side in (2.9). If x ∈ In and t ∈

supp(fm,n) then 0 < x− t < 1− t. With the aid of Lemma 2, then there exists
a subsequence of n’s for which

|H(fm,n(t)qn−1(t)(1− t)α+1(1 + t)β+1, x)|

=

∣∣∣∣∣
∫ cos(2Mπ/m)

0

|qn−1(t)|(1− t)α+1(1 + t)β+1

(1− t)α/2+1/4(x− t)
dt

∣∣∣∣∣ ≥ C log m. (2.11)

Thus, this and (2.10) imply

|pn(x)||H(fm,n(t)qn−1(t(1− t)α+1(1 + t)β+1, x)|
≥ Cnα+1/2 log m, x ∈ In. (2.12)

On the other hand, it is easy to check up∫ 1

0

|fm,n(t)|r(1−t)α(1+t)β dt ≤ C

∫ cos(2Mπ/m)

0

(1−t)−1 dt ≤ C1 log m. (2.13)

Finally, assume (2.9). By using (2.13) it follows that

y−r log n ≥ Cy−r

∫ 1

0

|fm,n(t)|rw(t) dt

≥ C1

∫
|pn(x)H(fm,n(t)qn−1(t)(1−t2)w(t),x)|>y

w(x) dx. (2.14)

Choose y = Cnα+1/2 log m. As |In| = O(n−2), using (2.12) and (2.14) we have

Cn−2−2α(log m)−(2α+3)/(2α+1)

≥ C1

∫
In

(1− x)α(1 + x)β dx ≥ C2|In|n−2α ≥ C3n
−2−2α,

i.e., (log m)−(2α+3)/(2α+1) ≥ C, which is absurd.
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Section 3

The aim of this part is to examine the restricted weak behaviour of the nth
partial sum of the Fourier-Jacobi expansion. Assume w(x) = (1 − x)α(1 + x)β

with α ≥ β ≥ −1/2 and α > −1/2, and so the interval of mean convergence
turns out to be 4(α + 1)/(2α + 3) < p < 4(α + 1)/(2α + 1). We need some
notations to establish our result. The Lebesgue measure of any set E ⊂ (−1, 1)
will be denoted |E|, and χE(x) will as usual denote the characteristic function
of the set E. The reader is refered to [8] or [22] for notations and results about
Lorentz spaces.

Theorem 3. Let p = 4(α + 1)/(2α + 1) or p = 4(α + 1)/(2α + 3). Then, there
exists a constant C, independent of n and E ⊂ (−1, 1), such that∫

|Sn(χE ,x)|>y

w(x) dx ≤ Cy−p

∫
E

w(x) dx.

Proof. By standard duality arguments it is enough to prove this for p = 4(α +
1)/(2α + 1). Since β ≥ −1/2, we have analogous estimates to (2.6) and (2.7) in
the interval (−1, 0),

|pn(x)| ≤ C(1− x2)−1/4w(x)−1/2,

|qn(x)| ≤ C(1− x2)−3/4w(x)−1/2, x ∈ (−1, 1). (3.1)

We proceed as in Section 2 by making the same decomposition for the kernel in
Sn(χE , x), and we can see that W1 and W3 are weakly bounded. Therefore we
only need to prove that∫

|R 1
−1 χE(t)T2(n,x,t)w(t) dt|>y

w(x) dx ≤ Cy−p

∫
E

w(x) dx

for every measurable set E ⊂ (−1, 1). By (3.1),∣∣∣∣∫ 1

−1

χE(t)T2(n, x, t)w(t) dt

∣∣∣∣
≤ C(1− x2)−1/4w(x)−1/2|H(χE(t)qn−1(t)(1− t2)w(t), x)|.

Therefore, if we denote

U = U(E, y, n)

= {x ∈ (−1, 1) : (1− x2)−1/4

× w(x)−1/2|H(χE(t)qn−1(t)(1− t2)w(t), x)| > y}

it suffices to prove

yp

∫
U

w(x) dx ≤ C

∫
E

w(x) dx.

We can write a similar proof to that of [5]. Decompose E = E1 ∪ E2,
E1 = E ∩ [0, 1), E2 = E ∩ (−1, 0), and let U1 = U(E1, y, n), U2 = U(E2, y, n).
Since in |x| ≤ 3/4 both (1−x) and (1+x) have lower and upper positive bounds
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and since the Hilbert transform is a bounded operator in Lp(dx), 1 < p < ∞
(M. Riesz’s Theorem [20]), the following inequality holds:

yp

∫
U∩{|x|≤3/4}

w(x) dx ≤ C

∫
E

w(x) dx.

Hence, we must show that

yp

∫
Ui∩{3/4<|x|<1}

w(x) dx ≤ C

∫
E

w(x) dx, i = 1, 2. (3.2)

We only prove (3.2) for i = 1 since the estimates for i = 2 are made in similar
way. We begin considering x ∈ (−1,−3/4). As E1 ⊂ [0, 1], the term (x− t)−1 in
the Hilbert transform can be dropped. By using (3.1) and Hölder’s inequality
for p = 4(α + 1)/(2α + 1) and q = 4(α + 1)/(2α + 3), we easily get

|H(χE1(t)qn−1(t)(1− t2)w(t), x)| ≤ C

(∫
E1

w(t) dt

)1/p

.

Then, if α = β, by using (3.1) again, we have

yp

∫
U1∩{−1<x<−3/4}

w(x) dx ≤ Cyp

∫
B

(1 + x)α dx,

where B is the set{
x ∈ (−1,−3/4) : C(1 + x)−α/2−1/4

(∫
E1

w(t) dt

)1/p

> y

}
.

Then
yp

∫
U1∩{−1<x<−3/4}

w(x) dx) ≤ C

∫
E1

w(x) dx

is obtained straightforward.
The previous inequality is also true when β < α and it can be easily shown

taking into account that the weak norm is smaller than the strong norm.
Consequently (3.2) will be proved if we show

yp

∫
U1∩{3/4<x<1}

w(x) dx ≤ C

∫
E

w(x) dx. (3.3)

Let us define the sets

A = U1 ∩ {3/4 < x < 1},
Ik = {x ∈ (0, 1) : 2−k−1 ≤ 1− x < 2−k},
Ak = A ∩ Ik, k ≥ 2.

We have

A =
∞⋃

k=2

Ak, Ak ∩Aj = ∅ ∀k 6= j,
∞⋃

k=2

Ik = (3/4, 1).

11



Let us also set for k ≥ 2

E
(k)
11 = E1 ∩ [0, 1− 2−k+1),

E
(k)
12 = E1 ∩ [1− 2−k+1, 1− 2−k−2),

E
(k)
13 = E1 ∩ [1− 2−k−2, 1).

For every k ≥ 2, E
(k)
1m (m = 1, 2, 3) are non intersecting sets whose union is

E1. If we denote by χ
(k)
m the characteristic function of the set E

(k)
1m (m = 1, 2, 3,

k ≥ 2), then
χE1 = χ

(k)
1 + χ

(k)
2 + χ

(k)
3 , k ≥ 2.

Again for k ≥ 2 and m = 1, 2, 3, let

A
(m)
k = {x ∈ Ik : |(1−x2)−1/4w(x)−1/2H(χ(k)

m (t)qn−1(t)(1−t2)w(t), x)| > y/3}.

Since Ak ⊂ A
(1)
k ∪A

(2)
k ∪A

(3)
k , then

A ⊂

[ ∞⋃
k=2

A
(1)
k ∪A

(3)
k

]
∪

[ ∞⋃
k=2

A
(2)
k

]
.

Therefore, in order to prove (3.3) it is enough to show that

yp

∫
S∞

k=2(A
(1)
k ∪A

(3)
k )

w(x) dx ≤ C

∫
E

w(x) dx. (3.4)

and
∞∑

k=2

yp

∫
A

(2)
k

w(x) dx ≤ C

∫
E

w(x) dx. (3.5)

We start with A
(1)
k . Since x ∈ Ik and t ∈ E

(k)
11 , then 1−t ≥ x−t ≥ 2−1(1−t).

By using this, (3.1) and (α + 1)/q − (2α + 3)/4 ≤ 0, we obtain

|(1− x2)−1/4w(x)−1/2H(χ(k)
1 (t)qn−1(t)(1− t2)w(t), x)|

≤ C(1− x)−α/2−1/4

∫ 1

−1

χ
(k)
1 (t)(1− t)−α/2−3/4w(t) dt

≤ C(1− x)−(α+1)/p

∫ 1

−1

χ
(k)
1 (t)(1− t)−(α+1)/qw(t) dt. (3.6)

By Hölder’s inequality for Lorentz spaces we have∫ 1

−1

χ
(k)
1 (t)(1− t)−(α+1)/qw(t) dt

= ‖χ(k)
1 (t)(1− t)−(α+1)/q‖(1,1),w

≤ C‖χ(k)
1 (t)‖(p,1),w‖(1− t)−(α+1)/q‖(q,∞),w. (3.7)

Also

‖χ(k)
1 (t)‖(p,1),w ≤ C‖χ(k)

1 (t)‖∗(p,1),w

= C

(∫
E

(k)
11

w(x) dx

)1/p

≤ C

(∫
E

w(x) dx

)1/p

. (3.8)
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Finally, we get

‖(1− t)−(α+1)/q‖(q,∞),w = sup
y>0

yq

∫
|(1−t)−(α+1)/q|>y

w(t) dt < ∞. (3.9)

Using (3.6), (3.7), (3.8) and (3.9) in turn we obtain for x ∈ A
(1)
k

|(1− x2)−1/4w(x)−1/2H(χ(k)
1 (t)qn−1(t)(1− t2)w(t), x)|

≤ C(1− x)−(α+1)/p

(∫
E

w(x) dx

)1/p

. (3.10)

This argument can be made analogously for A
(3)
k (k ≥ 2) and we have the same

estimates. Thus

A
(1)
k ∪A

(3)
k ⊂

{
x ∈ (0, 1) : C(1− x)−(α+1)/p

(∫
E

w(x) dx

)1/p

> y

}
,

and as the same is true for
⋃∞

k=2(A
(1)
k ∪A

(3)
k ), then (3.4) follows.

Let us see now what happens to A
(2)
k , k ≥ 2. As x ∈ Ik we can remove the

term (1 + x)−β/2−1/4, and so

A
(2)
k ⊂ {x : 2−k−1 < 1− x < 2−k, w(x)−1/p

× |H(χ(k)
2 (t)qn−1(t)(1− t2)w(t), x)| > C2−k(α/2+1/4)+αk/py}.

Then, by using (3.1) and M. Riesz’s Theorem and the location of E
(k)
12 , we obtain

yp

∫
A

(2)
k

w(x) dx ≤ C

∫
E

(k)
12

w(x) dx.

As x may belong to at most three intervals of the form {1 − 2−k+1 ≤ x <

1− 2−k−2} and the A
(2)
k are non-overlapping intervals, we have

yp

∫
S∞

k=2 A
(2)
k

w(x) dx = yp
∞∑

k=2

∫
A

(2)
k

w(x) dx

≤ C

∞∑
k=2

∫
E

(k)
12

w(x) dx ≤ C1

∫
E

w(x) dx,

and the theorem is shown.

Remarks. (1) As the referee has pointed out to us, lastly L. Colzani, S. Giulini,
and G. Travaglini [25] have considered weak type boundedness of polyhedral
partial sum operators on certain compact Lie groups, proving that weak type
fails in the lower endpoint. As a consequence, results for some Jacobi-Fourier
series can be obtained from their work.

(2) We also have a proof of Theorem 3 when either α or β are less than −1/2.
It can be done by modifying slightly the proof together with the use of non-
uniform estimates of Jacobi polynomials (see [11]).
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